1
|
Pan X, Huang C, Bai X, Li F. Causal relationship between breast cancer and acute myeloid leukemia based on two-sample bidirectional Mendelian randomization and transcriptome overlap analysis. Discov Oncol 2025; 16:492. [PMID: 40198525 PMCID: PMC11979033 DOI: 10.1007/s12672-025-02288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Breast cancer is the most prevalent malignancy and the leading cause of cancer-related deaths among women worldwide. Several case reports have shown that some breast cancer patients subsequently develop acute myeloid leukemia (AML) within a short period. However, the causal relationship and pathogenic mechanisms between breast cancer and AML remain incompletely understood. METHODS Mendelian randomization (MR) analyses were conducted to explore the bidirectional causal relationships between breast cancer and AML. Additionally, we applied the Bayesian Weighted Mendelian Randomization (BWMR) approach to validate the results of the MR analysis. Subsequently, we utilized RNA-seq data from various sources to explore the potential molecular signaling pathways between breast cancer and AML. RESULTS Both IVW method and BWMR approach demonstrated that data from three distinct sources consistently indicated breast cancer as a risk factor for AML, with all sources showing statistically significant results (all P < 0.05, Odds Ratios [ORs] > 1). Bioinformatic analyses suggested that extracellular vesicle functions and p53 signaling pathway may mediate molecular links between breast cancer and AML. Using machine learning, we identified 8 genes with high diagnostic efficacy for predicting the occurrence of AML in breast cancer patients. CONCLUSIONS MR analyses indicated a causal relationship between breast cancer and AML. Additionally, transcriptome analysis offered a theoretical basis for understanding the potential mechanisms and therapeutic targets of AML in breast cancer patients.
Collapse
Affiliation(s)
- Xin'an Pan
- Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwai Zheng Street, East Lake District, Nanchang City, 330006, Jiangxi Province, China
| | - Cuihan Huang
- The First Clinical Medical College of Nanchang University, Xuefu Road, Nanchang, 330006, Jiangxi, China
| | - Xinyi Bai
- School of Public, Health of Nanchang University, Xuefu Road, Nanchang, 330006, Jiangxi, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwai Zheng Street, East Lake District, Nanchang City, 330006, Jiangxi Province, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China.
| |
Collapse
|
2
|
Cai L, Liu B, Cao Y, Sun T, Li Y. Unveiling the molecular structure and role of RBBP4/7: implications for epigenetic regulation and cancer research. Front Mol Biosci 2023; 10:1276612. [PMID: 38028543 PMCID: PMC10679446 DOI: 10.3389/fmolb.2023.1276612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Retinoblastoma-binding protein (RBBP) family is a class of proteins that can interact with tumor suppressor retinoblastoma protein (pRb). RBBP4 and RBBP7 are the only pair of homologous proteins in this family, serving as scaffold proteins whose main function is to offer a platform to indirectly connect two proteins. This characteristic allows them to extensively participate in the binding of various proteins and epigenetic complexes, indirectly influencing the function of effector proteins. As a result, they are often highlighted in organism activities involving active epigenetic modifications, such as embryonic development and cancer activation. In this review, we summarize the structural characteristics of RBBP4/7, the complexes they are involved in, their roles in embryonic development and cancer, as well as potential future research directions, which we hope to inspire the field of epigenetic research in the future.
Collapse
Affiliation(s)
- Lize Cai
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Bin Liu
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, China
| | - Yufei Cao
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Ting Sun
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Yanyan Li
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| |
Collapse
|
3
|
Khateb A, Deshpande A, Feng Y, Finlay D, Lee JS, Lazar I, Fabre B, Li Y, Fujita Y, Zhang T, Yin J, Pass I, Livneh I, Jeremias I, Burian C, Mason JR, Almog R, Horesh N, Ofran Y, Brown K, Vuori K, Jackson M, Ruppin E, Deshpande AJ, Ronai ZA. The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors. Nat Commun 2021; 12:5397. [PMID: 34518534 PMCID: PMC8437979 DOI: 10.1038/s41467-021-25664-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) remains incurable, largely due to its resistance to conventional treatments. Here, we find that increased abundance of the ubiquitin ligase RNF5 contributes to AML development and survival. High RNF5 expression in AML patient specimens correlates with poor prognosis. RNF5 inhibition decreases AML cell growth in culture, in patient-derived xenograft (PDX) samples and in vivo, and delays development of MLL-AF9-driven leukemogenesis in mice, prolonging their survival. RNF5 inhibition causes transcriptional changes that overlap with those seen upon histone deacetylase (HDAC)1 inhibition. RNF5 induces the formation of K29 ubiquitin chains on the histone-binding protein RBBP4, promoting its recruitment to and subsequent epigenetic regulation of genes involved in AML maintenance. Correspondingly, RNF5 or RBBP4 knockdown enhances AML cell sensitivity to HDAC inhibitors. Notably, low expression of both RNF5 and HDAC coincides with a favorable prognosis. Our studies identify an ERAD-independent role for RNF5, demonstrating that its control of RBBP4 constitutes an epigenetic pathway that drives AML, and highlight RNF5/RBBP4 as markers useful to stratify patients for treatment with HDAC inhibitors.
Collapse
Affiliation(s)
- Ali Khateb
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anagha Deshpande
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yongmei Feng
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Darren Finlay
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Joo Sang Lee
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Ikrame Lazar
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Bertrand Fabre
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yan Li
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yu Fujita
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Division of Respiratory Medicine, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jun Yin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ian Pass
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ido Livneh
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany
| | - Carol Burian
- Scripps MD Anderson Cancer Center, La Jolla, CA, USA
| | - James R Mason
- Scripps MD Anderson Cancer Center, La Jolla, CA, USA
| | - Ronit Almog
- Rambam Health Care Campus, Epidemiology Department and Biobank, Haifa, Israel
| | - Nurit Horesh
- Rambam Health Care Campus, Hematology and Bone marrow Transplantation Department, Haifa, Israel
| | - Yishai Ofran
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Rambam Health Care Campus, Hematology and Bone marrow Transplantation Department, Haifa, Israel
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kristiina Vuori
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael Jackson
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Aniruddha J Deshpande
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
Challenging, Accurate and Feasible: CAF-1 as a Tumour Proliferation Marker of Diagnostic and Prognostic Value. Cancers (Basel) 2021; 13:cancers13112575. [PMID: 34073937 PMCID: PMC8197349 DOI: 10.3390/cancers13112575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary There is an emerging need for new weapons in the battle against cancer; therefore, the discovery of new biomarkers with diagnostic, prognostic, and therapeutic value is a priority of current cancer research. An important task is to identify how quickly a tumour proliferates. A tumour’s proliferation rate is critical for grading and clinical decision-making; hence, there is an imperative need for accurate proliferation markers. Here, we review evidence demonstrating that chromatin assembly factor 1 (CAF-1) is a proliferation marker of clinical value. CAF-1 is selectively expressed in proliferating cells and its expression can be evaluated by immunohistochemistry in cytology smears and biopsies. CAF-1 expression is increased in almost all cancers and correlates strongly with the expression of Ki-67, the current routine proliferation marker. Overexpression of CAF-1 is associated with poor clinical outcome (advanced cancer stage, recurrence, metastasis, and decreased survival). CAF-1 is a robust, reproducible, and feasible proliferation marker of prognostic importance and may represent an attractive alternative or complementary to Ki-67 for cancer stratification and clinical guidance. Abstract The discovery of novel biomarkers of diagnostic, prognostic, and therapeutic value is a major challenge of current cancer research. The assessment of tumour cell proliferative capacity is pivotal for grading and clinical decision-making, highlighting the importance of proliferation markers as diagnostic and prognostic tools. Currently, the immunohistochemical analysis of Ki-67 expression levels is routinely used in clinical settings to assess tumour proliferation. Inasmuch as the function of Ki-67 is not fully understood and its evaluation lacks standardization, there is interest in chromatin regulator proteins as alternative proliferation markers of clinical value. Here, we review recent evidence demonstrating that chromatin assembly factor 1 (CAF-1), a histone chaperone selectively expressed in cycling cells, is a proliferation marker of clinical value. CAF-1 expression, when evaluated by immunocytochemistry in breast cancer cytology smears and immunohistochemistry in cancer biopsies from several tissues, strongly correlates with the expression of Ki-67 and other proliferation markers. Notably, CAF-1 expression is upregulated in almost all cancers, and CAF-1 overexpression is significantly associated, in most cancer types, with high histological tumour grade, advanced stage, recurrence, metastasis, and decreased patient survival. These findings suggest that CAF-1 is a robust, reproducible, and feasible proliferation marker of prognostic importance. CAF-1 may represent an attractive alternative or complementary to Ki-67 for cancer stratification and clinical guidance.
