1
|
Shi L, Ge H, Ye F, Li X, Jiang Q. The role of pericyte in ocular vascular diseases. J Biomed Res 2024; 38:1-10. [PMID: 38808554 PMCID: PMC11629158 DOI: 10.7555/jbr.37.20230314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
Pericytes are located in the stromal membrane of the capillary outer wall and contain endothelial cells (ECs). They are pivotal in regulating blood flow, enhancing vascular stability, and maintaining the integrity of the blood-retina barrier (BRB)/blood-brain barrier (BBB). The pluripotency of pericytes allows them to differentiate into various cell types, highlighting their significance in vascular disease pathogenesis, as demonstrated by previous studies. This potential enables pericytes to be a potential biomarker for the diagnosis and a target for treatment of vascular disorders. The retina, an essential part of the eyeball, is an extension of cerebral tissue with a transparent refractive medium. It offers a unique window for assessing systemic microvascular lesions. Routine fundus examination is necessary for patients with diabetes and hypertension. Manifestations, such as retinal artery tortuosity, dilation, stenosis, and abnormal arteriovenous anastomosis, serve as typical hallmarks of retinal vasculopathy. Therefore, studies of ocular vascular diseases significantly facilitate the exploration of systemic vascular diseases.
Collapse
Affiliation(s)
- Lianjun Shi
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huimin Ge
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fan Ye
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiumiao Li
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qin Jiang
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
2
|
Díaz-Lezama N, Wolf A, Koch S, Pfaller AM, Biber J, Guillonneau X, Langmann T, Grosche A. PDGF Receptor Alpha Signaling Is Key for Müller Cell Homeostasis Functions. Int J Mol Sci 2021; 22:ijms22031174. [PMID: 33503976 PMCID: PMC7865899 DOI: 10.3390/ijms22031174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
Müller cells, the major retinal macroglia, are key to maintaining vascular integrity as well as retinal fluid and ion homeostasis. Although platelet derived growth factor (PDGF) receptor expression in Müller glia has been reported earlier, their actual role for Müller cell function and intimate interaction with cells of the retinal neurovascular unit remains unclear. To close this gap of knowledge, Müller cell-specific PDGF receptor alpha (PDGFRα) knockout (KO) mice were generated, characterized, and subjected to a model of choroidal neovascularization (CNV). PDGFRα-deficient Müller cells could not counterbalance hypoosmotic stress as efficiently as their wildtype counterparts. In wildtypes, the PDGFRα ligand PDGF-BB prevented Müller cell swelling induced by the administration of barium ions. This effect could be blocked by the PDGFR family inhibitor AC710. PDGF-BB could not restore the capability of an efficient volume regulation in PDGFRα KO Müller cells. Additionally, PDGFRα KO mice displayed reduced rod and cone-driven light responses. Altogether, these findings suggest that Müller glial PDGFRα is central for retinal functions under physiological conditions. In contrast, Müller cell-specific PDGFRα KO resulted in less vascular leakage and smaller lesion areas in the CNV model. Of note, the effect size was comparable to pharmacological blockade of PDGF signaling alone or in combination with anti-vascular endothelial growth factor (VEGF) therapy—a treatment regimen currently being tested in clinical trials. These data imply that targeting PDGF to treat retinal neovascular diseases may have short-term beneficial effects, but may elicit unwarranted side effects given the putative negative effects on Müller cell homeostatic functions potentially interfering with a long-term positive outcome.
Collapse
Affiliation(s)
- Nundehui Díaz-Lezama
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany; (A.W.); (T.L.)
| | - Susanne Koch
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Anna M. Pfaller
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Josef Biber
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Xavier Guillonneau
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, F-75012 Paris, France;
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany; (A.W.); (T.L.)
