1
|
Minnone G, De Benedetti F, Bracci-Laudiero L. NGF and Its Receptors in the Regulation of Inflammatory Response. Int J Mol Sci 2017; 18:1028. [PMID: 28492466 PMCID: PMC5454940 DOI: 10.3390/ijms18051028] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/28/2022] Open
Abstract
There is growing interest in the complex relationship between the nervous and immune systems and how its alteration can affect homeostasis and result in the development of inflammatory diseases. A key mediator in cross-talk between the two systems is nerve growth factor (NGF), which can influence both neuronal cell function and immune cell activity. The up-regulation of NGF described in inflamed tissues of many diseases can regulate innervation and neuronal activity of peripheral neurons, inducing the release of immune-active neuropeptides and neurotransmitters, but can also directly influence innate and adaptive immune responses. Expression of the NGF receptors tropomyosin receptor kinase A (TrkA) and p75 neurotrophin receptor (p75NTR) is dynamically regulated in immune cells, suggesting a varying requirement for NGF depending on their state of differentiation and functional activity. NGF has a variety of effects that can be either pro-inflammatory or anti-inflammatory. This apparent contradiction can be explained by considering NGF as part of an endogenous mechanism that, while activating immune responses, also activates pathways necessary to dampen the inflammatory response and limit tissue damage. Decreases in TrkA expression, such as that recently demonstrated in immune cells of arthritis patients, might prevent the activation by NGF of regulatory feed-back mechanisms, thus contributing to the development and maintenance of chronic inflammation.
Collapse
Affiliation(s)
- Gaetana Minnone
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, 00146 Rome, Italy.
| | - Fabrizio De Benedetti
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, 00146 Rome, Italy.
| | - Luisa Bracci-Laudiero
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, 00146 Rome, Italy.
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), 00133 Rome, Italy.
| |
Collapse
|
2
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
3
|
Luberg K, Park R, Aleksejeva E, Timmusk T. Novel transcripts reveal a complex structure of the human TRKA gene and imply the presence of multiple protein isoforms. BMC Neurosci 2015; 16:78. [PMID: 26581861 PMCID: PMC4652384 DOI: 10.1186/s12868-015-0215-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/09/2015] [Indexed: 11/21/2022] Open
Abstract
Background Tropomyosin-related kinase A (TRKA) is a nerve growth factor (NGF) receptor that belongs to the tyrosine kinase receptor family. It is critical for the correct development of many types of neurons including pain-mediating sensory neurons and also controls proliferation, differentiation and survival of many neuronal and non-neuronal cells. TRKA (also known as NTRK1) gene is a target of alternative splicing which can result in several different protein isoforms. Presently, three human isoforms (TRKAI, TRKAII and TRKAIII) and two rat isoforms (TRKA L0 and TRKA L1) have been described. Results We show here that human TRKA gene is overlapped by two genes and spans 67 kb—almost three times the size that has been previously described. Numerous transcription initiation sites from eight different 5′ exons and a sophisticated splicing pattern among exons encoding the extracellular part of TRKA receptor indicate that there might be a large variety of alternative protein isoforms. TrkA genes in rat and mouse appear to be considerably shorter, are not overlapped by other genes and display more straightforward splicing patterns. We describe the expression profile of alternatively spliced TRKA transcripts in different tissues of human, rat and mouse, as well as analyze putative endogenous TRKA protein isoforms in human SH-SY5Y and rat PC12 cells. We also characterize a selection of novel putative protein isoforms by portraying their phosphorylation, glycosylation and intracellular localization patterns. Our findings show that an isoform comprising mainly of TRKA kinase domain is capable of entering the nucleus. Conclusions Results obtained in this study refer to the existence of a multitude of TRKA mRNA and protein isoforms, with some putative proteins possessing very distinct properties. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0215-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristi Luberg
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia. .,Competence Center for Cancer Research, Tallinn, Estonia.
| | - Rahel Park
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia. .,Competence Center for Cancer Research, Tallinn, Estonia. .,VIB lab for Systems Biology & CMPG Lab for Genetics and Genomics, Leuven, Belgium.
