1
|
Giesche N, Böhm‐Gonzalez ST, Kleiser B, Kowarik MC, Dubois E, Stransky E, Armbruster M, Grimm A, Marquetand J. Antiganglioside antibody frequency in routine clinical care settings. Eur J Neurol 2024; 31:e16290. [PMID: 38556758 PMCID: PMC11236029 DOI: 10.1111/ene.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND PURPOSE Antiganglioside antibodies (AGAs) might be involved in the etiopathogenesis of many neurological diseases, such as Miller-Fisher syndrome (MFS) and Guillain-Barré syndrome (GBS). Available comprehensive reference data regarding AGA positivity rates and cross-responsiveness among AGAs (where one line immunoblot is positive for ≥1 AGA) during routine clinical care are scant. METHODS In this 10-year monocentric retrospective study, 3560 immunoglobulin (Ig) G and IgM line blots (GA Generic Assays' Anti-Ganglioside Dot kit) obtained using cerebrospinal fluid (CSF) and serum samples from 1342 patients were analyzed for AGA positivity in terms of 14 diagnosis categories and AGA cross-responsiveness. RESULTS Of all 3560 line blots 158 (4.4%) and of all CSF samples 0.4% (4/924) CSF line blots were AGA positive. For serum IgG, blots with positivity rates higher than the standard deviation of 15.6% were associated with MFS (GD3, GD1a, GT1a and GQ1b) and acute motor axonal neuropathy (AMAN) (GM1, GD1a and GT1a). For serum IgM, blots with positivity rates higher than the standard deviation of 8.1% were associated with AMAN (GM2, GT1a and GQ1b), MFS (GM1, GT1a and GQ1b), multifocal motor neuropathy (MMN) (GM1, GM2 and GQ1b) and chronic inflammatory demyelinating polyneuropathy (CIDP) (GM1). Cross-responsiveness was observed in 39.6% of all positive serum AGA. CONCLUSIONS Testing for AGAs during routine clinical care rarely led to positive findings, both in serum and even less in CSF, except for the diagnoses AMAN, MFS, MMN and CIDP. Nonspecific findings found as cross-responsiveness between different AGA samples occur frequently, impacting the positivity of most AGA subtypes.
Collapse
Affiliation(s)
- Niklas Giesche
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Samuel Tobias Böhm‐Gonzalez
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Benedict Kleiser
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Markus C. Kowarik
- Department of Neurology and Stroke, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Evelyn Dubois
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Elke Stransky
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Marcel Armbruster
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Alexander Grimm
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Justus Marquetand
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- Department of Neural Dynamics and Magnetoencephalography, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- MEG‐CenterUniversity of TübingenTübingenGermany
- Institute for Modelling and Simulation of Biomechanical SystemsStuttgartGermany
| |
Collapse
|
2
|
Budding K, Bos JW, Dijkxhoorn K, de Zeeuw E, Bloemenkamp LM, Zekveld EM, Groen EJN, Jacobs BC, Huizinga R, Goedee HS, Cats EA, Leusen JHW, van den Berg LH, Hack CE, van der Pol WL. IgM anti-GM2 antibodies in patients with multifocal motor neuropathy target Schwann cells and are associated with early onset. J Neuroinflammation 2024; 21:100. [PMID: 38632654 PMCID: PMC11025174 DOI: 10.1186/s12974-024-03090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Multifocal motor neuropathy (MMN) is a rare, chronic immune-mediated polyneuropathy characterized by asymmetric distal limb weakness. An important feature of MMN is the presence of IgM antibodies against gangliosides, in particular GM1 and less often GM2. Antibodies against GM1 bind to motor neurons (MNs) and cause damage through complement activation. The involvement of Schwann cells (SCs), expressing GM1 and GM2, in the pathogenesis of MMN is unknown. METHODS Combining the data of our 2007 and 2015 combined cross-sectional and follow-up studies in Dutch patients with MMN, we evaluated the presence of IgM antibodies against GM1 and GM2 in serum from 124 patients with MMN and investigated their binding to SCs and complement-activating properties. We also assessed the relation of IgM binding and complement deposition with clinical characteristics. RESULTS Thirteen out of 124 patients (10%) had a positive ELISA titer for IgM anti-GM2. Age at onset of symptoms was significantly lower in MMN patients with anti-GM2 IgM. IgM binding to SCs correlated with IgM anti-GM2 titers. We found no correlation between IgM anti-GM2 titers and MN binding or with IgM anti-GM1 titers. IgM binding to SCs decreased upon pre-incubation of serum with soluble GM2, but not with soluble GM1. IgM anti-GM2 binding to SCs correlated with complement activation, as reflected by increased C3 fixation on SCs and C5a formation in the supernatant. CONCLUSION Circulating IgM anti-GM2 antibodies define a subgroup of patients with MMN that has an earlier onset of disease. These antibodies probably target SCs specifically and activate complement, similarly as IgM anti-GM1 on MNs. Our data indicate that complement activation by IgM antibodies bound to SCs and MNs underlies MMN pathology.