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
- Correspondence:
| |
Collapse
|
3
|
Basuodan R, Basu AP, Clowry GJ. Human neural stem cells dispersed in artificial ECM form cerebral organoids when grafted in vivo. J Anat 2018; 233:155-166. [PMID: 29745426 DOI: 10.1111/joa.12827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Human neural stem cells (hNSC) derived from induced pluripotent stem cells can be differentiated into neurons that could be used for transplantation to repair brain injury. In this study we dispersed such hNSC in a three-dimensional artificial extracellular matrix (aECM) and compared their differentiation in vitro and following grafting into the sensorimotor cortex (SMC) of postnatal day (P)14 rat pups lesioned by localised injection of endothelin-1 at P12. After 10-43 days of in vitro differentiation, a few cells remained as PAX6+ neuroprogenitors but many more resembled post-mitotic neurons expressing doublecortin, β-tubulin and MAP2. These cells remained dispersed throughout the ECM, but with extended long processes for over 50 μm. In vivo, by 1 month post grafting, cells expressing human specific markers instead organised into cerebral organoids: columns of tightly packed PAX6 co-expressing progenitor cells arranged around small tubular lumen in rosettes, with a looser network of cells with processes around the outside co-expressing markers of immature neurons including doublecortin, and CTIP2 characteristic of corticofugal neurons. Host cells also invaded the graft including microglia, astrocytes and endothelial cells forming blood vessels. By 10 weeks post-grafting, the organoids had disappeared and the aECM had started to break down with fewer transplanted cells remaining. In vitro, cerebral organoids form in rotating incubators that force oxygen and nutrients to the centre of the structures. We have shown that cerebral organoids can form in vivo; intrinsic factors may direct their organisation including infiltration by host blood vessels.
Collapse
Affiliation(s)
- Reem Basuodan
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Health and Rehabilitation Sciences, Princess Noura bint Abdulrhman University, Riyadh, Saudi Arabia
| | - Anna P Basu
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Hou H, Nudleman E, Weinreb R. Animal Models of Proliferative Vitreoretinopathy and Their Use in Pharmaceutical Investigations. Ophthalmic Res 2018; 60:195-204. [DOI: 10.1159/000488492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
|
5
|
Platelet-derived growth factor-C and -D in the cardiovascular system and diseases. Mol Aspects Med 2017; 62:12-21. [PMID: 28965749 DOI: 10.1016/j.mam.2017.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022]
Abstract
The cardiovascular system is among the first organs formed during development and is pivotal for the formation and function of the rest of the organs and tissues. Therefore, the function and homeostasis of the cardiovascular system are finely regulated by many important molecules. Extensive studies have shown that platelet-derived growth factors (PDGFs) and their receptors are critical regulators of the cardiovascular system. Even though PDGF-C and PDGF-D are relatively new members of the PDGF family, their critical roles in the cardiovascular system as angiogenic and survival factors have been amply demonstrated. Understanding the functions of PDGF-C and PDGF-D and the signaling pathways involved may provide novel insights into both basic biomedical research and new therapeutic possibilities for the treatment of cardiovascular diseases.
Collapse
|
6
|
Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L, Rivera FJ, Reitsamer HA. Brain and Retinal Pericytes: Origin, Function and Role. Front Cell Neurosci 2016; 10:20. [PMID: 26869887 PMCID: PMC4740376 DOI: 10.3389/fncel.2016.00020] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Pericytes are specialized mural cells located at the abluminal surface of capillary blood vessels, embedded within the basement membrane. In the vascular network these multifunctional cells fulfil diverse functions, which are indispensable for proper homoeostasis. They serve as microvascular stabilizers, are potential regulators of microvascular blood flow and have a central role in angiogenesis, as they for example regulate endothelial cell proliferation. Furthermore, pericytes, as part of the neurovascular unit, are a major component of the blood-retina/brain barrier. CNS pericytes are a heterogenic cell population derived from mesodermal and neuro-ectodermal germ layers acting as modulators of stromal and niche environmental properties. In addition, they display multipotent differentiation potential making them an intriguing target for regenerative therapies. Pericyte-deficiencies can be cause or consequence of many kinds of diseases. In diabetes, for instance, pericyte-loss is a severe pathological process in diabetic retinopathy (DR) with detrimental consequences for eye sight in millions of patients. In this review, we provide an overview of our current understanding of CNS pericyte origin and function, with a special focus on the retina in the healthy and diseased. Finally, we highlight the role of pericytes in de- and regenerative processes.