| | - Elina Aleksejeva
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia. .,Competence Center for Cancer Research, Tallinn, Estonia. .,French National Institute for Agricultural Research, Paris, France.
| | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia. .,Competence Center for Cancer Research, Tallinn, Estonia.
| |
Collapse
|
4
|
Shen Y, Inoue N, Heese K. Neurotrophin-4 (ntf4) mediates neurogenesis in mouse embryonic neural stem cells through the inhibition of the signal transducer and activator of transcription-3 (stat3) and the modulation of the activity of protein kinase B. Cell Mol Neurobiol 2010; 30:909-16. [PMID: 20407817 PMCID: PMC11498831 DOI: 10.1007/s10571-010-9520-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 04/05/2010] [Indexed: 12/26/2022]
Abstract
The effect of neurotrophin-4 (Ntf4) on mouse embryonic (day-14) neural stem cell (mE14-NSC) fate determination and the mechanisms involved were investigated. Using primary mE14-NSCs, immunocytochemistry and molecular-cell biological methods, such as Western-blotting, we characterized the effect of Ntf4 on mE14-NSC differentiation. Obtained in-vitro data revealed an interesting phenomenon of Ntf4 action resulting in enhanced mE14-NSC commitment to progenitor cells of the neuronal lineage. During this process, Ntf4 suppresses the interleukin 6 (Il6) family receptor and the Notch signalling pathways by modulating their specific receptor cleavages. The observed lineage commitment is controlled via an Ntf4-mediated modulation of protein kinase B (PKB/Akt) activity and characterized by a decreased Stat3 (signal transducer and activator of transcription-3) phosphorylation status. These findings suggest that the Ntf4-activated signalling cascade is responsible for initiating a concert among sheddases, kinases, and phosphatases to mediate neurogenesis.
Collapse
Affiliation(s)
- Yanfu Shen
- Department of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Noriko Inoue
- Medical Center for Translational Research, Osaka University Hospital, Suita, Osaka Japan
| | - Klaus Heese
- Department of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
5
|
Montaño JA, Pérez-Piñera P, García-Suárez O, Cobo J, Vega JA. Development and neuronal dependence of cutaneous sensory nerve formations: Lessons from neurotrophins. Microsc Res Tech 2010; 73:513-29. [PMID: 19839059 DOI: 10.1002/jemt.20790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Null mutations of genes from the NGF family of NTs and their receptors (NTRs) lead to loss/reduction of specific neurons in sensory ganglia; conversely, cutaneous overexpression of NTs results in skin hyperinnervation and increase or no changes in the number of sensory neurons innervating the skin. These neuronal changes are paralleled with loss of specific types of sensory nerve formations in the skin. Therefore, mice carrying mutations in NT or NTR genes represent an ideal model to identify the neuronal dependence of each type of cutaneous sensory nerve ending from a concrete subtype of sensory neuron, since the development, maintenance, and structural integrity of sensory nerve formations depend upon sensory neurons. Results obtained from these mouse strains suggest that TrkA positive neurons are connected to intraepithelial nerve fibers and other sensory nerve formations depending from C and Adelta nerve fibers; the neurons expressing TrkB and responding to BDNF and NT-4 innervate Meissner corpuscles, a subpopulation of Merkell cells, some mechanoreceptors of the piloneural complex, and the Ruffini's corpuscles; finally, a subpopulation of neurons, which are responsive to NT-3, support postnatal survival of some intraepithelial nerve fibers and Merkel cells in addition to the muscle mechanoreceptors. On the other hand, changes in NTs and NTRs affect the structure of non-nervous structures of the skin and are at the basis of several cutaneous pathologies. This review is an update about the role of NTs and NTRs in the maintenance of normal cutaneous innervation and maintenance of skin integrity.