Collapse
|
5
|
Wang D, Ming X, Xu J, Xiao Y. Circ_0009910 shuttled by exosomes regulates proliferation, cell cycle and apoptosis of acute myeloid leukemia cells by regulating miR-5195-3p/GRB10 axis. Hematol Oncol 2021; 39:390-400. [PMID: 33969901 DOI: 10.1002/hon.2874] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/18/2021] [Indexed: 12/25/2022]
Abstract
The exosomes are involved in intercellular communication via RNA trafficking in human diseases. Hsa_circ_0009910 (circ_0009910) is a novel leukemia-related circular RNA. However, the mechanism of circ_0009910 in acute myeloid leukemia (AML) cell-to-cell communication remained obscure. Expression of circ_0009910, miRNA (miR)-5195-3p and growth factor receptor-bound protein 10 (GRB10) was detected by quantitative real-time polymerase chain reaction and Western blotting. A stable cell coculture model was established and functional experiment was performed using Cell Counting Kit-8 assay, flow cytometry, and Western blotting. The interaction among circ_0009910, miR-5195-3p and GRB10 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation. As a result, circ_0009910 was upregulated in AML bone marrows and cells (HL-60 and MOLM-13), even higher in AML cells-derived exosomes. Functionally, blocking circ_0009910 via small interfering RNA (siRNA) suppressed cell proliferation and cell cycle progression, but facilitated apoptosis rate of HL-60 and MOLM-13 cells, accompanied with lower B-cell lymphoma 2 (Bcl-2) level and higher Bcl-2-associated X protein (Bax) level. circ_0009910 shuttled via exosomes negatively regulated miR-5195-3p expression by target binding. Furthermore, circ_0009910 knockdown via exosomes and miR-5195-3p overexpression via mimic resulted in similar results of circ_0009910 siRNA in proliferation, apoptosis and cell cycle progression of AML cells. Meanwhile, the role of circ_0009910 knockdown in AML cells was partially reversed by miR-5195-3p deletion, and restoring GRB10 could abrogate miR-5195-3p effect as well. Notably, GRB10 was a downstream target of miR-5195-3p. circ_0009910-containing exosomes mediated proliferation, apoptosis and cell cycle progression of AML cells partially through miR-5195-3p/GRB10 axis.
Collapse
Affiliation(s)
- Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Ming
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinhuan Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Wang L, Zhang Q, You Q. Targeting the HSP90-CDC37-kinase chaperone cycle: A promising therapeutic strategy for cancer. Med Res Rev 2021; 42:156-182. [PMID: 33846988 DOI: 10.1002/med.21807] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Abstract
Heat shock protein 90 (HSP90) is an indispensable molecular chaperone that facilitates the maturation of numerous oncoproteins in cancer cells, including protein kinases, ribonucleoproteins, steroid hormone receptors, and transcription factors. Although over 30 HSP90 inhibitors have steadily entered clinical trials, further clinical advancement has been restricted by their limited efficacy, inevitable heat shock response, and multiple side-effects, likely induced via an ATP inhibition mechanism. Since both ATP and various co-chaperones play essential roles in the HSP90 chaperone cycle to achieve integrated function, optimal therapeutics require an understanding of the dynamic interactions among HSP90, ATP, and cochaperones. To date, continuous research has promoted the exploration of the cochaperone cell division cycle 37 (CDC37) as a kinase-specific recognizer and has shown that the HSP90-CDC37-kinase complex is particularly relevant in cancers. Indeed, disrupting the HSP90-CDC37-kinase complex, rather than totally blocking the ATP function of HSP90, is emerging as an alternative way to avoid the limitations of current inhibitors. In this review, we first briefly introduce the HSP90-CDC37-kinase cycle and present the currently available approaches for inhibitor development targeting this cycle and provide insights into selective regulation of the kinase clients of HSP90 by more directional ways.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Lambrou GI, Adamaki M, Hatziagapiou K, Vlahopoulos S. Gene Expression and Resistance to Glucocorticoid-Induced Apoptosis in Acute Lymphoblastic Leukemia: A Brief Review and Update. Curr Drug Res Rev 2021; 12:131-149. [PMID: 32077838 DOI: 10.2174/2589977512666200220122650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/29/2019] [Accepted: 01/23/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Resistance to glucocorticoid (GC)-induced apoptosis in Acute Lymphoblastic Leukemia (ALL), is considered one of the major prognostic factors for the disease. Prednisolone is a corticosteroid and one of the most important agents in the treatment of acute lymphoblastic leukemia. The mechanics of GC resistance are largely unknown and intense ongoing research focuses on this topic. AIM The aim of the present study is to review some aspects of GC resistance in ALL, and in particular of Prednisolone, with emphasis on previous and present knowledge on gene expression and signaling pathways playing a role in the phenomenon. METHODS An electronic literature search was conducted by the authors from 1994 to June 2019. Original articles and systematic reviews selected, and the titles and abstracts of papers screened to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. RESULTS Identification of gene targets responsible for glucocorticoid resistance may allow discovery of drugs, which in combination with glucocorticoids may increase the effectiveness of anti-leukemia therapies. The inherent plasticity of clinically evolving cancer justifies approaches to characterize and prevent undesirable activation of early oncogenic pathways. CONCLUSION Study of the pattern of intracellular signal pathway activation by anticancer drugs can lead to development of efficient treatment strategies by reducing detrimental secondary effects.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Maria Adamaki
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| |
Collapse
|
8
|
Wang L, Xu X, Jiang Z, You Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm Sin B 2020; 10:1904-1925. [PMID: 33163343 PMCID: PMC7606112 DOI: 10.1016/j.apsb.2020.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Modulation of protein fate decision and protein homeostasis plays a significant role in altering the protein level, which acts as an orientation to develop drugs with new mechanisms. The molecular chaperones exert significant biological functions on modulation of protein fate decision and protein homeostasis under constantly changing environmental conditions through extensive protein–protein interactions (PPIs) with their client proteins. With the help of molecular chaperone machinery, the processes of protein folding, trafficking, quality control and degradation of client proteins could be arranged properly. The core members of molecular chaperones, including heat shock proteins (HSPs) family and their co-chaperones, are emerging as potential drug targets since they are involved in numerous disease conditions. Development of small molecule modulators targeting not only chaperones themselves but also the PPIs among chaperones, co-chaperones and clients is attracting more and more attention. These modulators are widely used as chemical tools to study chaperone networks as well as potential drug candidates for a broader set of diseases. Here, we reviewed the key checkpoints of molecular chaperone machinery HSPs as well as their co-chaperones to discuss the small molecules targeting on them for modulation of protein fate decision.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| |
Collapse
|
9
|
Li YD, Lv Z, Zhu WF. RBBP4 promotes colon cancer malignant progression via regulating Wnt/β-catenin pathway. World J Gastroenterol 2020; 26:5328-5342. [PMID: 32994691 PMCID: PMC7504250 DOI: 10.3748/wjg.v26.i35.5328] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Our previous study demonstrated that RBBP4 was upregulated in colon cancer and correlated with poor prognosis of colon cancer and hepatic metastasis. However, the potential biological function of RBBP4 in colon cancer is still unknown.