Collapse
Affiliation(s)
- Kevin Budding
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen W Bos
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Kim Dijkxhoorn
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth de Zeeuw
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lauri M Bloemenkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Eva M Zekveld
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Bart C Jacobs
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ruth Huizinga
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - H Stephan Goedee
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Elisabeth A Cats
- Department of Neurology, Gelre Hospital, Apeldoorn, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - C Erik Hack
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Vargas C, Addo R, Lewandowska M, Haywood P, De Abreu Lourenco R, Goodall S. Use of Health Technology Assessment for the Continued Funding of Health Technologies: The Case of Immunoglobulins for the Management of Multifocal Motor Neuropathy. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2024; 22:73-84. [PMID: 37950824 DOI: 10.1007/s40258-023-00853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
INTRODUCTION Funding decisions for many health technologies occur without undergoing health technology assessment (HTA), in particular, without assessment of cost effectiveness (CE). Immunoglobulins in Australia are an interesting case study because they have been used for a long time for various rare disorders and their price is publicly available. Undertaking an HTA enables us to assess CE for an intervention for which there is limited clinical and economic evidence. This study presents a post-market review to assess the CE of immunoglobulins for the treatment of multifocal motor neuropathy (MMN) compared with best supportive care. METHODS A Markov model was used to estimate costs and quality-adjusted life-years (QALYs). Input sources included randomised controlled trials, single-arm studies, the Australian clinical criteria for MMN, clinical guidelines, previous Medical Services Advisory Committee (MSAC) reports and inputs from clinical experts. Sensitivity analyses were conducted to assess the uncertainty and robustness of the CE results. RESULTS The cost per patient of treating MMN with immunoglobulin was AU$275,853 versus AU$26,191when no treatment was provided, with accrued QALYs of 6.83 versus 6.04, respectively. The latter translated into a high incremental cost-effectiveness ratio (ICER) of AU$317,552/QALY. The ICER was most sensitive to the utility weights and the price of immunoglobulins. MSAC advised to continue funding of immunoglobulins on the grounds of efficacy, despite the high and uncertain ICER. CONCLUSIONS Beyond the ICER framework, other factors were acknowledged, including the high clinical need in a patient population for which there are no other active treatments available. This case study highlights the challenges of conducting HTA for already funded interventions, and the efficiency trade-offs required to fund effective high-cost therapies in rare conditions.
Collapse
Affiliation(s)
- Constanza Vargas
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Level 5, Building 20, 100 Broadway, Chippendale NSW 2008, PO Box 123, Broadway, NSW, 2007, Australia.
| | - Rebecca Addo
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Level 5, Building 20, 100 Broadway, Chippendale NSW 2008, PO Box 123, Broadway, NSW, 2007, Australia
| | - Milena Lewandowska
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Level 5, Building 20, 100 Broadway, Chippendale NSW 2008, PO Box 123, Broadway, NSW, 2007, Australia
| | - Philip Haywood
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Level 5, Building 20, 100 Broadway, Chippendale NSW 2008, PO Box 123, Broadway, NSW, 2007, Australia
| | - Richard De Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Level 5, Building 20, 100 Broadway, Chippendale NSW 2008, PO Box 123, Broadway, NSW, 2007, Australia
| | - Stephen Goodall
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Level 5, Building 20, 100 Broadway, Chippendale NSW 2008, PO Box 123, Broadway, NSW, 2007, Australia
| |
Collapse
|
4
|
Di Egidio M, Bacaglio CR, Arrejoría R, Villa AM, Nores GA, Lopez PHH. Evidence for spontaneous regulation of the humoral IgM anti-GM1 autoimmune response by IgG antibodies in multifocal motor neuropathy patients. J Peripher Nerv Syst 2023; 28:398-406. [PMID: 37498737 DOI: 10.1111/jns.12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND AIMS Multifocal motor neuropathy (MMN) is a peripheral nerve disorder characterized by slow progressive distal asymmetric weakness with minimal or no sensory impairment. Currently, a vast evidence supports a direct pathogenic role of IgM anti-GM1 antibodies on disease pathogenesis. Patients with MMN seropositive for GM1-specific IgM antibodies have significantly more weakness, disability and axon loss than patients without these antibodies. During the screening for IgM anti-GM1 antibodies in a cohort of patients with neuropathy we noticed an absence or significant reduction of natural IgM anti-GM1 autoreactivity in some patients with MMN, suggesting a mechanism of self-control of autoreactivity. We aim to understand the lack of natural reactivity against GM1 in MMN patients. METHODS The presence of free IgM anti-GM1 reactivity or its complex to blocking IgG was analysed by combining high performance thin layer chromatography-immunostaining, soluble binding inhibition assays, Protein-G or GM1-affinity columns and dot blot assays. RESULTS We identified in MMN patients an immunoregulation of IgM anti-GM1 antibodies mediated by IgG immunoglobulins characterized by: (i) lack of natural IgM anti-GM1 autoreactivity as a result of a immunoregulatory IgG-dependent mechanism; (ii) presence of natural and disease-associated IgM anti-GM1/IgG blocking Ab complexes in sera; and (iii) high levels of IgG blocking against natural IgM anti-GM1 antibodies (Abs. INTERPRETATION Our observations unmask a spontaneous IgG-dependent mechanism of immunoregulation against IgM anti-GM1 antibodies that could explain, in part, fluctuations in the usually slowly progressive clinical course that characterizes the disease and, at the same time, allows the identification of an autoimmune response against GM1 ganglioside in seronegative patients.
