1
|
Muñoz-Jurado A, Escribano BM, Túnez I. Animal model of multiple sclerosis: Experimental autoimmune encephalomyelitis. Methods Cell Biol 2024; 188:35-60. [PMID: 38880527 DOI: 10.1016/bs.mcb.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Multiple sclerosis (MS) is a very complex and heterogeneous disease, with an unknown etiology and which, currently, remains incurable. For this reason, animal models are crucial to investigate this disease, which has increased in prevalence in recent years, affecting 2.8 million people worldwide, and is the leading cause of non-traumatic disability in young adults between the ages of 20-30years. Of all the models developed to replicate MS, experimental autoimmune encephalomyelitis (EAE) best reflects the autoimmune pathogenesis of MS. There are different methods to induce it, which will give rise to different types of EAE, which will vary in clinical presentation and severity. Of the EAE models, the most widespread and used is the one induced in rodents due to its advantages over other species. Likewise, EAE has become a widely used model in the development of therapies for the treatment of MS. Likewise, it is very useful to define the cellular and molecular mechanisms involved in the pathogenesis of MS and to establish therapeutic targets for this disease. For all these reasons, the EAE model plays a key role in improving the understanding of MS.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain.
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.
| |
Collapse
|
2
|
Smith BC, Tinkey RA, Brock OD, Mariam A, Habean ML, Dutta R, Williams JL. Astrocyte interferon-gamma signaling dampens inflammation during chronic central nervous system autoimmunity via PD-L1. J Neuroinflammation 2023; 20:234. [PMID: 37828609 PMCID: PMC10568873 DOI: 10.1186/s12974-023-02917-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS). Infiltrating inflammatory immune cells perpetuate demyelination and axonal damage in the CNS and significantly contribute to pathology and clinical deficits. While the cytokine interferon (IFN)γ is classically described as deleterious in acute CNS autoimmunity, we and others have shown astrocytic IFNγ signaling also has a neuroprotective role. Here, we performed RNA sequencing and ingenuity pathway analysis on IFNγ-treated astrocytes and found that PD-L1 was prominently expressed. Interestingly, PD-1/PD-L1 antagonism reduced apoptosis in leukocytes exposed to IFNγ-treated astrocytes in vitro. To further elucidate the role of astrocytic IFNγ signaling on the PD-1/PD-L1 axis in vivo, we induced the experimental autoimmune encephalomyelitis (EAE) model of MS in Aldh1l1-CreERT2, Ifngr1fl/fl mice. Mice with conditional astrocytic deletion of IFNγ receptor exhibited a reduction in PD-L1 expression which corresponded to increased infiltrating leukocytes, particularly from the myeloid lineage, and exacerbated clinical disease. PD-1 agonism reduced EAE severity and CNS-infiltrating leukocytes. Importantly, PD-1 is expressed by myeloid cells surrounding MS lesions. These data support that IFNγ signaling in astrocytes diminishes inflammation during chronic autoimmunity via upregulation of PD-L1, suggesting potential therapeutic benefit for MS patients.
Collapse
Affiliation(s)
- Brandon C Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Rachel A Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Orion D Brock
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Arshiya Mariam
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maria L Habean
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Jessica L Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA.
| |
Collapse
|
3
|
Xun C, Deng H, Zhao J, Ge L, Hu Z. Mesenchymal stromal cell extracellular vesicles for multiple sclerosis in preclinical rodent models: A meta-analysis. Front Immunol 2022; 13:972247. [PMID: 36405749 PMCID: PMC9673165 DOI: 10.3389/fimmu.2022.972247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/14/2022] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Extracellular vesicles (EVs), especially mesenchymal stem (stromal) cell-derived EVs (MSC-EVs), have gained attention as potential novel treatments for multiple sclerosis (MS). However, their effects remain incompletely understood. Thus, the purpose of this meta-analysis was to systematically review the efficacy of MSC-EVs in preclinical rodent models of MS. METHODS We searched PubMed, EMBASE, and the Web of Science databases up to August 2021 for studies that reported the treatment effects of MSC-EVs in rodent MS models. The clinical score was extracted as an outcome. Articles were peer-reviewed by two authors based on the inclusion and exclusion criteria. This meta-analysis was conducted using Stata 15.1 and R. RESULTS A total of twelve animal studies met the inclusion criteria. In our study, the MSC-EVs had a positive overall effect on the clinical score with a standardized mean difference (SMD) of -2.17 (95% confidence interval (CI)):-3.99 to -0.34, P = 0.01). A significant amount of heterogeneity was observed among the studies. CONCLUSIONS This meta-analysis suggests that transplantation of MSC-EVs in MS rodent models improved functional recovery. Additionally, we identified several critical knowledge gaps, such as insufficient standardized dosage units and uncertainty regarding the optimal dose of MSC-EVs transplantation in MS. These gaps must be addressed before clinical trials can begin with MSC-EVs.