Collapse
Affiliation(s)
- Andrea Trost
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
| | - Simona Lange
- Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| | - Falk Schroedl
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Daniela Bruckner
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Karolina A Motloch
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Barbara Bogner
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Clemens Strohmaier
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Christian Runge
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Francisco J Rivera
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Herbert A Reitsamer
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
7
|
Edqvist PHD, Niklasson M, Vidal-Sanz M, Hallböök F, Forsberg-Nilsson K. Platelet-derived growth factor over-expression in retinal progenitors results in abnormal retinal vessel formation. PLoS One 2012; 7:e42488. [PMID: 22880002 PMCID: PMC3411765 DOI: 10.1371/journal.pone.0042488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 07/09/2012] [Indexed: 01/24/2023] Open
Abstract
Platelet-derived growth factor (PDGF) plays an important role in development of the central nervous system, including the retina. Excessive PDGF signaling is associated with proliferative retinal disorders. We reported previously that transgenic mice in which PDGF-B was over-expressed under control of the nestin enhancer, nes/tk-PdgfB-lacZ, exhibited enhanced apoptosis in the developing corpus striatum. These animals display enlarged lateral ventricles after birth as well as behavioral aberrations as adults. Here, we report that in contrast to the relatively mild central nervous system phenotype, development of the retina is severely disturbed in nes/tk-PdgfB-lacZ mice. In transgenic retinas all nuclear layers were disorganized and photoreceptor segments failed to develop properly. Since astrocyte precursor cells did not populate the retina, retinal vascular progenitors could not form a network of vessels. With time, randomly distributed vessels resembling capillaries formed, but there were no large trunk vessels and the intraocular pressure was reduced. In addition, we observed a delayed regression of the hyaloid vasculature. The prolonged presence of this structure may contribute to the other abnormalities observed in the retina, including the defective lamination.
Collapse
Affiliation(s)
- Per-Henrik D. Edqvist
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mia Niklasson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
8
|
Yang XP, Pei ZH, Ren J. MAKING UP OR BREAKING UP: THE TORTUOUS ROLE OF PLATELET-DERIVED GROWTH FACTOR IN VASCULAR AGEING. Clin Exp Pharmacol Physiol 2009; 36:739-47. [DOI: 10.1111/j.1440-1681.2009.05182.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
BENTON RICHARDL, MADDIE MELISSAA, MINNILLO DANIELLER, HAGG THEO, WHITTEMORE SCOTTR. Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. J Comp Neurol 2008; 507:1031-52. [PMID: 18092342 PMCID: PMC2735010 DOI: 10.1002/cne.21570] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
After traumatic spinal cord injury (SCI), disruption and plasticity of the microvasculature within injured spinal tissue contribute to the pathological cascades associated with the evolution of both primary and secondary injury. Conversely, preserved vascular function most likely results in tissue sparing and subsequent functional recovery. It has been difficult to identify subclasses of damaged or regenerating blood vessels at the cellular level. Here, adult mice received a single intravenous injection of the Griffonia simplicifolia isolectin B4 (IB4) at 1-28 days following a moderate thoracic (T9) contusion. Vascular binding of IB4 was maximally observed 7 days following injury, a time associated with multiple pathologic aspects of the intrinsic adaptive angiogenesis, with numbers of IB4 vascular profiles decreasing by 21 days postinjury. Quantitative assessment of IB4 binding shows that it occurs within the evolving lesion epicenter, with affected vessels expressing a temporally specific dysfunctional tight junctional phenotype as assessed by occludin, claudin-5, and ZO-1 immunoreactivities. Taken together, these results demonstrate that intravascular lectin delivery following SCI is a useful approach not only for observing the functional status of neovascular formation but also for definitively identifying specific subpopulations of reactive spinal microvascular elements.
Collapse
Affiliation(s)
- RICHARD L. BENTON
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky 40292
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40292
| | - MELISSA A. MADDIE
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky 40292
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky 40292
| | - DANIELLE R. MINNILLO
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky 40292
- Summer Research Scholar’s Program, University of Louisville School of Medicine, Louisville, Kentucky 40292
| | - THEO HAGG
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky 40292
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky 40292
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40292
| | - SCOTT R. WHITTEMORE
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky 40292
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40292
| |
Collapse
|
10
|
Ohlmann A, Scholz M, Goldwich A, Chauhan BK, Hudl K, Ohlmann AV, Zrenner E, Berger W, Cvekl A, Seeliger MW, Tamm ER. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice. J Neurosci 2005; 25:1701-10. [PMID: 15716406 PMCID: PMC6725931 DOI: 10.1523/jneurosci.4756-04.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.