Collapse
Affiliation(s)
- Marianna Di Egidio
- División Neurología, Sección Neuroinmunología, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Cristian R Bacaglio
- Departamento de Química Biológica "Dr Ranwell Caputto"-CIQUIBIC-CONICET, Facultad de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rocio Arrejoría
- División Neurología, Sección Neuroinmunología, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Andrés M Villa
- División Neurología, Sección Neuroinmunología, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Gustavo A Nores
- Departamento de Química Biológica "Dr Ranwell Caputto"-CIQUIBIC-CONICET, Facultad de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo H H Lopez
- Departamento de Química Biológica "Dr Ranwell Caputto"-CIQUIBIC-CONICET, Facultad de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
5
|
Pero ME, Chowdhury F, Bartolini F. Role of tubulin post-translational modifications in peripheral neuropathy. Exp Neurol 2023; 360:114274. [PMID: 36379274 PMCID: PMC11320756 DOI: 10.1016/j.expneurol.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.
Collapse
Affiliation(s)
- Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University, New York, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Farihah Chowdhury
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
6
|
Kong L, Wu X, Cheng Y, Liu S, Liu K, Li C. The prediction effects of thyroid function in the severity of Guillain-Barré syndrome. Neurol Sci 2022; 43:5017-5028. [DOI: 10.1007/s10072-022-06070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
7
|
Kwan J, Vullaganti M. Amyotrophic lateral sclerosis mimics. Muscle Nerve 2022; 66:240-252. [PMID: 35607838 DOI: 10.1002/mus.27567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disorder characterized by progressive degeneration of cortical, bulbar, and spinal motor neurons. When a patient presents with a progressive upper and/or lower motor syndrome, clinicians must pay particular attention to any atypical features in the history and/or clinical examination suggesting an alternate diagnosis, as up to 10% percent of patients initially diagnosed with ALS have a mimic of ALS. ALS is a clinical diagnosis and requires the exclusion of other disorders that may have similar presentations but a more favorable prognosis or an effective therapy. Because there is currently no specific diagnostic biomarker that is sensitive or specific for ALS, understanding the spectrum of clinical presentations of ALS and its mimics is paramount. While true mimics of ALS are rare, the clinician must correctly identify these disorders to avoid the misdiagnosis of ALS and to initiate effective treatment where available.
Collapse
Affiliation(s)
- Justin Kwan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Mithila Vullaganti
- Department of Neurology, Tufts Medical Center, Tuft University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Singh S, Sanna F, Adhikari R, Akella R, Gangu K. Chronic Inflammatory Demyelinating Polyneuropathy Post-mRNA-1273 Vaccination. Cureus 2022; 14:e24528. [PMID: 35651399 PMCID: PMC9138197 DOI: 10.7759/cureus.24528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Massive efforts are being made to develop coronavirus disease 2019 (COVID-19) vaccines at an unprecedented rate. The vaccinations' adverse impact profile, on the other hand, has not been well established. Neurological complications are increasingly reported as a result of these vaccines. One such complication identified is immune-mediated inflammatory polyneuropathy, which affects peripheral nerves and neurons. We report a case of chronic inflammatory demyelinating polyneuropathy (CIDP) post-mRNA-1273 (Moderna) COVID-19 vaccine. Recognizing this complication and distinguishing it from Guillain-Barré syndrome enables timely initiation of treatment. Additionally, our report highlights a possible link between vaccination and subsequent development of CIDP, but conclusive evidence of a causal relationship requires more extensive studies.
Collapse
|
9
|
Suresh K, Mereddy P, Lanciano N, Alam MDU. Anti-ganglioside Complex IgM Antibodies in Multifocal Motor Neuropathy Post-influenza Vaccination. Cureus 2022; 14:e22918. [PMID: 35399455 PMCID: PMC8985558 DOI: 10.7759/cureus.22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2022] [Indexed: 11/05/2022] Open
Abstract
Multifocal motor neuropathy (MMN) is a peripheral nerve disorder characterized by progressive, predominantly distal, asymmetric limb weakness with minimal or no sensory impairment, and characterized by the presence of antibodies (30-80% cases), mostly IgM, to the gangliosides, mainly ganglioside monosialic acid (GM1). We describe a case of MMN in a patient who developed symptoms of paresthesia and extremity weakness a few days after receiving the influenza vaccine and was found to have high titers of anti-GM1 IgM antibody levels. He was initially treated with intravenous immune globulin (IVIG) which is one of the mainstays of treatment but relapsed and was then successfully treated with plasma exchange.