Collapse
Affiliation(s)
- Chengfeng Xun
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huiyin Deng
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Zhao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Radojević D, Bekić M, Gruden-Movsesijan A, Ilić N, Dinić M, Bisenić A, Golić N, Vučević D, Đokić J, Tomić S. Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis. Gut Microbes 2022; 14:2127455. [PMID: 36184742 PMCID: PMC9543149 DOI: 10.1080/19490976.2022.2127455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Over-activated myeloid cells and disturbance in gut microbiota composition are critical factors contributing to the pathogenesis of Multiple Sclerosis (MS). Myeloid-derived suppressor cells (MDSCs) emerged as promising regulators of chronic inflammatory diseases, including autoimmune diseases. However, it remained unclear whether MDSCs display any therapeutic potential in MS, and how this therapy modulates gut microbiota composition. Here, we assessed the potential of in vitro generated bone marrow-derived MDSCs to ameliorate experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats and investigated how their application associates with the changes in gut microbiota composition. MDSCs differentiated with prostaglandin (PG)E2 (MDSC-PGE2) and control MDSCs (differentiated without PGE2) displayed strong immunosuppressive properties in vitro, but only MDSC-PGE2 significantly ameliorated EAE symptoms. This effect correlated with a reduced infiltration of Th17 and IFN-γ-producing NK cells, and an increased proportion of regulatory T cells in the CNS and spleen. Importantly, both MDSCs and MDSC-PGE2 prevented EAE-induced reduction of gut microbiota diversity, but only MDSC-PGE2 prevented the extensive alterations in gut microbiota composition following their early migration into Payer's patches and mesenteric lymph nodes. This phenomenon was related to the significant enrichment of gut microbial taxa with potential immunoregulatory properties, as well as higher levels of butyrate, propionate, and putrescine in feces. This study provides new insights into the host-microbiota interactions in EAE, suggesting that activated MDSCs could be potentially used as an efficient therapy for acute phases of MS. Considering a significant association between the efficacy of MDSC-PGE2 and gut microbiota composition, our findings also provide a rationale for further exploring the specific microbial metabolites in MS therapy.
Collapse
Affiliation(s)
- Dušan Radojević
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Nataša Ilić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Bisenić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Vučević
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| | - Jelena Đokić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia,CONTACT Jelena Đokić Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, 111042 Belgrade, Vojvode Stepe 444a, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia,Sergej Tomić Institute for the Application of Nuclear Energy, 11080 Belgrade, Banatska 31b, Belgrade, Serbia
| |
Collapse
|
5
|
Kamarehei M, Pejman S, Kaboudanian Ardestani S, Zahednasab H, Firouzi M, Harirchian MH. Inhibition of protein disulfide isomerase has neuroprotective effects in a mouse model of experimental autoimmune encephalomyelitis. Int Immunopharmacol 2020; 82:106286. [PMID: 32172212 DOI: 10.1016/j.intimp.2020.106286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum (ER) stress is strictly linked to neuroinflammation and involves in the development of neurodegenerative disorders. Protein disulfide isomerase (PDI) is an enzyme that catalyzes formation and isomerization of disulfide bonds and also acts as a chaperone that survives the cells against cell death by removal of misfolded proteins. Our previous work revealed that PDI is explicitly upregulated in response to myelin oligodendrocyte glycoprotein (MOG)-induced ER stress in the brain of experimental autoimmune encephalomyelitis (EAE) mice. The significance of overexpression of PDI in the apoptosis of neural cells prompted us to study the effect of CCF642, efficient inhibitor of PDI, in the recovery of EAE clinical symptoms. Using this in vivo model, we characterized the ability of CCF642 to decrease the expression of ER stress markers and neuroinflammation in the hippocampus of EAE mice. Our observations suggested that CCF642 administration attenuates EAE clinical symptomsand the expression of ER stress-related proteins. Further, it suppressed the inflammatory infiltration of CD4 + T cells and the activation of hippocampus-resident microglia and Th17 cells. We reported here that the inhibition of PDI protected EAE mice against neuronal apoptosis induced by prolonged ER stress and resulted in neuroprotection.
Collapse
Affiliation(s)
- Maryam Kamarehei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sina Pejman
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Masoumeh Firouzi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Hossein Harirchian
- Iranian Centre of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Suppression of the Peripheral Immune System Limits the Central Immune Response Following Cuprizone-Feeding: Relevance to Modelling Multiple Sclerosis. Cells 2019; 8:cells8111314. [PMID: 31653054 PMCID: PMC6912385 DOI: 10.3390/cells8111314] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cuprizone (CPZ) preferentially affects oligodendrocytes (OLG), resulting in demyelination. To investigate whether central oligodendrocytosis and gliosis triggered an adaptive immune response, the impact of combining a standard (0.2%) or low (0.1%) dose of ingested CPZ with disruption of the blood brain barrier (BBB), using pertussis toxin (PT), was assessed in mice. 0.2% CPZ(±PT) for 5 weeks produced oligodendrocytosis, demyelination and gliosis plus marked splenic atrophy (37%) and reduced levels of CD4 (44%) and CD8 (61%). Conversely, 0.1% CPZ(±PT) produced a similar oligodendrocytosis, demyelination and gliosis but a smaller reduction in splenic CD4 (11%) and CD8 (14%) levels and no splenic atrophy. Long-term feeding of 0.1% CPZ(±PT) for 12 weeks produced similar reductions in CD4 (27%) and CD8 (43%), as well as splenic atrophy (33%), as seen with 0.2% CPZ(±PT) for 5 weeks. Collectively, these results suggest that 0.1% CPZ for 5 weeks may be a more promising model to study the ‘inside-out’ theory of Multiple Sclerosis (MS). However, neither CD4 nor CD8 were detected in the brain in CPZ±PT groups, indicating that CPZ-mediated suppression of peripheral immune organs is a major impediment to studying the ‘inside-out’ role of the adaptive immune system in this model over long time periods. Notably, CPZ(±PT)-feeding induced changes in the brain proteome related to the suppression of immune function, cellular metabolism, synaptic function and cellular structure/organization, indicating that demyelinating conditions, such as MS, can be initiated in the absence of adaptive immune system involvement.