AIM To investigate the biological role and the potential mechanisms of RBBP4 in colon cancer progression.
METHODS Real-time polymerase chain reaction and western blot analysis were used to detect the expression of RBBP4 in colon cancer cell lines. The cell proliferation and viability of SW620 and HCT116 cells with RBBP4 knockdown was detected by Cell Counting Kit-8 and 5-ethynyl-2’-deoxyuridine staining. The transwell assay was used to detect the invasion and migration capabilities of colon cancer cells with RBBP4 knockdown. Flow cytometry apoptosis assay was used to detect the apoptosis of colon cancer cells. Western blotting analysis was used to detect the expression of epithelial-mesenchymal transition and apoptosis related markers in colon cancer. The nuclear translocation of β-catenin was examined by Western blotting analysis in colon cancer cells with RBBP4 knockdown. The TOPFlash luciferase assay was used to detect the effect of RBBP4 on Wnt/β-catenin activation. The rescue experiments were performed in colon cancer cells treated with Wnt/β-catenin activator LiCl and RBBP4 knockdown.
RESULTS We found that RBBP4 was highly expressed in colon cancer cell lines. The 5-ethynyl-2’-deoxyuridine assay showed that knockdown of RBBP4 significantly inhibited cell proliferation. RBBP4 inhibition reduced cell invasion and migration via regulating proteins related to epithelial-mesenchymal transition. Knockdown of RBBP4 significantly inhibited survivin-mediated apoptosis. Mechanistically, the TOPFlash assay showed that RBBP4 knockdown increased activity of the Wnt/β-catenin pathway. Meanwhile, RBBP4 knockdown suppressed nuclear translocation of β-catenin. With Wnt/β-catenin activator, rescue experiments suggested that the role of RBBP4 in colon cancer progression was dependent on Wnt/β-catenin pathway.
CONCLUSION RBBP4 promotes colon cancer development via increasing activity of the Wnt/β-catenin pathway. RBBP4 may serve as a novel therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Yan-Dong Li
- Division of Colon and Rectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhen Lv
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Wei-Fang Zhu
- Division of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
10
|
Brenner AK, Aasebø E, Hernandez-Valladares M, Selheim F, Berven F, Grønningsæter IS, Bartaula-Brevik S, Bruserud Ø. The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome. Cancers (Basel) 2019; 11:cancers11010073. [PMID: 30634713 PMCID: PMC6356272 DOI: 10.3390/cancers11010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy, which is highly heterogeneous with regard to chemosensitivity and biological features. The AML cell population is organized in a hierarchy that is reflected in the in vitro growth characteristics, with only a minority of cells being able to proliferate for more than two weeks. In this study, we investigated the ability of AML stem cells to survive and proliferate in suspension cultures in the presence of exogenous mediators but without supporting non-leukemic cells. We saw that a high number of maintained stem cells (i.e., a large number of clonogenic cells after five weeks of culture) was associated with decreased overall survival for patients receiving intensive chemotherapy; this prognostic impact was also detected in the multivariate/adjusted analysis. Furthermore, the patients with many clonogenic cells presented more frequently with mutations in transcription-related genes, and also showed a higher abundance of proteins involved in transcription at the time of diagnosis. In conclusion, the growth characteristics of the long-term proliferating leukemic stem cells seem to have an independent prognostic impact in human AML, and these characteristics appear to be reflected by the mutational landscape and the proteome of the patients at the time of diagnosis.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Elise Aasebø
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Maria Hernandez-Valladares
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Frode Selheim
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Frode Berven
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Ida-Sofie Grønningsæter
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Sushma Bartaula-Brevik
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
11
|
Li D, Song H, Mei H, Fang E, Wang X, Yang F, Li H, Chen Y, Huang K, Zheng L, Tong Q. Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat Commun 2018; 9:2829. [PMID: 30026490 PMCID: PMC6053364 DOI: 10.1038/s41467-018-05286-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest the emerging roles of armadillo (ARM) family proteins in tumor progression. However, the functions and underlying mechanisms of ARM members in tumorigenesis and aggressiveness of neuroblastoma (NB) remain to be determined. Herein, we identify armadillo repeat containing 12 (ARMC12) as an ARM member associated with NB progression. ARMC12 promotes the growth and aggressiveness of NB cell lines. Mechanistically, ARMC12 physically interacts with retinoblastoma binding protein 4 (RBBP4) to facilitate the formation and activity of polycomb repressive complex 2, resulting in transcriptional repression of tumor suppressive genes. Blocking the interaction between ARMC12 and RBBP4 by cell-penetrating inhibitory peptide activates the downstream gene expression and suppresses the tumorigenesis and aggressiveness of NB cells. Both ARMC12 and RBBP4 are upregulated in NB tissues, and are associated with unfavorable outcome of patients. These findings suggest the crucial roles of ARMC12 in tumor progression and a potential therapeutic approach for NB. Armadillo (ARM) family proteins can act as oncogenes or tumor suppressors. Here, the authors show that a new ARM protein (ARMC12) is upregulated in neuroblastoma, binds the PRC2 component RBBP4, and inhibits transcription of tumor suppressive genes.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| |
Collapse
|
12
|
Gomez N, Erazo T, Lizcano JM. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters. Front Cell Dev Biol 2016; 4:105. [PMID: 27713878 PMCID: PMC5031611 DOI: 10.3389/fcell.2016.00105] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumor growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation. Although some ERK5 kinase inhibitors have shown antiproliferative activity it is likely that those tumors expressing kinase-inactive nuclear ERK5 will not respond to these inhibitors.