Collapse
|
10
|
Keddie S, Eftimov F, van den Berg LH, Brassington R, de Haan RJ, van Schaik IN. Immunoglobulin for multifocal motor neuropathy. Cochrane Database Syst Rev 2022; 1:CD004429. [PMID: 35015296 PMCID: PMC8751207 DOI: 10.1002/14651858.cd004429.pub3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Multifocal motor neuropathy (MMN) is a rare, probably immune-mediated disorder characterised by slowly progressive, asymmetric, distal weakness of one or more limbs with no objective loss of sensation. It may cause prolonged periods of disability. Treatment options for MMN are few. People with MMN do not usually respond to steroids or plasma exchange. Uncontrolled studies have suggested a beneficial effect of intravenous immunoglobulin (IVIg). This is an update of a Cochrane Review first published in 2005, with an amendment in 2007. We updated the review to incorporate new evidence. OBJECTIVES To assess the efficacy and safety of intravenous and subcutaneous immunoglobulin in people with MMN. SEARCH METHODS We searched the following databases on 20 April 2021: the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, ClinicalTrials.gov, and WHO ICTRP for randomised controlled trials (RCTs) and quasi-RCTs, and checked the reference lists of included studies. SELECTION CRITERIA We considered RCTs and quasi-RCTs examining the effects of any dose of IVIg and subcutaneous immunoglobulin (SCIg) in people with definite or probable MMN for inclusion in the review. Eligible studies had to have measured at least one of the following outcomes: disability, muscle strength, or electrophysiological conduction block. We used studies that reported the frequency of adverse effects to assess safety. DATA COLLECTION AND ANALYSIS Two review authors independently reviewed the literature searches to identify potentially relevant trials, assessed risk of bias of included studies, and extracted data. We followed standard Cochrane methodology. MAIN RESULTS Six cross-over RCTs including a total of 90 participants were suitable for inclusion in the review. Five RCTs compared IVIg to placebo, and one compared IVIg to SCIg. Four of the trials comparing IVIg versus placebo involved IVIg-naive participants (induction treatment). In the other two trials, participants were known IVIg responders receiving maintencance IVIg at baseline and were then randomised to maintenance treatment with IVIg or placebo in one trial, and IVIg or SCIg in the other. Risk of bias was variable in the included studies, with three studies at high risk of bias in at least one risk of bias domain. IVIg versus placebo (induction treatment): three RCTs including IVIg-naive participants reported a disability measure. Disability improved in seven out of 18 (39%) participants after IVIg treatment and in two out of 18 (11%) participants after placebo (risk ratio (RR) 3.00, 95% confidence interval (CI) 0.89 to 10.12; 3 RCTs, 18 participants; low-certainty evidence). The proportion of participants with an improvement in disability at 12 months was not reported. Strength improved in 21 out of 27 (78%) IVIg-naive participants treated with IVIg and one out of 27 (4%) participants who received placebo (RR 11.00, 95% CI 2.86 to 42.25; 3 RCTs, 27 participants; low-certainty evidence). IVIg treatment may increase the proportion of people with resolution of at least one conduction block; however, the results were also consistent with no effect (RR 7.00, 95% CI 0.95 to 51.70; 4 RCTs, 28 participants; low-certainty evidence). IVIg versus placebo (maintenance treatment): a trial that included participants on maintenance IVIg treatment reported an increase in disability in 17 out of 42 (40%) people switching to placebo and seven out of 42 (17%) remaining on IVIg (RR 2.43, 95% CI 1.13 to 5.24; 1 RCT, 42 participants; moderate-certainty evidence) and a decrease in grip strength in 20 out of 42 (48%) participants after a switch to placebo treatment compared to four out of 42 (10%) remaining on IVIg (RR 0.20, 95% CI 0.07 to 0.54; 1 RCT, 42 participants; moderate-certainty evidence). Adverse events, IVIg versus placebo (induction or maintenance): four trials comparing IVIg and placebo reported adverse events, of which data from two studies could be meta-analysed. Transient side effects were reported in 71% of IVIg-treated participants versus 4.8% of placebo-treated participants in these studies. The pooled RR for the development of side effects was 10.33 (95% CI 2.15 to 49.77; 2 RCTs, 21 participants; very low-certainty evidence). There was only one serious side effect (pulmonary embolism) during IVIg treatment. IVIg versus SCIg (maintenance treatment): the trial that compared continuation of IVIg maintenance versus SCIg maintenance did not measure disability. The evidence was very uncertain for muscle strength (standardised mean difference 0.08, 95% CI -0.84 to 1.00; 1 RCT, 9 participants; very low-certainty evidence). The evidence was very uncertain for the number of people with side effects attributable to treatment (RR 0.50, 95% CI 0.18 to 1.40; 1 RCT, 9 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS Low-certainty evidence from three small RCTs shows that IVIg may improve muscle strength in people with MMN, and low-certainty evidence indicates that it may improve disability; the estimate of the magnitude of improvement of disability has wide CIs and needs further studies to secure its significance. Based on moderate-certainty evidence, it is probable that most IVIg responders deteriorate in disability and muscle strength after IVIg withdrawal. SCIg might be an alternative treatment to IVIg, but the evidence is very uncertain. More research is needed to identify people in whom IVIg withdrawal is possible and to confirm efficacy of SCIg as an alternative maintenance treatment.