Collapse
|
7
|
de Jong CGHM, Stancic M, Pinxterhuis TH, van Horssen J, van Dam AM, Gabius HJ, Baron W. Galectin-4, a Negative Regulator of Oligodendrocyte Differentiation, Is Persistently Present in Axons and Microglia/Macrophages in Multiple Sclerosis Lesions. J Neuropathol Exp Neurol 2019; 77:1024-1038. [PMID: 30252090 DOI: 10.1093/jnen/nly081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Neuron-derived molecules are potent regulators of oligodendrocyte differentiation and myelination during brain development and upon demyelination. Their analysis will thus contribute to understanding remyelination failure in demyelinating diseases, such as multiple sclerosis (MS). Previously, we have identified neuronal galectin-4 as a novel negative soluble regulator in the timing of developmental myelination. Here, we investigated whether galectin-4 is re-expressed in axons upon demyelination to regulate the timing of remyelination. Our findings revealed that galectin-4 is transiently localized to axons in demyelinated areas upon cuprizone-induced demyelination. In contrast, in chronic demyelinated MS lesions, where remyelination fails, galectin-4 is permanently present on axons. Remarkably, microglia/macrophages in cuprizone-demyelinated areas also harbor galectin-4, as also observed in activated microglia/macrophages that are present in active MS lesions and in inflammatory infiltrates in chronic-relapsing experimental autoimmune encephalomyelitis. In vitro analysis showed that galectin-4 is effectively endocytosed by macrophages, and may scavenge galectin-4 from oligodendrocytes, and that endogenous galectin-4 levels are increased in alternatively interleukin-4-activated macrophages and microglia. Hence, similar to developmental myelination, the (re)expressed galectin-4 upon demyelination may act as factor in the timing of oligodendrocyte differentiation, while the persistent presence of galectin-4 on demyelinated axons may disrupt this fine-tuning of remyelination.
Collapse
Affiliation(s)
- Charlotte G H M de Jong
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mirjana Stancic
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tineke H Pinxterhuis
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wia Baron
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Naser Moghadasi A. When an octopus has MS: Application of neurophysiology and immunology of octopuses for multiple sclerosis. Med Hypotheses 2019; 131:109297. [PMID: 31443774 DOI: 10.1016/j.mehy.2019.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease which can cause different symptoms due to the involvement of different regions of the central nervous system (CNS). Although this disease is characterized by the demyelination process, the most important feature of the disease is its degenerative nature. This nature is clinically manifested as progressive symptoms, especially in patients' walking, which can even lead to complete debilitation. Therefore, finding a treatment to prevent the degenerative processes is one of the most important goals in MS studies. To better understand the process and the effect of drugs, scientists use animal models which mostly consisting of mouse, rat, and monkey. In evolutionary terms, octopuses belong to the invertebrates which have many substantial differences with vertebrates. One of these differences is related to the nervous system of these organisms, which is divided into central and peripheral parts. The difference lies in the fact that the main volume of this system expands in the limbs of these organisms instead of their brain. This offers a kind of freedom of action and processing strength in the octopus limbs. Also, the brain of these organisms follows a non-somatotopic model. Although the complex actions of this organism are stimulated by the brain, in contrast to the human brain, this activity is not related to a specific region of the brain; rather the entire brain area of the octopus is activated during a process. Indeed, the brain mapping or the topological perception of a particular action, such as moving the limbs, reflects itself in how that activity is distributed in the octopus brain neurons. Accordingly, various actions are known with varying degrees of activity of neurons in the brain of octopus. Another important feature of octopuses is their ability to regenerate defective tissues including the central and peripheral nervous system. These characteristics raise the question of what features can an octopus show when it is used as an organism to create experimental autoimmune encephalomyelitis (EAE). Can the immune system damage of the octopus brain cause a regeneration process? Will the autonomy of the organs reduce the severity of the symptoms? This article seeks to provide evidence to prove that use of octopuses as laboratory samples for generation of EAE may open up new approaches for researchers to better approach MS.
Collapse
Affiliation(s)
- Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Castoldi V, Marenna S, d'Isa R, Huang SC, De Battista D, Chirizzi C, Chaabane L, Kumar D, Boschert U, Comi G, Leocani L. Non-invasive visual evoked potentials to assess optic nerve involvement in the dark agouti rat model of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein. Brain Pathol 2019; 30:137-150. [PMID: 31267597 DOI: 10.1111/bpa.12762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the primary disease model of multiple sclerosis (MS), one of the most diffused neurological diseases characterized by fatigue, muscle weakness, vision loss, anxiety and depression. EAE can be induced through injection of myelin peptides to susceptible mouse or rat strains. In particular, EAE elicited by the autoimmune reaction against myelin oligodendrocyte glycoprotein (MOG) presents the common features of human MS: inflammation, demyelination and axonal loss. Optic neuritis affects visual pathways in both MS and in several EAE models. Neurophysiological evaluation through visual evoked potential (VEP) recording is useful to check visual pathway dysfunctions and to test the efficacy of innovative treatments against optic neuritis. For this purpose, we investigate the extent of VEP abnormalities in the dark agouti (DA) rat immunized with MOG, which develops a relapsing-remitting disease course. Together with the detection of motor signs, we acquired VEPs during both early and late stages of EAE, taking advantage of a non-invasive recording procedure that allows long follow-up studies. The validation of VEP outcomes was determined by comparison with ON histopathology, aimed at revealing inflammation, demyelination and nerve fiber loss. Our results indicate that the first VEP latency delay in MOG-EAE DA rats appeared before motor deficits and were mainly related to an inflammatory state. Subsequent VEP delays, detected during relapsing EAE phases, were associated with a combination of inflammation, demyelination and axonal loss. Moreover, DA rats with atypical EAE clinical course tested at extremely late time points, manifested abnormal VEPs although motor signs were mild. Overall, our data demonstrated that non-invasive VEPs are a powerful tool to detect visual involvement at different stages of EAE, prompting their validation as biomarkers to test novel treatments against MS optic neuritis.