Collapse
Affiliation(s)
| | | | - Jose M. Lizcano
- Protein Kinases and Signal Transduction Laboratory, Institut de Neurociencies and Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Universitat Autonoma de BarcelonaBarcelona, Spain
| |
Collapse
|
13
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
14
|
Wang X, Yao F, Liang X, Zhu X, Zheng R, Jia B, Hou L, Zou X. Cloning and expression of retinoblastoma-binding protein 4 gene in embryo diapause termination and in response to salinity stress from brine shrimp Artemia sinica. Gene 2016; 591:351-61. [PMID: 27267406 DOI: 10.1016/j.gene.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/17/2016] [Accepted: 06/03/2016] [Indexed: 11/30/2022]
Abstract
Retinoblastoma binding protein 4 (RBBP4) is a nuclear protein with four WD-repeat sequences and thus belongs to a highly conserved subfamily of proteins with such domains. This retinoblastoma-binding protein plays an important role in nucleosome assembly and histone modification, which influences gene transcription and regulates cell cycle and proliferation. Artemia sinica (brine shrimp) undergoes an unusual diapause process under stress conditions of high salinity and low temperature. However, the role of RBBP4 in diapause termination of embryo development in A. sinica remains unknown. Here, the full-length cDNA of the As-rbbp4 gene was obtained from A. sinica and found to contain 1411 nucleotides, including a 1281 bp open reading frame (ORF), 63 bp 5'-untranslated region (UTR) and a 67-bp 3'-UTR, which encodes a 427 amino acid (48 kDa) protein. Bioinformatic analysis indicated As-RBBP4 to be mainly located in the nucleus, with a theoretical isoelectric point of 4.79. Protein sequence domain analysis showed that As-RBBP4 is a conserved protein, especially in the WD40 domain. No specificity in expression of this gene was observed in tissues or organs by in situ hybridization. Real-time quantitative PCR and Western blot analyses of As-RBBP4 gene and protein expression, respectively, showed notably high levels at 10 h and a subsequent downward trend. Obvious trends in upregulation of As-RBBP4 were observed under conditions of low temperature and high salinity stress. As-E2F1 and As-CyclinE also presented similar trends as that of As-RBBP4 in Western blots. Analysis of the RBBP4 expression in early embryonic development of A. sinica indicated that this protein plays an important role in diapause termination and cell cycle regulation.
Collapse
Affiliation(s)
- Xiaolu Wang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Feng Yao
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Xiaoyu Liang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Xiaolin Zhu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Ren Zheng
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Baolin Jia
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Lin Hou
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| | - Xiangyang Zou
- Department of Biology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
15
|
Bai X, Wang D, Ji H, Zheng L, Lu Y, Tang W, Zhang H, Xu W, Li J, Fei Z, Wang H. RbAp48 Is Critical for the Proliferation of Hypopharyngeal Carcinoma. ORL J Otorhinolaryngol Relat Spec 2015; 77:310-9. [DOI: 10.1159/000438761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/14/2015] [Indexed: 11/19/2022]
|
16
|
Novel celastrol derivatives inhibit the growth of hepatocellular carcinoma patient-derived xenografts. Oncotarget 2015; 5:5819-31. [PMID: 25051375 PMCID: PMC4170594 DOI: 10.18632/oncotarget.2171] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The molecular co-chaperone CDC37 is over-expressed in hepatocellular carcinoma (HCC) cells, where it functions with HSP90 to regulate the activity of protein kinases in multiple oncogenic signaling pathways that contribute towards hepatocarcinogenesis. Disruption of these signaling pathways via inhibition of HSP90/CDC37 interaction is therefore a rational therapeutic approach. We evaluated the anti-tumor effects of celastrol, pristimerin, and two novel derivatives (cel-D2, and cel-D7) on HCC cell lines in vitro and on orthotopic HCC patient-derived xenografts in vivo. All four compounds preferentially inhibited viability of HCC cells in vitro, and significantly inhibited the growth of three orthotopic HCC patient-derived xenografts in vivo; with the novel derivatives cel-D2 and cel-D7 exhibiting lower toxicity. All four compounds also induced cell apoptosis; and promoted degradation and inhibited phosphorylation of protein kinases in the Raf/MEK/ERK and PI3K/AKT/mTOR signaling pathways. We demonstrated that HSP90/CDC37 antagonists are potentially broad spectrum agents that might be beneficial for treating the heterogeneous subtypes of HCC, either as monotherapy, or in combination with other chemotherapeutic agents.
Collapse
|
17
|
Grb10 is involved in BCR-ABL-positive leukemia in mice. Leukemia 2014; 29:858-68. [DOI: 10.1038/leu.2014.283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 11/08/2022]
|
18
|
Qi WL, Cao LL, Hu JJ, Xue JY, Sang TT, Zheng YJ, Chen T, Wang J, Zhao FK, Zhang SF. Involvement of RbAp48 in erythroid differentiation of murine erythroleukemia cells induced by sodium butyrate. Oncol Lett 2014; 7:1785-1789. [PMID: 24932233 PMCID: PMC4049757 DOI: 10.3892/ol.2014.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 02/18/2014] [Indexed: 11/22/2022] Open
Abstract
Normal mammalian terminal erythroid differentiation is a precisely regulated process during which the progenitor cells execute particular programs to form a mature erythrocytic phenotype. In the present study, it was found that RbAp48, a histone-binding protein associated with retinoblastoma protein, was upregulated during terminal erythroid maturation in vivo and in vitro. This indicated that RbAp48, at least in part, participated in the regulation of murine erythropoiesis. Following sodium butyrate (SB) induction, murine erythroleukemia (MEL) cells began to re-enter erythroid differentiation and the ratio of differentiated cells reached ~80% at 72 h. The erythroid maturation-related mRNA expression of α-globin, β-globin and glycophorin A (GPA) was increased markedly, which indicated that SB induced MEL differentiation. During MEL differentiation, the RbAp48 level showed a 1.5-fold increase at 72 h, and the globin transcription factor (GATA)-1 level was also upregulated in the early stage of differentiation. By contrast, the c-Myc level was gradually downregulated in MEL differentiation. Using an immunofluorescence assay, the results of the study directly showed that the average fluorescence intensity of RbAp48 in each cell reached an almost 1.7-fold increase at 72 and 96 h. This was consistent with the western blot results of RbAp48 during MEL differentiation. In addition, reduced expression of RbAp48 by RNA inference decreased SB-induced MEL differentiation by ~20%, indicating that a high level of RbAp48 was essential for MEL differentiation. Taken together, these results established a functional link between RbAp48 and erythroid differentiation.