Collapse
Affiliation(s)
- Stephen Keddie
- Faculty of Brain Sciences, Institute of Neurology, London, UK
| | - Filip Eftimov
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Leonard H van den Berg
- Department of Neurology, University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Ruth Brassington
- Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Rob J de Haan
- Clinical Research Unit, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Ivo N van Schaik
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
El-Abassi RN, Soliman M, Levy MH, England JD. Treatment and Management of Autoimmune Neuropathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Budding K, Johansen LE, Van de Walle I, Dijkxhoorn K, de Zeeuw E, Bloemenkamp LM, Bos JW, Jansen MD, Curial CAD, Silence K, de Haard H, Blanchetot C, Van de Ven L, Leusen JHW, Pasterkamp RJ, van den Berg LH, Hack CE, Boross P, van der Pol WL. Anti-C2 Antibody ARGX-117 Inhibits Complement in a Disease Model for Multifocal Motor Neuropathy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 9:9/1/e1107. [PMID: 34759020 PMCID: PMC8587732 DOI: 10.1212/nxi.0000000000001107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Background and Objectives To determine the role of complement in the disease pathology of multifocal motor neuropathy (MMN), we investigated complement activation, and inhibition, on binding of MMN patient-derived immunoglobulin M (IgM) antibodies in an induced pluripotent stem cell (iPSC)-derived motor neuron (MN) model for MMN. Methods iPSC-derived MNs were characterized for the expression of complement receptors and membrane-bound regulators, for the binding of circulating IgM anti-GM1 from patients with MMN, and for subsequent fixation of C4 and C3 on incubation with fresh serum. The potency of ARGX-117, a novel inhibitory monoclonal antibody targeting C2, to inhibit fixation of complement was assessed. Results iPSC-derived MNs moderately express the complement regulatory proteins CD46 and CD55 and strongly expressed CD59. Furthermore, MNs express C3aR, C5aR, and complement receptor 1. IgM anti-GM1 antibodies in serum from patients with MMN bind to MNs and induce C3 and C4 fixation on incubation with fresh serum. ARGX-117 inhibits complement activation downstream of C4 induced by patient-derived anti-GM1 antibodies bound to MNs. Discussion Binding of IgM antibodies from patients with MMN to iPSC-derived MNs induces complement activation. By expressing complement regulatory proteins, particularly CD59, MNs are protected against complement-mediated lysis. Yet, because of expressing C3aR, the function of these cells may be affected by complement activation upstream of membrane attack complex formation. ARGX-117 inhibits complement activation upstream of C3 in this disease model for MMN and therefore represents an intervention strategy to prevent harmful effects of complement in MMN.
Collapse
Affiliation(s)
- Kevin Budding
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Lill Eva Johansen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Inge Van de Walle
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Kim Dijkxhoorn
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Elisabeth de Zeeuw
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Lauri M Bloemenkamp
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Jeroen W Bos
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Marc D Jansen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Chantall A D Curial
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Karen Silence
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Hans de Haard
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Christophe Blanchetot
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Liesbeth Van de Ven
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Jeanette H W Leusen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - R Jeroen Pasterkamp
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Leonard H van den Berg
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - C Erik Hack
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Peter Boross
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - W Ludo van der Pol
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands.
| |
Collapse
|
13
|
Pacoureau L, Labeyrie C, Catalan P, Echaniz-Laguna A, Henriquez S, Laparra A, Cauquil C, Chrétien P, Hacein-Bey-Abina S, Goujard C, Adam C, Lambotte O, Adams D, Noël N. Neuropathies périphériques associées aux syndromes lymphoprolifératifs : spectre clinique et démarche diagnostique. Rev Med Interne 2021; 42:844-854. [PMID: 34373143 DOI: 10.1016/j.revmed.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 10/20/2022]
Abstract
Lymphoproliferative syndromes (multiple myeloma, Waldenström's disease, chronic lymphocytic leukemia, lymphomas) may be associated with peripheral neuropathies. The mechanism can be dysimmune, associated or not with monoclonal gammopathies; paraneoplastic; infiltrative; or more commonly, iatrogenic or due to vitamin deficiency. The diagnosis can be complex, especially when the neuropathy is the presenting manifestation, requiring a close cooperation between internists and neurologists. The positive diagnosis of the neuropathy is based on a systematic electro-clinical investigation, which specifies the topography and the mechanism of the nerve damage, sometimes reinforced by imaging examinations, in particular, nerve and/or plexus MRI. The imputability of the neuropathy to a lymphoproliferative syndrome is based on a set of arguments including the clinical context (B signs, tumour syndrome), first-line laboratory tests (hemogram, protein electrophoresis, viral serologies, complement), auto-antibodies discussed according to the neuropathy (anti-MAG, anti-gangliosides) and sometimes more invasive examinations (bone marrow or neuro-muscular biopsies).