Collapse
Affiliation(s)
- Valerio Castoldi
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Marenna
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Raffaele d'Isa
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Davide De Battista
- INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Chirizzi
- INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Linda Chaabane
- INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Deepak Kumar
- EMD Serono Research and Development Institute, Billerica, MA
| | - Ursula Boschert
- Ares Trading S.A., Affiliate of Merck Serono S.A, Eysins, Switzerland
| | - Giancarlo Comi
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
10
|
Ornelas IM, McLane LE, Saliu A, Evangelou AV, Khandker L, Wood TL. Heterogeneity in oligodendroglia: Is it relevant to mouse models and human disease? J Neurosci Res 2016; 94:1421-1433. [PMID: 27557736 PMCID: PMC5513674 DOI: 10.1002/jnr.23900] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023]
Abstract
There are many lines of evidence indicating that oligodendrocyte progenitor cells and oligodendrocyte populations in the central nervous system (CNS) are heterogeneous based on their developmental origins as well as from morphological and molecular criteria. Whether these distinctions reflect functional heterogeneity is less clear and has been the subject of considerable debate. Recent findings, particularly from knockout mouse models, have provided new evidence for regional variations in myelination phenotypes, particularly between brain and spinal cord. These data raise the possibility that oligodendrocytes in these regions have different functional capacities and/or ability to compensate for loss of a specific gene. The goal of this review is to briefly revisit the evidence for oligodendrocyte heterogeneity and then to present data from transgenic and demyelinating mouse models suggesting functional heterogeneity in myelination, demyelination, and remyelination in the CNS and, finally, to discuss the implications of these findings for human diseases. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isis M Ornelas
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Lauren E McLane
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Aminat Saliu
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Angelina V Evangelou
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Luipa Khandker
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Teresa L Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| |
Collapse
|
11
|
Núñez MJ, Balboa J, Rey-Méndez M, Brenlla J, González-Peteiro M, Rodrigo E, Freire-Garabal M. Effects of amphetamine and cocaine on the development of acute experimental allergic encephalomyelitis in Lewis rats. Hum Exp Toxicol 2016; 26:637-43. [PMID: 17884951 DOI: 10.1177/0960327107076323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present experiment deals with the effects of amphetamine and cocaine on the development and course of experimental allergic encephalomyelitis (EAE) induced in Lewis rats. Rats were immunized at the age of eight weeks with purified myelin basic protein isolated from guinea pig brain in complete Freund's adjuvant. Drug administration and recording of EAE clinical signs was performed daily since day 1 post-immunization (PI). On day 14 and 28 PI, six rats per group were bled and sacrificed. Spinal cord was examined histologically for EAE lesions. In vivo administration of 0.5 and 1 mg/Kg of amphetamine or cocaine resulted in a dose-related enhancement of neurological and histological signs of acute EAE in comparison with control rats. Both drugs caused a reduction of latent period together with a delayed regression of neurological signs along with an increase in inflammation in the central nervous system in comparison with placebo. Human & Experimental Toxicology (2007) 26, 637—643
Collapse
Affiliation(s)
- María J Núñez
- Neuroimmunology Laboratory, Department of Pharmacology, School of Medicine, Dentistry and Nursing, C/San Francisco, s/n. 15782 Santiago de Compostela, A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun 2015; 49:101-18. [PMID: 25944279 DOI: 10.1016/j.bbi.2015.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/26/2015] [Accepted: 04/26/2015] [Indexed: 02/06/2023] Open
Abstract
Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freund's adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms underlying the target organ specific sexual dimorphism in the T lymphocyte-dependent immune/inflammatory response, and suggested a substantial role for the target organ in shaping the sexually dimorphic clinical outcome of EAE.
Collapse
|
13
|
Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR. The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology 2014; 96:55-69. [PMID: 25446571 DOI: 10.1016/j.neuropharm.2014.10.020] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 02/07/2023]
Abstract
Neuroimmune diseases have diverse symptoms and etiologies but all involve pathological inflammation that affects normal central nervous system signaling. Critically, many neuroimmune diseases also involve insufficient signaling/bioavailability of interleukin-10 (IL-10). IL-10 is a potent anti-inflammatory cytokine released by immune cells and glia, which drives the regulation of a variety of anti-inflammatory processes. This review will focus on the signaling pathways and function of IL-10, the current evidence for insufficiencies in IL-10 signaling/bioavailability in neuroimmune diseases, as well as the implications for IL-10-based therapies to treating such problems. We will review in detail four pathologies as examples of the common etiologies of such disease states, namely neuropathic pain (nerve trauma), osteoarthritis (peripheral inflammation), Parkinson's disease (neurodegeneration), and multiple sclerosis (autoimmune). A number of methods to increase IL-10 have been developed (e.g. protein administration, viral vectors, naked plasmid DNA, plasmid DNA packaged in polymers to enhance their uptake into target cells, and adenosine 2A agonists), which will also be discussed. In general, IL-10-based therapies have been effective at treating both the symptoms and pathology associated with various neuroimmune diseases, with more sophisticated gene therapy-based methods producing sustained therapeutic effects lasting for several months following a single injection. These exciting results have resulted in IL-10-targeted therapeutics being positioned for upcoming clinical trials for treating neuroimmune diseases, including neuropathic pain. Although further research is necessary to determine the full range of effects associated with IL-10-based therapy, evidence suggests IL-10 may be an invaluable target for the treatment of neuroimmune disease. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- A J Kwilasz
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado-Boulder, Boulder, CO 80309-0345, USA.