Collapse
Affiliation(s)
- Wu-Lin Qi
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ling-Ling Cao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jiang-Jiang Hu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jian-You Xue
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ting-Ting Sang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ya-Juan Zheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Tao Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jie Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Fu-Kun Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Shi-Fu Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
19
|
Soldini D, Montagna C, Schüffler P, Martin V, Georgis A, Thiesler T, Curioni-Fontecedro A, Went P, Bosshard G, Dehler S, Mazzuchelli L, Tinguely M. A new diagnostic algorithm for Burkitt and diffuse large B-cell lymphomas based on the expression of CSE1L and STAT3 and on MYC rearrangement predicts outcome. Ann Oncol 2013; 24:193-201. [DOI: 10.1093/annonc/mds209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Calderwood SK. Molecular cochaperones: tumor growth and cancer treatment. SCIENTIFICA 2013; 2013:217513. [PMID: 24278769 PMCID: PMC3820307 DOI: 10.1155/2013/217513] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/01/2013] [Indexed: 05/12/2023]
Abstract
Molecular chaperones play important roles in all cellular organisms by maintaining the proteome in an optimally folded state. They appear to be at a premium in cancer cells whose evolution along the malignant pathways requires the fostering of cohorts of mutant proteins that are employed to overcome tumor suppressive regulation. To function at significant rates in cells, HSPs interact with cochaperones, proteins that assist in catalyzing individual steps in molecular chaperoning as well as in posttranslational modification and intracellular localization. We review current knowledge regarding the roles of chaperones such as heat shock protein 90 (Hsp90) and Hsp70 and their cochaperones in cancer. Cochaperones are potential targets for cancer therapy in themselves and can be used to assess the likely prognosis of individual malignancies. Hsp70 cochaperones Bag1, Bag3, and Hop play significant roles in the etiology of some cancers as do Hsp90 cochaperones Aha1, p23, Cdc37, and FKBP1. Others such as the J domain protein family, HspBP1, TTC4, and FKBPL appear to be associated with more benign tumor phenotypes. The key importance of cochaperones for many pathways of protein folding in cancer suggests high promise for the future development of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Stuart K. Calderwood
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
- *Stuart K. Calderwood:
| |
Collapse
|
21
|
Singh M, Martinez AR, Govindaraju S, Lee BS. HuR inhibits apoptosis by amplifying Akt signaling through a positive feedback loop. J Cell Physiol 2012; 228:182-9. [PMID: 22674407 DOI: 10.1002/jcp.24120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human antigen R (HuR) is a post-transcriptional regulator of gene expression that plays a key role in stabilizing mRNAs during cellular stress, leading to enhanced survival. HuR expression is tightly regulated through multiple transcription and post-transcriptional controls. Although HuR is known to stabilize a subset of mRNAs involved in cell survival, its role in the survival pathway of PI3-kinase/Akt signaling is unclear. Here, we show that in renal proximal tubule cells, HuR performs a central role in cell survival by amplifying Akt signaling in a positive feedback loop. Key to this feedback loop is HuR-mediated stabilization of mRNA encoding Grb10, an adaptor protein whose expression is critical for Akt activation. Stimulation of Akt by interaction with Grb10 then activates NF-κB, which further enhances HuR mRNA and protein expression. This feedback loop is active in unstressed cells, but its effects are increased during stress. Therefore, this study demonstrates a central role for HuR in Akt signaling and reveals a mechanism by which modest changes in HuR levels below or above normal may be amplified, potentially resulting in cell death or cellular transformation.
Collapse
Affiliation(s)
- Mamata Singh
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
22
|
El Hamidieh A, Grammatikakis N, Patsavoudi E. Cell surface Cdc37 participates in extracellular HSP90 mediated cancer cell invasion. PLoS One 2012; 7:e42722. [PMID: 22912728 PMCID: PMC3422348 DOI: 10.1371/journal.pone.0042722] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/10/2012] [Indexed: 01/05/2023] Open
Abstract
Cdc37 is a 50 kDa molecular chaperone which targets intrinsically unstable protein kinases to the molecular chaperone HSP90. It is also an over-expressed oncoprotein that mediates carcinogenesis and maintenance of the malignant phenotype by stabilizing the compromised structures of mutant and/or over-expressed oncogenic kinases. Here we report that Cdc37 is not restricted intracellularly but instead it is also present on the surface of MDA-MB-453 and MDA-MB-231 human breast cancer cells, where it is shown to participate in cancer cell motility processes. Furthermore, we demonstrate using an anti-Cdc37 cell impermeable antibody, that similarly to its intracellular counterpart, this surface pool of Cdc37 specifically interacts with HSP90 as well as the kinase receptors HER2 and EGFR on the cell surface, probably acting as a co-factor in HSP90's extracellular chaperoning activities. Finally, we show that functional inhibition of surface HSP90 using mAb 4C5, a cell impermeable monoclonal antibody against this protein, leads not only to disruption of the Cdc37/HSP90 complex but also to inhibition of the Cdc37/ErbB receptors complexes. These results support an essential role for surface Cdc37 in concert with HSP90 on the cell surface during cancer cell invasion processes and strengthen the therapeutic potential of mAb 4C5 for the treatment of cancer.
Collapse
Affiliation(s)
| | - Nicholas Grammatikakis
- Institute of Biology, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Evangelia Patsavoudi
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
- Department of Biomedical Instrumentation Technology, Technological Educational Institute of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
23
|
Selection of putative colorectal cancer markers by applying PCA on the soluble proteome of tumors: NDK A as a promising candidate. J Proteomics 2011; 74:874-86. [DOI: 10.1016/j.jprot.2011.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/22/2011] [Accepted: 02/28/2011] [Indexed: 12/27/2022]
|
24
|
Fox AD, Hescott BJ, Blumer AC, Slonim DK. Connectedness of PPI network neighborhoods identifies regulatory hub proteins. Bioinformatics 2011; 27:1135-42. [PMID: 21367871 PMCID: PMC3072558 DOI: 10.1093/bioinformatics/btr099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/01/2011] [Accepted: 02/17/2011] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION With the growing availability of high-throughput protein-protein interaction (PPI) data, it has become possible to consider how a protein's local or global network characteristics predict its function. RESULTS We introduce a graph-theoretic approach that identifies key regulatory proteins in an organism by analyzing proteins' local PPI network structure. We apply the method to the yeast genome and describe several properties of the resulting set of regulatory hubs. Finally, we demonstrate how the identified hubs and putative target gene sets can be used to identify causative, functional regulators of differential gene expression linked to human disease. AVAILABILITY Code is available at http://bcb.cs.tufts.edu/hubcomps. CONTACT fox.andrew.d@gmail.com; slonim@cs.tufts.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrew D Fox
- Department of Computer Science, Tufts University, Medford, MA 02155, USA.
| | | | | | | |
Collapse
|
25
|
Riccieri V, Alessandri C, Germano V, Guiducci S, Rogai V, Colasanti T, Delunardo F, Margutti P, Ortona E, Cerinic MM, Valesini G. Nedd5, a novel autoantigen in systemic sclerosis: is it a marker of more severe disease? Ann Rheum Dis 2010; 69:314-5. [PMID: 20007624 DOI: 10.1136/ard.2009.111302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Segersten MU, Edlund EK, Micke P, de la Torre M, Hamberg H, Edvinsson AEL, Andersson SEC, Malmström PU, Wester HK. A novel strategy based on histological protein profiling in-silico for identifying potential biomarkers in urinary bladder cancer. BJU Int 2009; 104:1780-5. [PMID: 19522865 DOI: 10.1111/j.1464-410x.2009.08674.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To screen a publicly available immunohistochemistry (IHC) based web-atlas, to identify key proteins in bladder cancer that might serve as potential biomarkers. MATERIALS AND METHODS The first version of the Human Protein Atlas (HPA 1.0), with 660 proteins, was visually examined to identify proteins with a variable staining pattern among the 12 tissue samples representing bladder cancer. None or limited previous characterization in bladder cancer, as well as a supportive Western blot, were also required. The selected proteins were then evaluated in an independent set of patient samples (106 tumour samples of differing stage and grade) represented in a tissue microarray (TMAi). The IHC expression of the identified proteins in the TMAi was scored and related to tumour stage and grade. RESULTS The expression profiles of the 13 proteins selected from the web-atlas were confirmed in the TMAi. Expression patterns for seven proteins were significantly altered (P < 0.05) with higher stage and/or grade. Three of those (CN130, DSG3, PHF6) lack characterization in bladder cancer, whereas the remaining four proteins have previously been suggested as key proteins/potential biomarkers in cancer, some of them also in bladder cancer. CONCLUSION New candidate proteins for urinary bladder cancer were identified through screening of the publicly available HPA 1.0. Although further evaluation is necessary, this strategy is promising in the search for new biomarkers, with potential to improve the management of patients with this disease.