Collapse
Affiliation(s)
- Juan A Montaño
- Departamento de Ciencias de la Salud, Universidad Católica San Antonio, Murcia, Spain
| | | | | | | | | |
Collapse
|
6
|
Freund-Michel V, Frossard N. The nerve growth factor and its receptors in airway inflammatory diseases. Pharmacol Ther 2007; 117:52-76. [PMID: 17915332 DOI: 10.1016/j.pharmthera.2007.07.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 11/16/2022]
Abstract
The nerve growth factor (NGF) belongs to the neurotrophin family and induces its effects through activation of 2 distinct receptor types: the tropomyosin-related kinase A (TrkA) receptor, carrying an intrinsic tyrosine kinase activity in its intracellular domain, and the receptor p75 for neurotrophins (p75NTR), belonging to the death receptor family. Through activation of its TrkA receptor, NGF activates signalling pathways, including phospholipase Cgamma (PLCgamma), phosphatidyl-inositol 3-kinase (PI3K), the small G protein Ras, and mitogen-activated protein kinases (MAPK). Through its p75NTR receptor, NGF activates proapoptotic signalling pathways including the MAPK c-Jun N-terminal kinase (JNK), ceramides, and the small G protein Rac, but also activates pathways promoting cell survival through the transcription factor nuclear factor-kappaB (NF-kappaB). NGF was first described by Rita Levi-Montalcini and collaborators as an important factor involved in nerve differentiation and survival. Another role for NGF has since been established in inflammation, in particular of the airways, with increased NGF levels in chronic inflammatory diseases. In this review, we will first describe NGF structure and synthesis and NGF receptors and their signalling pathways. We will then provide information about NGF in the airways, describing its expression and regulation, as well as pointing out its potential role in inflammation, hyperresponsiveness, and remodelling process observed in airway inflammatory diseases, in particular in asthma.
Collapse
Affiliation(s)
- V Freund-Michel
- EA 3771 Inflammation and Environment in Asthma, University Louis Pasteur-Strasbourg I, Faculty of Pharmacy, Illkirch, France.
| | | |
Collapse
|
7
|
Tacconelli A, Farina AR, Cappabianca L, Cea G, Panella S, Chioda A, Gallo R, Cinque B, Sferra R, Vetuschi A, Campese AF, Screpanti I, Gulino A, Mackay AR. TrkAIII expression in the thymus. J Neuroimmunol 2007; 183:151-61. [PMID: 17241672 DOI: 10.1016/j.jneuroim.2006.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
The alternative TrkAIII splice variant is expressed by murine and human thymus. Alternative TrkAIII splicing predominates in postembryonic day E13 (E17 and E18), postnatal murine (3 week and 3 month) and human thymuses, with TrkAIII mRNA expressed by selected thymocyte subsets and thymic epithelial cells (TECs) and a 100 kDa immunoprecipitable TrkAIII-like protein detected in purified thymocyte and whole thymus extracts. FACS and immunohistochemical analysis indicate a non-cell surface localisation for the TrkAIII-like protein in cortical CD4+/CD8+ double positive and, to a lesser extent, single positive thymocyte subsets at the cortex/medulla boundary and in Hassle's corpuscles, reticular epithelial and dendritic cells of the thymic medulla. TrkA(I/II) expression, on the other hand, predominates in sub-capsular regions of the thymus. TrkAIII-like immunoreactivity at the cortex/medulla boundary associates with regions of thymocyte proliferation and not apoptosis. A potential role for thymic hypoxia in thymocyte alternative TrkAIII splicing is supported by reversal to TrkAI splicing by normoxic but not hypoxic culture and induction of Jurkat T cell alternative TrkAIII splicing by the hypoxia mimic CoCl2. In contrast, TEC expression of TrkAIII predominates in both normoxic and hypoxic culture conditions. The data support a potential role for TrkAIII in thymic development and function, of particular relevance to intermediate stage CD4+/CD8+ thymocyte subsets and TECs, which potentially reflects a reversible thymocyte and more permanent TEC adaptation to thymic environment. Since intracellular TrkAIII neither binds nor responds to NGF and can impede regular NGF/TrkA signalling (Tacconelli et al., Cancer Cell, 2004), its expression would be expected to provide an alternative and/or impediment to regular NGF/TrkA signalling within the developing and developed thymus of potential functional importance.