| | - P M Grace
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado-Boulder, Boulder, CO 80309-0345, USA
| | - P Serbedzija
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado-Boulder, Boulder, CO 80309-0345, USA
| | - S F Maier
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado-Boulder, Boulder, CO 80309-0345, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado-Boulder, Boulder, CO 80309-0345, USA
| |
Collapse
|
14
|
Mohyeddin Bonab M, Mohajeri M, Sahraian MA, Yazdanifar M, Aghsaie A, Farazmand A, Nikbin B. Evaluation of Cytokines in Multiple Sclerosis Patients Treated with Mesenchymal Stem Cells. Arch Med Res 2013; 44:266-72. [DOI: 10.1016/j.arcmed.2013.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 03/22/2013] [Indexed: 01/01/2023]
|
15
|
Shin T, Ahn M, Matsumoto Y. Mechanism of experimental autoimmune encephalomyelitis in Lewis rats: recent insights from macrophages. Anat Cell Biol 2012; 45:141-8. [PMID: 23094201 PMCID: PMC3472139 DOI: 10.5115/acb.2012.45.3.141] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/01/2012] [Accepted: 06/12/2012] [Indexed: 12/03/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) in Lewis rats is an acute monophasic paralytic central nervous system disease, in which most rats spontaneously recover from paralysis. EAE in Lewis rats is induced by encephalitogenic antigens, including myelin basic protein. EAE is mediated by CD4+ Th1 cells, which secrete pro-inflammatory mediators, and spontaneous recovery is mediated by regulatory T cells. Recently, it was established that classically activated macrophages (M1 phenotype) play an important role in the initiation of EAE, while alternatively activated macrophages (M2 phenotype) contribute to spontaneous recovery from rat EAE. This review will summarize the neuroimmunological aspects of active monophasic EAE, which manifests as neuroinflammation followed by neuroimmunomodulation and/or neuroprotection, with a focus on the role of alternatively activated macrophages.
Collapse
Affiliation(s)
- Taekyun Shin
- Department of Veterinary Anatomy, Veterinary Medical Research Institute, College of Veterinary Medicine, Jeju National University, Jeju, Korea. ; Functional and Systems Neurobiology, Cajal Institute, Madrid, Spain
| | | | | |
Collapse
|
16
|
Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2012; 164:1079-106. [PMID: 21371012 DOI: 10.1111/j.1476-5381.2011.01302.x] [Citation(s) in RCA: 1086] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology, and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic interventions.
Collapse
Affiliation(s)
- Cris S Constantinescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | | | | | | |
Collapse
|
17
|
Lavrnja I, Stojkov D, Bjelobaba I, Pekovic S, Dacic S, Nedeljkovic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Rakic L, Stojiljkovic M. Ribavirin ameliorates experimental autoimmune encephalomyelitis in rats and modulates cytokine production. Int Immunopharmacol 2008; 8:1282-90. [DOI: 10.1016/j.intimp.2008.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/07/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
|
18
|
Hiestand PC, Rausch M, Meier DP, Foster CA. Ascomycete derivative to MS therapeutic: S1P receptor modulator FTY720. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2008; 66:361, 363-81. [PMID: 18416311 DOI: 10.1007/978-3-7643-8595-8_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fingolimod (FTY720) represents the first in a new class of immune-modulators whose target is sphingosine-1-phosphate (S1P) receptors. It was first identified by researchers at Kyoto University and Yoshitomi Pharmaceutical as a chemical derivative of the ascomycete metabolite ISP-1 (myriocin). Unlike its natural product parent, FTY720 does not interfere with sphingolipid biosynthesis. Instead, its best characterized mechanism of action upon in vivo phosphorylation, leading to the active principle FTY720-P, is the rapid and reversible inhibition of lymphocyte egress from peripheral lymph nodes. As a consequence of S1P1 receptor internalization, tissue-damaging T-cells can not recirculate and infiltrate sites of inflammation such as the central nervous system (CNS). Furthermore, FTY720-P modulation of S1P receptor signaling also enhances endothelial barrier function. Due to its mode of action, FTY720 effectively prevents transplant rejection and is active in various autoimmune disease models. The most striking efficacy is in the multiple sclerosis (MS) model of experimental autoimmune encephalomyelitis, which has now been confirmed in the clinic. FTY720 demonstrated promising results in Phase II trials and recently entered Phase III in patients with relapsing MS. Emerging evidence suggests that its efficacy in the CNS extends beyond immunomodulation to encompass other aspects of MS pathophysiology, including an influence on the blood-brain-barrier and glial repair mechanisms that could ultimately contribute to restoration of nerve function. FTY720 may represent a potent new therapeutic modality in MS, combined with the benefit of oral administration.