Collapse
Affiliation(s)
- M Ulrika Segersten
- Department of Surgical Sciences/Urology, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Moon JH, Sohn SK, Lee MH, Jang JH, Kim K, Jung CW, Kim DH. BCL2 gene polymorphism could predict the treatment outcomes in acute myeloid leukemia patients. Leuk Res 2009; 34:166-72. [PMID: 19520430 DOI: 10.1016/j.leukres.2009.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/08/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
The Bcl-2 protein inhibits apoptosis (programmed cell death) of hematopoietic stem cells induced by a variety of noxious stimuli, thus mediating chemoresistance and decreasing chemosensitivity. Higher Bcl-2 expression correlates to an adverse outcome following therapy for acute myeloid leukemia (AML). The current study determined whether a BCL2 gene single nucleotide polymorphism (SNP) could affect treatment outcomes in 99 AML patients excluding acute promyelocytic leukemia. Two genotypes were tested, including BCL2 -938 C>A (rs2279115) and +21 A>G (rs1801018). Neither the -938 C>A nor the +21 A>G BLC2 genotype was associated with complete remission (CR) rates following chemotherapy. The -938 A>C BCL2 genotype did not affect leukemia-free survival (LFS), event-free survival (EFS) or overall survival (OS). However, of interest, the BCL2 +21 A>G genotype correlated with LFS, EFS and OS: The group with the +21 AA genotype had a significantly longer median LFS (p<0.001) or EFS (p=0.004), and OS (p=0.04). The multivariate analyses confirmed that this BCL2 gene SNP is an independent prognostic factor for LFS (p=0.05, HR 1.83, 95% C.I. [1.02-3.45]) and EFS (p=0.02, HR 3.13 [1.34-6.43]), but not for OS (p=0.1). This data suggests the involvement of a Bcl-2-mediated mechanism in the development of chemoresistance in AML.
Collapse
Affiliation(s)
- Joon Ho Moon
- Department of Hematology/Oncology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
D'Angelo V, Crisci S, Casale F, Addeo R, Giuliano M, Pota E, Finsinger P, Baldi A, Rondelli R, Abbruzzese A, Caraglia M, Indolfi P. High Erk-1 activation and Gadd45a expression as prognostic markers in high risk pediatric haemolymphoproliferative diseases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:39. [PMID: 19298651 PMCID: PMC2664791 DOI: 10.1186/1756-9966-28-39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/19/2009] [Indexed: 01/13/2023]
Abstract
Studies on activated cell-signaling pathways responsible for neoplastic transformation are numerous in solid tumors and in adult leukemias. Despite of positive results in the evolution of pediatric hematopoietic neoplasias, there are some high-risk subtypes at worse prognosis. The aim of this study was to asses the expression and activation status of crucial proteins involved in cell-signaling pathways in order to identify molecular alterations responsible for the proliferation and/or escape from apoptosis of leukemic blasts. The quantitative and qualitative expression and activation of Erk-1, c-Jun, Caspase8, and Gadd45a was analyzed, by immunocytochemical (ICC) and western blotting methods, in bone marrow blasts of 72 patients affected by acute myeloid leukemia (AML), T-cell acute lymphoblastic leukemia (ALL) and stage IV non-Hodgkin Lymphoma (NHL). We found an upregulation of Erk-1, Caspase8, c-Jun, and Gadd45a proteins with a constitutive activation in 95.8%, 91.7%, 86.2%, 83.4% of analyzed specimens, respectively. It is worth noting that all AML patients showed an upregulation of all proteins studied and the high expression of GADD45a was associated to the lowest DFS median (p = 0.04). On univariate analysis, only Erk-1 phosphorylation status was found to be correlated with a significantly shorter 5-years DFS in all disease subgroups (p = 0.033) and the lowest DFS median in ALL/NHL subgroup (p = 0.04). Moreover, the simultaneous activation of multiple kinases, as we found for c-Jun and Erk-1 (r = 0.26; p = 0.025), might synergistically enhance survival and proliferation potential of leukemic cells. These results demonstrate an involvement of these proteins in survival of blast cells and, consequently, on relapse percentages of the different subgroups of patients.
Collapse
Affiliation(s)
- Velia D'Angelo
- Pediatric Oncology Service, Pediatric Department, F Fede, II University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
CDC37 is a molecular chaperone that physically stabilizes the catalytic domains found in protein kinases and is therefore a wide-spectrum regulator of protein phosphorylation. It is also an overexpressed oncoprotein that mediates carcinogenesis by stabilizing the compromised structures of mutant and/or overexpressed oncogenic kinases. Recent work shows that such dependency of malignant cells on increased CDC37 expression is a vulnerability that can be targeted in cancer by agents that deplete or inhibit CDC37. CDC37 is thus a candidate for broad-spectrum molecular cancer therapy.
Collapse
Affiliation(s)
- Phillip J. Gray
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Thomas Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Jinrong Cheng
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Mary Ann Stevenson
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
30
|
Benites B, Fattori A, Hackel C, Lorand-Metze I, De Souza C, Schulz E, Costa F, Saad S. Low expression of APAF-1XL in acute myeloid leukemia may be associated with the failure of remission induction therapy. Braz J Med Biol Res 2008; 41:571-8. [DOI: 10.1590/s0100-879x2008000700004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/09/2008] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - A. Fattori
- Universidade Estadual de Campinas, Brasil
| | - C. Hackel
- Universidade Estadual de Campinas, Brasil
| | | | | | - E. Schulz
- Universidade Estadual de Campinas, Brasil
| | - F.F. Costa
- Universidade Estadual de Campinas, Brasil
| | | |
Collapse
|
31
|
Fontana S, Alessandro R, Barranca M, Giordano M, Corrado C, Zanella-Cleon I, Becchi M, Kohn EC, De Leo G. Comparative Proteome Profiling and Functional Analysis of Chronic Myelogenous Leukemia Cell Lines. J Proteome Res 2007; 6:4330-42. [PMID: 17935311 DOI: 10.1021/pr0704128] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
McLornan DP, McMullin MF, Johnston P, Longley DB. Molecular mechanisms of drug resistance in acute myeloid leukaemia. Expert Opin Drug Metab Toxicol 2007; 3:363-77. [PMID: 17539744 DOI: 10.1517/17425255.3.3.363] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Resistance to chemotherapy in acute myeloid leukaemia is a major obstacle to a successful outcome for many patients. Often, there is resistance against a broad range of drugs due to multiple, simultaneously active processes. These mechanisms include effects on drug influx and efflux, drug activation/inactivation, DNA repair mechanisms, altered response of end targets, an altered haematopoietic microenvironment and dysfunctional apoptotic pathways. This article reviews the factors that determine leukaemic cell chemosensitivity and discusses the potential for rationally guided therapy.