Collapse
Affiliation(s)
- Antonella Tacconelli
- Department of Experimental Medicine, University of L'Aquila, Coppito 2, Via Vetoio, 67100 L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lee CS, Tee LY, Dusenbery S, Takata T, Golden JP, Pierchala BA, Gottlieb DI, Johnson EM, Choi DW, Snider BJ. Neurotrophin and GDNF family ligands promote survival and alter excitotoxic vulnerability of neurons derived from murine embryonic stem cells. Exp Neurol 2005; 191:65-76. [PMID: 15589513 DOI: 10.1016/j.expneurol.2004.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 08/11/2004] [Accepted: 08/19/2004] [Indexed: 11/18/2022]
Abstract
Embryonic stem (ES) cells are genetically manipulable pluripotential cells that can be differentiated in vitro into neurons, oligodendrocytes, and astrocytes. Given their potential utility as a source of replacement cells for the injured nervous system and the likelihood that transplantation interventions might include co-application of growth factors, we examined the effects of neurotrophin and GDNF family ligands on the survival and excitotoxic vulnerability of ES cell-derived neurons (ES neurons) grown in vitro. ES cells were differentiated down a neural lineage in vitro using the 4-/4+ protocol (Bain et al., Dev Biol 168:342-57, 1995). RT-PCR demonstrated expression of receptors for neurotrophins and GDNF family ligands in ES neural lineage cells. Neuronal expression of GFRalpha1, GFRalpha2, and ret was confirmed by immunocytochemistry. Exposure to 30-100 ng/ml GDNF or neurturin (NRTN) resulted in activation of ret. Addition of NT-3 and GDNF did not increase cell division but did increase the number of neurons in the cultures 7 days after plating. Pretreatment with NT-3 enhanced the vulnerability of ES neurons to NMDA-induced death (100 microM NMDA for 10 min) and enhanced the NMDA-induced increase in neuronal [Ca2+]i, but did not alter expression of NMDA receptor subunits NR2A or NR2B. In contrast, pretreatment with GDNF reduced the vulnerability of ES neurons to NMDA-induced death while modestly enhancing the NMDA-induced increase in neuronal [Ca2+]i. These findings demonstrate that the response of ES-derived neurons to neurotrophins and GDNF family ligands is largely similar to that of other cultured central neurons.
Collapse
Affiliation(s)
- Chul-Sang Lee
- Washington University School of Medicine, Center for the Study of Nervous System Injury, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vega JA, García-Suárez O, Germanà A. Vertebrate thymus and the neurotrophin system. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 237:155-204. [PMID: 15380668 DOI: 10.1016/s0074-7696(04)37004-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An immunomodulary role has been proposed for growth factors included in the family of neurotrophins. This is supported by the presence of both neurotrophins and neurotrophin receptors in the immune organs and some immunocompetent cells, the in vitro and in vivo effects of the neurotrophins on the immune cells, and the structural changes of lymphoid organs in mice deficient in neurotrophins and their receptors. The current data strongly indicate that neurotrophins regulate the biology of thymic stromal cells and T cells, including survival, and are involved in the thymic organogenesis. This review compiles the available data about the occurrence and distribution of neurotrophins and their signaling receptors (Trk proteins and p75(NTR)) in the vertebrate thymus and the possible contribution of these molecules to the thymic microenvironment and, therefore, to the T cells differentiation.
Collapse
Affiliation(s)
- José A Vega
- Departamento de Morfología y Biología Celular Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | |
Collapse
|
10
|
Abstract
The neurotrophins are a family of polypeptide growth factors that are essential for the development and maintenance of the vertebrate nervous system. In recent years, data have emerged indicating that neurotrophins could have a broader role than their name might suggest. In particular, the putative role of NGF and its receptor TrkA in immune system homeostasis has become a much studied topic, whereas information on the other neurotrophins is scarce in this regard. This paper reviews what is known about the expression and possible functions of neurotrophins and their receptors in different immune tissues and cells, as well as recent data obtained from studies of transgenic mice in our laboratory. Results from studies to date support the idea that neurotrophins may regulate some immune functions. They also play an important role in the development of the thymus and in the survival of thymocytes.
Collapse
Affiliation(s)
- José A Vega
- Departamento de Morfología y Biología Celular, Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain.
| | | | | | | | | |
Collapse
|