Collapse
|
19
|
Melek IM, Erdogan S, Celik S, Aslantas O, Duman T. Evaluation of oxidative stress and inflammation in long term Brucella melitensis infection. Mol Cell Biochem 2006; 293:203-9. [PMID: 16810561 DOI: 10.1007/s11010-006-9243-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
The Brucella genus is able to cause chronic infection in a wide range of mammals including humans. Oxidative events, lipid peroxidation and inflammatory response against Brucella infection have not yet been well elucidated in vivo. We have investigated oxidative/antioxidative status and nitric oxide production in plasma, brain, liver and spleen during a 60 day period of B. melitensis infection in a rat model. In addition, inducible nitric oxide synthase (iNOS), IL-10, IL-12, IFN-gamma and TNF-alpha mRNA transcriptions were analyzed by semiquantitative reverse transcriptase PCR (RT-PCR) in brain samples. Animals were infected with B. melitensis and sacrificed at 7th, 15th, 30th, 45th and 60th day of post-inoculation. Malondialdehyde (MDA), as an indicator of lipid peroxidation, and nitric oxide (NO) concentrations were significantly increased after Brucella inoculation and began to decline to basal levels from 45th day in plasma, liver and spleen. However, iNOS transcription was not induced during the infection period in brains. In contrast, MDA level was increased in brain during the late phase of infection without any change in NO production. The infection did not alter the antioxidant enzyme activities in the tissues; although significantly increased catalase activity was observed between days 30 and 45 in the liver. Transcription analyses demonstrated that IL-10, IL-12 and IFN-gamma mRNA level were not induced in the brain. Only TNF-alpha mRNA was weakly up-regulated in brain 30 days after pathogen inoculation. The results obtained in this study demonstrate that B. melitensis induces lipid peroxidation and NO production in the liver and spleen in the early days of infection, but that these levels subsequently decline. Moreover, Brucella does not appear to induce antioxidant enzyme activities and inflammation during two months of infection. However, the pathogen does stimulate cerebral lipid peroxidation in the late phase of infection without causing significant inflammation.
Collapse
Affiliation(s)
- Ismet M Melek
- Department of Neurology, Faculty of Medicine, Mustafa Kemal University, Antakya, Turkey
| | | | | | | | | |
Collapse
|
20
|
Jorgensen SH, Jensen PEH, Laursen H, Sorensen PS. Intravenous immunoglobulin ameliorates experimental autoimmune encephalomyelitis and reduces neuropathological abnormalities when administered prophylactically. Neurol Res 2005; 27:591-7. [PMID: 16157008 DOI: 10.1179/016164105x48798] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND AND METHODS Immunomodulation with intravenous immunoglobulin (IVIG) represents a way of interfering with the disease process in multiple sclerosis (MS). In this study, the effects of IVIG on neurological symptoms and central nervous system (CNS) pathology were evaluated in experimental autoimmune encephalomyelitis (EAE), an MS animal model. EAE was induced in susceptible Dark Agouti rats by active immunization with a spinal cord homogenate, and infusions of 1 g/kg IVIG were given prophylactically or therapeutically. RESULTS The administration of IVIG at the time of immunization significantly suppressed the development of neurological symptoms compared with infusions of placebo (mean EAE score 0.6+/-0.3 versus 2.3+/-0.4). Moreover, the prophylactic IVIG administration resulted in a significant inhibition of the inflammatory response in CNS tissue (inflammation score 1.1+/-0.2 versus 1.8+/-0.2 after placebo). No beneficial effects were obtained by therapeutic IVIG infusions as the EAE disease course and the degree of inflammation and demyelination in the CNS were not different from animals receiving treatment with placebo. CONCLUSIONS The present study indicates that IVIG reduces the symptoms of EAE by suppression of the CNS inflammation that characterizes CNS pathology in these animals. Taking into account data from clinical trials of IVIG in MS, the results further suggest that IVIG acts primarily during the induction phase of the immune response thus preventing the development of relapses in MS.
Collapse
Affiliation(s)
- Signe Humle Jorgensen
- Danish MS Centre, Copenhagen University Hospital, Rigshospitalet sect. 9202, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
21
|
Humle Jorgensen S, Sorensen PS. Intravenous immunoglobulin treatment of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. J Neurol Sci 2005; 233:61-5. [PMID: 15949496 DOI: 10.1016/j.jns.2005.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Intravenous immunoglobulin (IVIG) is an established treatment of immune-mediated demyelinating neuropathy. Since IVIG possesses multiple immunomodulatory and anti-inflammatory properties, IVIG therapy may represent a way of interfering with the disease process in multiple sclerosis (MS). In the MS animal model experimental autoimmune encephalomyelitis (EAE), infusions of IVIG significantly reduced disease symptoms as well as the underlying CNS pathology. IVIG was only effective in EAE when administered in a prophylactic treatment protocol, since IVIG infusions during the established phase of EAE did not alter the disease course or the degree of inflammation found in the central nervous system. IVIG also has the potential to act through myelin repair mechanisms as evidenced by work done in the Theilers murine encephalomyelitis virus model of demyelination. Together these observations have led to certain expectations for IVIG as a treatment for MS, and have resulted in various clinical trials. Several controlled trials report beneficial effects of IVIG on relapse rate, new MRI lesions, and disease progression in relapsing-remitting MS, while a remyelinating effect of IVIG has not been documented. IVIG is, therefore, presently regarded as a second-line therapy of MS.