Collapse
Affiliation(s)
- L Pacoureau
- Service de médecine interne et immunologie clinique, Assistance publique-Hôpitaux Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France
| | - C Labeyrie
- Service de neurologie, Assistance publique-Hôpitaux de Paris, Groupe hospitalier universitaire Paris Sud, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France; Centre de référence neuropathies amyloïdes familiales et autres neuropathies rares (NNERF), Groupe hospitalier universitaire Paris Sud, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France
| | - P Catalan
- Service de médecine interne et immunologie clinique, Assistance publique-Hôpitaux Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France; Université Paris Saclay, Faculté de médecine, Le Kremlin Bicêtre, France
| | - A Echaniz-Laguna
- Université Paris Saclay, Faculté de médecine, Le Kremlin Bicêtre, France; Service de neurologie, Assistance publique-Hôpitaux de Paris, Groupe hospitalier universitaire Paris Sud, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France; Centre de référence neuropathies amyloïdes familiales et autres neuropathies rares (NNERF), Groupe hospitalier universitaire Paris Sud, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France
| | - S Henriquez
- Service de médecine interne et immunologie clinique, Assistance publique-Hôpitaux Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France; Université Paris Saclay, Faculté de médecine, Le Kremlin Bicêtre, France
| | - A Laparra
- Service de médecine interne et immunologie clinique, Assistance publique-Hôpitaux Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France; Université Paris Saclay, Faculté de médecine, Le Kremlin Bicêtre, France
| | - C Cauquil
- Service de neurologie, Assistance publique-Hôpitaux de Paris, Groupe hospitalier universitaire Paris Sud, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France; Centre de référence neuropathies amyloïdes familiales et autres neuropathies rares (NNERF), Groupe hospitalier universitaire Paris Sud, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France
| | - P Chrétien
- INSERM, UTCBS, Unité des technologies chimiques et biologiques pour la Santé, Université de Paris, CNRS, 75006 Paris, France; Service d'immunologie biologique, Assistance publique-Hôpitaux de Paris, Groupe hospitalier universitaire Paris Sud, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France
| | - S Hacein-Bey-Abina
- INSERM, UTCBS, Unité des technologies chimiques et biologiques pour la Santé, Université de Paris, CNRS, 75006 Paris, France; Service d'immunologie biologique, Assistance publique-Hôpitaux de Paris, Groupe hospitalier universitaire Paris Sud, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France
| | - C Goujard
- Service de médecine interne et immunologie clinique, Assistance publique-Hôpitaux Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France; Université Paris Saclay, Faculté de médecine, Le Kremlin Bicêtre, France
| | - C Adam
- Service d'anatomie pathologique et neuropathologie, Assistance publique-Hôpitaux de Paris, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France
| | - O Lambotte
- Service de médecine interne et immunologie clinique, Assistance publique-Hôpitaux Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France; Université Paris Saclay, Faculté de médecine, Le Kremlin Bicêtre, France; Inserm UMR 1184, Immunologie des maladies virales et auto-immunes (IMVA), Université Paris Saclay, 94275 Le Kremlin-Bicêtre cedex, France; CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT, Université Paris Saclay, 94275 Le Kremlin-Bicêtre cedex, France
| | - D Adams
- Université Paris Saclay, Faculté de médecine, Le Kremlin Bicêtre, France; Service de neurologie, Assistance publique-Hôpitaux de Paris, Groupe hospitalier universitaire Paris Sud, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France; Centre de référence neuropathies amyloïdes familiales et autres neuropathies rares (NNERF), Groupe hospitalier universitaire Paris Sud, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France
| | - N Noël
- Service de médecine interne et immunologie clinique, Assistance publique-Hôpitaux Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France; Université Paris Saclay, Faculté de médecine, Le Kremlin Bicêtre, France; Inserm UMR 1184, Immunologie des maladies virales et auto-immunes (IMVA), Université Paris Saclay, 94275 Le Kremlin-Bicêtre cedex, France; CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT, Université Paris Saclay, 94275 Le Kremlin-Bicêtre cedex, France.
| |
Collapse
|
14
|
Advances in imaging technologies for the assessment of peripheral neuropathies in rheumatoid arthritis. Rheumatol Int 2021; 41:519-528. [PMID: 33427917 DOI: 10.1007/s00296-020-04780-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/26/2020] [Indexed: 12/22/2022]
Abstract
Peripheral neuropathy in patients with rheumatoid arthritis is associated with a maladaptive autoimmune response that may cause chronic pain and disability. Nerve conduction studies are the routine method performed when rheumatologists presume its presence. However, this approach is invasive, may not reveal subtle malfunctions in the early stages of the disease, and does not expose abnormalities in structures surrounding the nerves and muscles, limiting the possibility of a timely diagnosis. This work aims to present a narrative review of new technologies for the clinical assessment of peripheral neuropathy in Rheumatoid Arthritis. Through a bibliographic search carried out in five repositories, from 1990 to 2020, we identified three technologies that could detect peripheral nerve lesions and perform quantitative evaluations: (1) magnetic resonance neurography, (2) functional magnetic resonance imaging, and (3) high-resolution ultrasonography of peripheral nerves. We found these tools can overcome the main constraints imposed by the previous electrophysiologic methods, enabling early diagnosis.