Collapse
Affiliation(s)
- Andreas Ohlmann
- Department of Anatomy, University of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
We discuss the potential use of stem cells for therapeutic angiogenesis in the treatment of retinal diseases. We demonstrate that the clinical utility of these EPC may be not limited in the treatment of ischemic retinal diseases but may also have application for the treatment of retinal degenerative disorders and for a form of cell-based gene therapy. One of the greatest potential benefits of bone marrow derived EPC therapy is the possible use of autologous grafts. Nonetheless, potential toxicities and unregulated cell growth will need to be carefully evaluated before this approach is brought to the clinics.
Collapse
|
12
|
Nagineni CN, Kutty V, Detrick B, Hooks JJ. Expression of PDGF and their receptors in human retinal pigment epithelial cells and fibroblasts: regulation by TGF-beta. J Cell Physiol 2005; 203:35-43. [PMID: 15368539 DOI: 10.1002/jcp.20213] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Platelet derived growth factors (PDGF) are known to be associated with vitreoretinal disorders such as proliferative vitreoretinopathy (PVR). We have studied the expression of PDGF and their receptors in human retinal pigment epithelial cells (HRPE) and choroid fibroblasts (HCHF), and the regulation of PDGF and its receptors by various cytokines and growth factors. RT-PCR analyses showed enhanced expression of PDGF-A and PDGF-B mRNA in HRPE treated with TGF-beta, but not with other cytokines. A minimal increase was observed in PDGF-A mRNA in TGF-beta treated HCHF cells. PDGF-R alpha mRNA, which was expressed prominently in HCHF and at very low levels in HRPE, was not affected by any of the agents. PDGF-R beta was not detectable in either HRPE or HCHF. HRPE secreted PDGF-AA and AB constitutively, and this secretion was significantly enhanced by TGF-beta. In contrast, HCHF cultures did not secrete detectable levels of any of the three isoforms of PDGF (AA, AB, BB). All three human recombinant PDGF isoforms enhanced HCHF cell proliferation significantly, while only a minimal increase was observed in HRPE. PDGF isoforms also induced HCHF cell elongation and promoted migration of HCHF in an in vitro wound assay. The results presented in this study demonstrate that TGF-beta activated RPE cells produce PDGF that may act on fibroblasts and other mesenchyme derived cells which express PDGF receptors. These studies indicate that the promotion of the proliferation and migration of mesenchymal cells by RPE cell derived PDGF may facilitate the formation of fibrovascular tissues associated with PVR.
Collapse
Affiliation(s)
- Chandrasekharam N Nagineni
- Laboratory of Immunololgy, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
13
|
Grant MB, Afzal A, Spoerri P, Pan H, Shaw LC, Mames RN. The role of growth factors in the pathogenesis of diabetic retinopathy. Expert Opin Investig Drugs 2005; 13:1275-93. [PMID: 15461557 DOI: 10.1517/13543784.13.10.1275] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diabetic retinopathy (DR) is the most severe of several ocular complications of diabetes. The earliest clinical signs of DR are microaneurysms and haemorrhages. Later signs include dilated, tortuous irregular veins and retinal non-profusion, leading to retinal ischaemia that ultimately results in neovascularisation. Diabetic macular oedema, which involves the breakdown of the blood-retinal barrier, also occurs and is responsible for a major part of vision loss, particularly in Type 2 diabetes. The pathogenesis of DR is very complex. Many biochemical mechanisms have been proposed as explanations for the development and progression of DR. Chronic hyperglycaemia leads to oxidative injury, microthrombi formation, cell adhesion molecule activation, leukostasis and cytokine activation. Next, ischaemia-mediated overexpression of growth factors and cytokines occurs. These factors include vascular endothelial growth factor, insulin-like growth factor-1, angiopoetin-1 and -2, stromal-derived factor-1, fibroblast growth factor-2 and tumour necrosis factor. Because of the complex interplay between these factors, targeting a single growth factor will be unlikely to result in therapeutic inhibition of angiogenesis. These growth factors no doubt act in synergy to mediate the steps of angiogenesis, including protease production, endothelial cell proliferation, migration and tube formation. This review attempts to provide an overview of perspectives regarding the pathogenesis of this disease. The focus, however, is on describing the unique features of selected relevant factors and how each growth factor may act in a synergistic manner with other factors.