Collapse
Affiliation(s)
- Signe Humle Jorgensen
- Copenhagen MS Centre, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
22
|
Fernandez M, Giuliani A, Pirondi S, D'Intino G, Giardino L, Aloe L, Levi-Montalcini R, Calzà L. Thyroid hormone administration enhances remyelination in chronic demyelinating inflammatory disease. Proc Natl Acad Sci U S A 2004; 101:16363-8. [PMID: 15534218 PMCID: PMC526198 DOI: 10.1073/pnas.0407262101] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic disabilities in multiple sclerosis are believed to be due to neuron damage and degeneration, which follow remyelination failure. Due to the presence of numerous oligodendrocyte precursors inside demyelination plaques, one reason for demyelination failure could be the inability of oligodendrocyte precursor cells to turn into myelinating oligodendrocytes. In this study, we show that thyroid hormone enhances and accelerates remyelination in an experimental model of chronic demyelination, i.e., experimental allergic encephalomyelitis in congenic female Dark Agouti rats immunized with complete guinea pig spinal cord. Thyroid hormone, when administered during the acute phase of the disease, increases expression of platelet-derived growth factor alpha receptor, restores normal levels of myelin basic protein mRNA and protein, and allows an early and morphologically competent reassembly of myelin sheaths. Moreover, thyroid hormone exerts a neuroprotective effect with respect to axonal pathology.
Collapse
MESH Headings
- Animals
- Demyelinating Autoimmune Diseases, CNS/drug therapy
- Demyelinating Autoimmune Diseases, CNS/genetics
- Demyelinating Autoimmune Diseases, CNS/metabolism
- Demyelinating Autoimmune Diseases, CNS/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Guinea Pigs
- Immunization
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/pathology
- Myelin Basic Protein/genetics
- Myelin Basic Protein/metabolism
- Myelin Sheath/drug effects
- Myelin Sheath/genetics
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Spinal Cord/immunology
- Thyroxine/administration & dosage
Collapse
Affiliation(s)
- Mercedes Fernandez
- Department of Veterinary Morphophysiology and Animal Production, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Willenborg DO, Staykova MA. Cytokines in the pathogenesis and therapy of autoimmune encephalomyelitis and multiple sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 520:96-119. [PMID: 12613575 DOI: 10.1007/978-1-4615-0171-8_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Ledeboer A, Wierinckx A, Bol JGJM, Floris S, Renardel de Lavalette C, De Vries HE, van den Berg TK, Dijkstra CD, Tilders FJH, van dam AM. Regional and temporal expression patterns of interleukin-10, interleukin-10 receptor and adhesion molecules in the rat spinal cord during chronic relapsing EAE. J Neuroimmunol 2003; 136:94-103. [PMID: 12620647 DOI: 10.1016/s0165-5728(03)00031-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) mediate leukocyte infiltration into the CNS, in experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). Because exogenous interleukin-10 (IL-10) inhibits ICAM-1 and VCAM-1 expression and clinical EAE, we hypothesize that endogenous IL-10 signaling may suppress expression of adhesion molecules. In a rat model of chronic relapsing EAE, expression levels of IL-10 and its receptor (IL-10R1), ICAM-1 and VCAM-1 mRNA in the spinal cord are markedly increased, whereas levels of IL-10 mRNA remain relatively low. The temporal pattern of mRNA and protein expression showed marked differences between spinal cord levels. During relapse, IL-10, IL-10R1, ICAM-1, VCAM-1 mRNA levels and neurological scores show positive correlations. We conclude that endogenous IL-10 is not a crucial factor inhibiting adhesion molecule expression in this model.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Chemotaxis, Leukocyte/immunology
- Chronic Disease
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Immunohistochemistry
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/immunology
- Intercellular Adhesion Molecule-1/metabolism
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Male
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/metabolism
- Multiple Sclerosis, Relapsing-Remitting/pathology
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
- Reaction Time/immunology
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-10
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Time Factors
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/immunology
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Annemarie Ledeboer
- Department of Medical Pharmacology, Research Institute Neurosciences, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brok HPM, van Meurs M, Blezer E, Schantz A, Peritt D, Treacy G, Laman JD, Bauer J, 't Hart BA. Prevention of experimental autoimmune encephalomyelitis in common marmosets using an anti-IL-12p40 monoclonal antibody. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6554-63. [PMID: 12444167 DOI: 10.4049/jimmunol.169.11.6554] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The experimental autoimmune encephalomyelitis (EAE) model in the common marmoset approximates recognized features of the human disease multiple sclerosis (MS) with regard to its clinical presentation as well as neuropathological and radiological aspects of the lesions in brain and spinal cord. IL-12 is a proinflammatory cytokine that is produced by APC and promotes differentiation of Th1 effector cells. IL-12 is produced in the developing lesions of patients with MS as well as in EAE-affected animals. Previously it was shown that interference in IL-12 pathways effectively prevents EAE in rodents. In this study we report that in vivo neutralization of IL-12p40 using a novel Ab has beneficial effects in the myelin-induced EAE model in common marmosets. The Ab was injected i.v. at 7-day intervals starting well after immunization (day 14) and was continued until the end of the study (day 86). Stable levels of the Ab were measured 3 days after each injection throughout the study period. During this period anti-Ab responses could not be detected. We demonstrate that anti-IL-12p40 treatment has a protective effect on the neurological dysfunction as well as on neuropathological changes normally observed in the brain and spinal cord of EAE-affected individuals.