Collapse
|
15
|
Tsuji Y, Noto YI, Kitaoji T, Kojima Y, Mizuno T. Difference in distribution of fasciculations between multifocal motor neuropathy and amyotrophic lateral sclerosis. Clin Neurophysiol 2020; 131:2804-2808. [PMID: 33137570 DOI: 10.1016/j.clinph.2020.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To examine differences in fasciculation distribution between patients with multifocal motor neuropathy (MMN) and amyotrophic lateral sclerosis (ALS) based on muscle ultrasound. METHODS Forty-one muscles (tongue muscle and 40 muscles of the trunk and limbs on both sides) in 5 MMN patients and 21 muscles (tongue muscle and 20 muscles on the onset side) in 21 ALS patients were subjected to muscle ultrasound individually for 60 seconds to detect the presence of fasciculations. RESULTS Fasciculation detection rates on the onset side were significantly higher in ALS (42.4 ± 18.3%, mean ± SD) than in MMN (21.9 ± 8.8%) patients (p < 0.05). In MMN patients, no fasciculation was detected in the tongue or truncal muscles. There was no difference in the fasciculation detection rate between the onset and non-onset sides or between upper and lower limbs in MMN patients. CONCLUSIONS In MMN patients, fasciculations were detected extensively in the limbs. However, the detection rate in patients with MMN was lower than in those with ALS. SIGNIFICANCE Demonstration of the absence of fasciculations in the tongue and truncal muscles in MMN patients by extensive muscle ultrasound examination may help distinguish MMN from ALS.
Collapse
Affiliation(s)
- Yukiko Tsuji
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yu-Ichi Noto
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Takamasa Kitaoji
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuta Kojima
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
16
|
Luigetti M, Giovannini S, Romano A, Bisogni G, Barbato F, Di Paolantonio A, Servidei S, Granata G, Sabatelli M. Small Fibre Involvement in Multifocal Motor Neuropathy Explored with Sudoscan: A Single-Centre Experience. Diagnostics (Basel) 2020; 10:diagnostics10100755. [PMID: 32993111 PMCID: PMC7599533 DOI: 10.3390/diagnostics10100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
Objective: Multifocal motor neuropathy (MMN) is a rare inflammatory neuropathy, clinically characterized by exclusive motor involvement. We wished to evaluate the possible presence of sensory dysfunction, including the evaluation of small fibres, after a long-term disease course. Patients and methods: seven MMN patients, regularly followed in our Neurology Department, underwent clinical evaluation, neurophysiological examination by nerve conduction studies (NCSs), and Sudoscan. We compared neurophysiological data with a group of patients with other disorders of the peripheral nervous system. Results: NCSs showed a reduction of sensory nerve action potential amplitude in 2/7 MMN patients. Sudoscan showed borderline electrochemical skin conductance (ESC) values in 3/7 MMN patients (two of them with abnormal sensory NCSs). Conclusions: Our results confirm that sensory involvement may be found in some MMN after a long-term disease course, and it could also involve the small fibres.
Collapse
Affiliation(s)
- Marco Luigetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.G.); (A.R.); (F.B.); (A.D.P.); (S.S.); (G.G.); (M.S.)
- Correspondence: ; Tel.: +39-063-0154-435
| | - Silvia Giovannini
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.G.); (A.R.); (F.B.); (A.D.P.); (S.S.); (G.G.); (M.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Riabilitazione, 00168 Rome, Italy
| | - Angela Romano
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.G.); (A.R.); (F.B.); (A.D.P.); (S.S.); (G.G.); (M.S.)
- Centro Clinico NEMO adulti, 00168 Rome, Italy;
| | | | - Francesco Barbato
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.G.); (A.R.); (F.B.); (A.D.P.); (S.S.); (G.G.); (M.S.)
| | - Andrea Di Paolantonio
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.G.); (A.R.); (F.B.); (A.D.P.); (S.S.); (G.G.); (M.S.)
| | - Serenella Servidei
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.G.); (A.R.); (F.B.); (A.D.P.); (S.S.); (G.G.); (M.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurofisiopatologia, 00168 Rome, Italy
| | - Giuseppe Granata
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.G.); (A.R.); (F.B.); (A.D.P.); (S.S.); (G.G.); (M.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurofisiopatologia, 00168 Rome, Italy
| | - Mario Sabatelli
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.G.); (A.R.); (F.B.); (A.D.P.); (S.S.); (G.G.); (M.S.)