Collapse
Affiliation(s)
- Donal P McLornan
- Medical Research Council Clinical Research Fellow, Queen's University Belfast, Centre for Cancer Research and Cell Biology, BT7 1NN, Northern Ireland, UK
| | | | | | | |
Collapse
|
33
|
Pacifico F, Paolillo M, Chiappetta G, Crescenzi E, Arena S, Scaloni A, Monaco M, Vascotto C, Tell G, Formisano S, Leonardi A. RbAp48 is a target of nuclear factor-kappaB activity in thyroid cancer. J Clin Endocrinol Metab 2007; 92:1458-66. [PMID: 17244783 DOI: 10.1210/jc.2006-2199] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT We have recently shown that nuclear factor (NF)-kappaB activity is constitutively elevated in anaplastic human thyroid carcinomas. The inhibition of NF-kappaB in the anaplastic thyroid carcinoma cell line (FRO) leads to increased susceptibility to apoptosis induced by chemotherapeutic drugs and to the block of oncogenic activity. OBJECTIVES To understand better the molecular mechanisms played by NF-kappaB in thyroid oncogenesis, we performed a differential proteomic analysis between FRO transfected with a superrepressor form of inhibitor of kappaBalpha (IkappaBalphaM) and the parental counterpart (FRO Neo cells). RESULTS Differential proteomic analysis revealed that the retinoblastoma-associated protein 48 (RbAp48) is down-regulated in the absence of functional NF-kappaB. Immunohistochemical analysis of normal and pathological human thyroid specimens confirmed that RbAp48 is strongly overexpressed in primary human carcinomas. Reduction of RbAp48 expression using small interfering RNA determined the suppression of tumorigenicity, very likely due to the decrease of their growth rate rather than to an increased susceptibility to apoptosis. In addition, we showed that NF-kappaB, at least in part, transcriptionally controls RbAp 48. A functional NF-kappaB consensus sequence was located within the promoter region of RbAp48 human gene, and embryonic fibroblasts isolated from the p65 knockout mouse (murine embryonic fibroblasts p65-/-) showed decreased expression of RbAp48. CONCLUSION Our results show that RbAp48 is a NF-kappaB-regulated gene playing an important role in thyroid cancer cell autonomous proliferation.
Collapse
Affiliation(s)
- Francesco Pacifico
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Richerche, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tazzari PL, Tabellini G, Bortul R, Papa V, Evangelisti C, Grafone T, Martinelli G, McCubrey JA, Martelli AM. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia 2007; 21:886-96. [PMID: 17361225 DOI: 10.1038/sj.leu.2404643] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insulin-like growth factor-I (IGF-I) and its receptor (IGF-IR) have been implicated in the pathophysiology of many human cancers, including those of hematopoietic lineage. We investigated the therapeutic potential of the novel IGF-IR tyrosine kinase activity inhibitor, NVP-AEW541, on human acute myeloid leukemia (AML) cells. NVP-AEW541 was tested on a HL60 cell subclone, which is dependent on autocrine secretion of IGF-I for survival and drug resistance, as well as primary drug resistant leukemia cells. NVP-AEW541 treatment (24 h) induced dephosphorylation of IGF-IR. NVP-AEW541 also caused Akt dephosphorylation and changes in the expression of key regulatory proteins of the cell cycle. At longer incubation times (48 h), NVP-AEW541-induced apoptotic cell death, as demonstrated by caspase-3 cleavage. Apoptosis was accompanied by decreased expression of anti-apoptotic proteins. NVP-AEW541 enhanced sensitivity of HL60 cells to either cytarabine or etoposide. Moreover, NVP-AEW541 reduced the clonogenic capacity of AML CD34(+) cells cultured in the presence of IGF-I. Chemoresistant AML blasts displayed enhanced IGF-I secretion, and were sensitized to etoposide-induced apoptosis by NVP-AEW541. Our findings indicate that NVP-AEW541 might be a promising therapeutic agent for the treatment of those AML cases characterized by IGF-I autocrine secretion.
Collapse
Affiliation(s)
- P L Tazzari
- Servizio di Immunoematologia e Trasfusionale, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cetin Z, Tezcan G, Karauzum SB, Kupesiz A, Manguoglu AE, Yesilipek A, Luleci G, Hazar V. Donor cell-derived acute myeloblastic leukemia after allogeneic peripheral blood hematopoietic stem cell transplantation for juvenile myelomonocytic leukemia. J Pediatr Hematol Oncol 2006; 28:763-7. [PMID: 17114967 DOI: 10.1097/01.mph.0000243660.48808.72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite its rarity, donor cell leukemia (DCL) is a most intriguing entity. We report here the case of a 5 year-old girl with juvenile myelomonocytic leukemia and normal female karyotype who developed acute myeloblastic leukemia with a karyotype of 46, X, t(X; 7) (p21; p11.2), der(7) t(3; 7) (q13.3; q22) 5 months after peripheral blood hematopoietic stem cell transplantation from her HLA-matched sister. We performed the analysis of short tandem repeat sequence markers to DNA obtained from donor peripheral blood, patient's peripheral blood including leukemic blasts and patient's hair root. This analysis showed that the leukemic blood DNA matched the donor blood DNA and not the patient's DNA, thus confirming DCL. To our knowledge, this is the first case of DCL after peripheral blood SCT for juvenile myelomonocytic leukemia.
Collapse
MESH Headings
- Blood Donors
- Child, Preschool
- Chromosome Aberrations
- Fatal Outcome
- Female
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myelomonocytic, Chronic/complications
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/therapy
- Neoplasms, Second Primary
- Peripheral Blood Stem Cell Transplantation/adverse effects
- Transplantation Chimera/genetics
- Transplantation, Homologous
Collapse
Affiliation(s)
- Zafer Cetin
- Department of Pediatrics, Akdeniz University, Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Craven RA, Hanrahan S, Totty N, Harnden P, Stanley AJ, Maher ER, Harris AL, Trimble WS, Selby PJ, Banks RE. Proteomic identification of a role for the von Hippel Lindau tumour suppressor in changes in the expression of mitochondrial proteins and septin 2 in renal cell carcinoma. Proteomics 2006; 6:3880-93. [PMID: 16739133 DOI: 10.1002/pmic.200500811] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The von Hippel Lindau (VHL) tumour suppressor gene, VHL, plays a central role in development of sporadic conventional renal cell carcinomas (RCCs). Studying VHL function may, therefore, increase understanding of the pathogenesis of RCC and identify markers/therapeutic targets. Comparison of 2-DE protein profiles of VHL-defective RCC cells (UMRC2) transfected with control vector or wild-type VHL showed differences in 30 proteins, including several novel changes. One of the findings confirmed by Western blotting was up-regulation of the mitochondrial protein ubiquinol cytochrome c reductase complex core protein 2 following VHL transfection, a change that was also observed in two other cell line backgrounds. A marked decrease in expression of this and several other mitochondrial proteins was demonstrated in RCC tissues and using VHL-transfectants, several were shown to exhibit VHL-dependent regulation. Thus, VHL may contribute to the decreased mitochondrial function seen in RCC. A form of septin 2 down-regulated following VHL transfection was also identified. Septin 2 was up-regulated in 12/16 RCCs, while alteration of the form present was also observed in 1/3 tumours analysed. Thus, increased expression of septin 2 is a common event in RCC and protein modification may also alter septin 2 function in a subset of tumours.