Collapse
MESH Headings
- Animals
- Antibodies, Anti-Idiotypic/biosynthesis
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- B-Lymphocytes/immunology
- Brain/immunology
- Brain/pathology
- Callithrix
- Cross Reactions
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Humans
- Interleukin-12/antagonists & inhibitors
- Interleukin-12 Subunit p40
- Multiple Sclerosis/etiology
- Multiple Sclerosis/immunology
- Myelin Proteins/immunology
- Protein Subunits/antagonists & inhibitors
- Spinal Cord/immunology
- Spinal Cord/pathology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Herbert P M Brok
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Proescholdt MG, Quigley L, Martin R, Herkenham M. Immunization with a cannabinoid receptor type 1 peptide results in experimental allergic meningocerebellitis in the Lewis rat: A model for cell-mediated autoimmune neuropathology. J Neurosci Res 2002; 70:150-60. [PMID: 12271464 DOI: 10.1002/jnr.10424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuronal elements are increasingly suggested as primary targets of an autoimmune attack in certain neurological and neuropsychiatric diseases. Type 1 cannabinoid receptors (CB1) were selected as autoimmune targets because they are predominantly expressed on neuronal surfaces in brain and display strikingly high protein levels in striatum, hippocampus, and cerebellum. Female Lewis rats were immunized with N-terminally acetylated peptides (50 or 400 microg per rat) of the extracellular domains of the rat CB1 and killed at various time points. Subsequent evaluation using immunohistochemistry and in situ hybridization showed dense infiltration of immune cells exclusively within the cerebellum, peaking 12-16 days after immunization with the CB1 peptide containing amino acids 9-25. The infiltrates clustered in meninges and perivascular locations in molecular and granular cell layers and were also scattered throughout the CB1-rich neuropil. They consisted primarily of CD4(+) and ED1(+) cells, suggestive of cell-mediated autoimmune pathology. There were no inflammatory infiltrates elsewhere in the brain or spinal cord. The results show that neuronal elements, such as neuronal cell-surface receptors, may be recognized as antigenic targets in a cell-mediated autoimmune attack and, therefore, support the hypothesis of cell-mediated antineuronal autoimmune pathology in certain brain disorders.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis
- Autoimmunity/immunology
- Behavior, Animal
- Cerebellar Diseases/complications
- Cerebellar Diseases/immunology
- Cerebellar Diseases/pathology
- Disease Models, Animal
- Disease Progression
- Encephalitis/complications
- Encephalitis/immunology
- Encephalitis/pathology
- Female
- Immunity, Cellular/immunology
- Immunohistochemistry
- In Situ Hybridization
- In Situ Nick-End Labeling
- Lymph Nodes/pathology
- Meningitis/complications
- Meningitis/immunology
- Meningitis/pathology
- Molecular Sequence Data
- Nervous System Autoimmune Disease, Experimental/chemically induced
- Nervous System Autoimmune Disease, Experimental/complications
- Nervous System Autoimmune Disease, Experimental/immunology
- Nervous System Autoimmune Disease, Experimental/pathology
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred Lew
- Receptors, Cannabinoid
- Receptors, Drug/genetics
- Receptors, Drug/immunology
- Receptors, Drug/metabolism
- Reproducibility of Results
Collapse
Affiliation(s)
- Margit G Proescholdt
- Section on Functional Neuroanatomy, National Institute of Mental Health, Bethesda, Maryland 20892-4070, USA
| | | | | | | |
Collapse
|
27
|
Massey EJ, Sundstedt A, Day MJ, Corfield G, Anderton S, Wraith DC. Intranasal peptide-induced peripheral tolerance: the role of IL-10 in regulatory T cell function within the context of experimental autoimmune encephalomyelitis. Vet Immunol Immunopathol 2002; 87:357-72. [PMID: 12072259 DOI: 10.1016/s0165-2427(02)00068-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a T cell-mediated autoimmune disease commonly employed as a model for multiple sclerosis. Extensive studies have demonstrated that EAE may be prevented or ameliorated by the intranasal administration of soluble peptides representing encephalitogenic epitopes. There is increasing evidence that this peptide administration may function via the generation of regulatory cells. The mechanism of action of these cells remains controversial and it seems likely that it may vary between experimental models. At present the majority of work on regulatory cells has centred on characterising naturally occurring regulators, or those generated artificially ex vivo, and less is known about induced regulatory cells produced following peptide administration. This report aims to briefly outline the evidence for the existence of natural regulatory T cells and to introduce the sub-types of induced regulatory T cells now recognised. In several of these regulatory cell systems investigated to date, interleukin-10 (IL-10) has been shown to be important in cell function. This has not been directly investigated in a model employing peptide therapy to induce peripheral tolerance, hence the purpose of this study was to investigate the role of IL-10 in the generation of these regulatory cells. This work has employed both a TCR transgenic mouse system, for predominantly in vitro studies of cell function, and an IL-10 knock-out mouse strain to investigate in vivo disease protection. The results summarised in this report demonstrate that IL-10 is fundamentally important in the generation of disease protection following intranasal peptide therapy.
Collapse
Affiliation(s)
- Emma J Massey
- Department of Small Animal Clinical Studies, Veterinary College, University College Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|