Collapse
Affiliation(s)
- Maria B Grant
- University of Florida, Department of Pharmacology and Therapeutics, 1600 SW Archer Road, PO Box 100267, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Betsholtz C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 2005; 15:215-28. [PMID: 15207813 DOI: 10.1016/j.cytogfr.2004.03.005] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic analyses in mice have contributed significantly to the understanding of the physiological functions of platelet-derived growth factors (PDGFs) and their receptors. Phenotypic analyses of gene knockouts of PDGF-A, PDGF-B, PDGF alpha-receptors (PDGFRalpha) and beta-receptors (PDGFRbeta) have shown that these ligands and receptors play major roles during embryonic development. Conditional and subtle mutations in the same genes and analysis of chimeric mice have provided additional information about the roles of these genes in postnatal development. Transgenic over-expression studies have also demonstrated that PDGF ligands are capable of inducing pathological cell proliferation in a number of different organs. The present review summarizes these findings and discusses their implications for mammalian development and disease.
Collapse
Affiliation(s)
- Christer Betsholtz
- Department of Medical Biochemistry, University of Göteborg, P.O. Box 440, SE 405 30 Göteborg, Sweden.
| |
Collapse
|
15
|
Vinores SA, Xiao WH, Aslam S, Shen J, Oshima Y, Nambu H, Liu H, Carmeliet P, Campochiaro PA. Implication of the hypoxia response element of the vegf promoter in mouse models of retinal and choroidal neovascularization, but not retinal vascular development. J Cell Physiol 2005; 206:749-58. [PMID: 16245301 DOI: 10.1002/jcp.20525] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Retinal neovascularization (NV) and macular edema, resulting from blood-retinal barrier (BRB) breakdown, are major causes of visual loss in ischemic retinopathies. Choroidal NV (CNV) occurs in diseases of the retinal pigmented epithelium/Bruch's membrane complex and is another extremely prevalent cause of visual loss. We used mice in which the hypoxia response element (HRE) is deleted from the vascular endothelial growth factor (vegf) promoter (Vegf(delta/delta) mice) to explore the role of induction of VEGF through the HRE in these disease processes. Compared to wild type (Vegf+/+) mice with oxygen-induced ischemic retinopathy (OIR) in which vegf mRNA levels were increased and prominent retinal NV and BRB breakdown occurred, Vegf(delta/delta) littermates with OIR failed to increase vegf mRNA levels in the retina and had significantly less retinal NV and BRB breakdown, but showed prominent dilation of some superficial retinal vessels. Vegf(+/delta) littermates with ischemic retinopathy developed comparable retinal NV to Vegf+/+ mice, exhibited intermediate levels of BRB breakdown, and did not show vasodilation. In a mouse model of CNV, due to laser-induced rupture of Bruch's membrane, the area of CNV at Bruch's membrane rupture sites was more than tenfold greater in Vegf+/+ mice than in Vegf(delta/delta) littermates. In contrast to these dramatic differences in pathologic ocular NV, Vegf(delta/delta) mice showed subtle differences in retinal vascular development compared to Vegf+/+ mice; it was slightly delayed, but otherwise normal. These data suggest that induction of VEGF through the HRE in its promoter is critical for retinal and CNV, but not for retinal vascular development.
Collapse
Affiliation(s)
- Stanley A Vinores
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9289, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Retinal angiogenesis and choroidal angiogenesis are major causes of vision loss, and the pathogenesis of this angiogenesis process is still uncertain. However, several key steps of the angiogenic cascade have been elucidated. In retinal angiogenesis, hypoxia is the initial stimulus that causes up regulation of growth factors, integrins and proteinases, which result in endothelial cell proliferation and migration that are critical steps in this process. Once the endothelial tube is formed from the existing blood vessels, maturation starts with recruitment of mural cell precursors and formation of the basement membrane. Normally, there is a tight balance between angiogenic factors and endogenous angiogenesis inhibitors that help to keep the angiogenic process under control. Although the steps of choroidal angiogenesis seem to be similar to those of retinal angiogenesis, there are some major differences between these two processes. Several anti-angiogenic approaches are being developed in animal models to prevent ocular angiogenesis by blocking the key steps of the angiogenic cascade. Based on these pre-clinical studies, several anti-angiogenic clinical trials are ongoing in patients with diabetic retinopathy and age-related macular degeneration. This review discusses the pathogenesis of retinal and choroidal angiogenesis, and alternative pharmacological approaches to inhibit angiogenesis in ocular diseases.
Collapse
Affiliation(s)
- Arup Das
- School of Medicine, University of New Mexico, Albuquerque, USA.
| | | |
Collapse
|