Collapse
Affiliation(s)
- Rachel A Craven
- Cancer Research UK Clinical Centre, St. James's University Hospital, Beckett Street, Leeds, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yuan W, Payton JE, Holt MS, Link DC, Watson MA, DiPersio JF, Ley TJ. Commonly dysregulated genes in murine APL cells. Blood 2006; 109:961-70. [PMID: 17008535 PMCID: PMC1785140 DOI: 10.1182/blood-2006-07-036640] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To identify genes that are commonly dysregulated in a murine model of acute promyelocytic leukemia (APL), we first defined gene expression patterns during normal murine myeloid development; serial gene expression profiling studies were performed with primary murine hematopoietic progenitors that were induced to undergo myeloid maturation in vitro with G-CSF. Many genes were reproducibly expressed in restricted developmental "windows," suggesting a structured hierarchy of expression that is relevant for the induction of developmental fates and/or differentiated cell functions. We compared the normal myeloid developmental transcriptome with that of APL cells derived from mice expressing PML-RARalpha under control of the murine cathepsin G locus. While many promyelocyte-specific genes were highly expressed in all APL samples, 116 genes were reproducibly dysregulated in many independent APL samples, including Fos, Jun, Egr1, Tnf, and Vcam1. However, this set of commonly dysregulated genes was expressed normally in preleukemic, early myeloid cells from the same mouse model, suggesting that dysregulation occurs as a "downstream" event during disease progression. These studies suggest that the genetic events that lead to APL progression may converge on common pathways that are important for leukemia pathogenesis.
Collapse
MESH Headings
- Animals
- Cathepsin G
- Cathepsins/genetics
- Cell Differentiation
- Disease Progression
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, Neoplasm
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Myeloid Cells/cytology
- Oncogene Proteins, Fusion/genetics
- Serine Endopeptidases/genetics
Collapse
Affiliation(s)
- Wenlin Yuan
- Department of Medicine, Siteman Cancer Center, and Department of Pathology and Immunology, Washington University, St Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Spreafico A, Frediani B, Capperucci C, Chellini F, Paffetti A, D'Ambrosio C, Bernardini G, Mini R, Collodel G, Scaloni A, Marcolongo R, Santucci A. A proteomic study on human osteoblastic cells proliferation and differentiation. Proteomics 2006; 6:3520-32. [PMID: 16705754 DOI: 10.1002/pmic.200500858] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Changes in expression profiles for 17 proteins were ascertained in human mature osteoblasts compared to pre-osteoblasts (differentiation markers). A differential approach was used to highlight proteomic changes between human osteosarcoma cells and mature osteoblasts, showing a relative over-expression of 8 proteins (proliferation and tumor indicators), as well as under-expression of proteins also found down-regulated in pre-osteoblasts (specific markers of osteoblast differentiation). Our findings confirmed the differences between cell lines and primary human cell cultures and suggested caution on the use of osteosarcoma to study anti-osteoporotic drugs in humans.
Collapse
Affiliation(s)
- Adriano Spreafico
- Dipartimento di Medicina Clinica e Scienze Immunologiche, Policlinico Le Scotte, Università degli Studi di Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
MacKinnon RN, Patsouris C, Chudoba I, Campbell LJ. A FISH comparison of variant derivatives of the recurrent dic(17;20) of myelodysplastic syndromes and acute myeloid leukemia: Obligatory retention of genes on 17p and 20q may explain the formation of dicentric chromosomes. Genes Chromosomes Cancer 2006; 46:27-36. [PMID: 17048234 DOI: 10.1002/gcc.20385] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The dic(17;20) is a recurrent unbalanced translocation occurring rarely in myelodysplastic syndromes and acute myeloid leukemia. We have studied eleven cases with the dic(17;20) or a more complex derivative, all of which showed deletion of 17p and 20q material. The tumor suppressor gene TP53 was not always lost, supporting a more distal gene as the target of these 17p deletions. All derivatives could be interpreted as having initially been formed as a dicentric chromosome, those with a larger amount of material between the centromeres having undergone further rearrangement to stabilize the chromosome while retaining proximal 17p and proximal 20q material. We propose that critical sequences on both 17p and 20q proximal to the sites of deletion must be retained during the critical 17p and 20q deletions. This would explain the excess of dicentric chromosomes resulting from 17;20 translocation, and the apparent stabilization of the unstable derivatives by further rearrangements which preserve 17p and 20q material.
Collapse
Affiliation(s)
- Ruth N MacKinnon
- Victorian Cancer Cytogenetics Service, St. Vincent's Hospital Melbourne, Australia.
| | | | | | | |
Collapse
|
40
|
Mirmohammadsadegh A, Baer A, Nambiar S, Bardenheuer W, Hengge UR. Rapid identification of dysregulated genes in cutaneous malignant melanoma metastases using cDNA technology. Cells Tissues Organs 2005; 177:119-23. [PMID: 15388985 DOI: 10.1159/000079985] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One important application of DNA microarray technology is the simultaneous analysis of gene expression of different mRNAs. Comparison of mRNA patterns of diseased and healthy tissue may help to understand the pathogenesis of a given disorder. In cancer tissue, identified dysregulated genes may serve as new molecular markers for diagnosis or prognosis or may ideally serve as new targets for therapy. Using membrane cDNA array technology, we analyzed gene expression in human melanomas, one of the most aggressive types of cancer with a high metastatic potential and with markedly increased incidence worldwide. To account for the heterogeneity of tumors, we compared total RNA from cutaneous melanoma metastases of 10 different patients with primary human melanocytes. An abundance of genes was dysregulated (up-/downregulated), which involved for example the apoptosis gene growth factor receptor-bound protein 10, Bcl2-associated X membrane protein, Bcl2 antagonist of cell death, glutathione S-transferase theta(1) and glutathione reductase. Ultimately, the identification of melanoma-associated genes may provide a potential therapeutic strategy for identifying and targeting malignant melanoma.
Collapse
|
41
|
Abstract
Fracture healing requires the cooperation of multiple molecular signaling pathways. To better understand this cascade of transcriptional events, we compared the gene expression profiles between intact bone and fractured bone at days 1, 2, and 4 using a rat femur model of bone healing. Cluster analysis identified several groups of genes with dynamic temporal expression patterns and stage-specific functions. The immediate-response genes are highlighted by binding activity, transporter activity, and energy derivation. We consider these activities as critical signals for initiation of fracture healing. The continuously increased genes are characterized by those directly involved in bone repair, thus, representing bone specific forefront workers. The constantly upregulated genes tend to regulate general cell growth and are enriched with genes that are involved in tumorigenesis, suggesting common pathways between two processes. The constantly downregulated genes predominantly involve immune response, the significance of which remains for further investigation. Knowledge acquired through this analysis of transcriptional activities at the early stage of bone healing will contribute to our understanding of fracture repair and bone-related pathological conditions.
Collapse
Affiliation(s)
- Xinmin Li
- Shanxi Agricultural University, Taigu, Shanxi, China 030801
| | | | | | | | | |
Collapse
|