- Centro Clinico NEMO adulti, 00168 Rome, Italy;
| |
Collapse
|
17
|
Excitability of motor and sensory axons in multifocal motor neuropathy. Clin Neurophysiol 2020; 131:2641-2650. [PMID: 32947198 DOI: 10.1016/j.clinph.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/18/2020] [Accepted: 08/14/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess excitability differences between motor and sensory axons of affected nerves in patients with multifocal motor neuropathy (MMN). METHODS We performed motor and sensory excitability tests in affected median nerves of 20 MMN patients and in 20 age-matched normal subjects. CMAPs were recorded from the thenar and SNAPs from the 3rd digit. Clinical tests included assessment of muscle strength, two-point discrimination and joint position. RESULTS All MMN patients had weakness of the thenar muscle and normal sensory tests. Motor excitability testing in MMN showed an increased threshold for a 50% CMAP, increased rheobase, decreased stimulus-response slope, fanning-out of threshold electrotonus, decreased resting I/V slope, shortened refractory period, and more pronounced superexcitability. Sensory excitability testing in MMN revealed decreased accommodation half-time and S2-accommodation and less pronounced subexcitability. Mathematical modeling indicated increased Barrett-Barrett conductance for motor fibers and increase in internodal fast potassium conductance for sensory fibers. CONCLUSIONS Excitability findings in MMN suggest myelin sheath or paranodal seal involvement in motor fibers and, possibly, paranodal detachment in sensory fibers. SIGNIFICANCE Excitability properties of affected nerves in MMN differ between motor and sensory nerve fibers.
Collapse
|
18
|
Yeh WZ, Dyck PJ, van den Berg LH, Kiernan MC, Taylor BV. Multifocal motor neuropathy: controversies and priorities. J Neurol Neurosurg Psychiatry 2020; 91:140-148. [PMID: 31511307 DOI: 10.1136/jnnp-2019-321532] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/14/2019] [Accepted: 08/31/2019] [Indexed: 12/11/2022]
Abstract
Despite 30 years of research there are still significant unknowns and controversies associated with multifocal motor neuropathy (MMN) including disease pathophysiology, diagnostic criteria and treatment. Foremost relates to the underlying pathophysiology, specifically whether MMN represents an axonal or demyelinating neuropathy and whether the underlying pathophysiology is focused at the node of Ranvier. In turn, this discussion promotes consideration of therapeutic approaches, an issue that becomes more directed in this evolving era of precision medicine. It is generally accepted that MMN represents a chronic progressive immune-mediated motor neuropathy clinically characterised by progressive asymmetric weakness and electrophysiologically by partial motor conduction block. Anti-GM1 IgM antibodies are identified in at least 40% of patients. There have been recent developments in the use of neuromuscular ultrasound and MRI to aid in diagnosing MMN and in further elucidation of its pathophysiological mechanisms. The present Review will critically analyse the knowledge accumulated about MMN over the past 30 years, culminating in a state-of-the-art approach to therapy.
Collapse
Affiliation(s)
- Wei Zhen Yeh
- Department of Neurology, Royal Hobart Hospital, Hobart, Tasmania, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - P James Dyck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Leonard H van den Berg
- UMC Utrecht Brain Center, Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Bruce V Taylor
- Department of Neurology, Royal Hobart Hospital, Hobart, Tasmania, Australia .,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
19
|
Chen Y, Wang C, Xu F, Ming F, Zhang H. Efficacy and Tolerability of Intravenous Immunoglobulin and Subcutaneous Immunoglobulin in Neurologic Diseases. Clin Ther 2019; 41:2112-2136. [PMID: 31445679 DOI: 10.1016/j.clinthera.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/01/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE IV immunoglobulin (Ig) therapy has been widely used for the treatment of neurologic disorders, autoimmune diseases, immunodeficiency-related diseases, blood system diseases, and cancers. In this review, we summarize the efficacy and tolerability of IVIg and SCIg therapy in neurologic diseases. METHODS We summarized and analyzed the efficacy and tolerability of IVIg and SCIg in neurologic diseases, by analyzing the literature pertaining to the use of IVIg and SCIg to treat nervous system diseases. FINDINGS In clinical neurology practice, IVIg has been shown to be useful for the treatment of new-onset or recurrent immune diseases and for long-term maintenance treatment of chronic diseases. Moreover, IVIg may have applications in the management of intractable autoimmune epilepsy, paraneoplastic syndrome, autoimmune encephalitis, and neuromyelitis optica. SCIg is emerging as an alternative to IVIg treatment. Although SCIg has a composition similar to that of IVIg, the applications of this therapy are different. Notably, the bioavailability of SCIg is lower than that of IVIg, but the homeostasis level is more stable. Current studies have shown that these 2 therapies have pharmacodynamic equivalence. IMPLICATIONS In this review, we explored the efficacy of IVIg in the treatment of various neurologic disorders. IVIg administration still faces many challenges. Thus, it will be necessary to standardize the use of IVIg in the clinical setting. SCIg administration is a novel and feasible treatment option for neurologic and immune-related diseases, such as chronic inflammatory demyelinating polyradiculoneuropathy and idiopathic inflammatory myopathies. As our understanding of the mechanisms of action of IVIg improve, potential next-generation biologics can being developed.
Collapse
Affiliation(s)
- Yun Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fanxi Xu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fengyu Ming
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
20
|
Bozovic I, Peric S, Basta I, Kacar A, Nikolic A, Belanovic B, Lavrnic D, Rakocevic-Stojanovic V, Stevic Z. Quality of life in patients with multifocal motor neuropathy from Serbia. J Neurol Sci 2019; 399:151-154. [DOI: 10.1016/j.jns.2019.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/26/2019] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
|
21
|
Shimizu F, Oishi M, Sawai S, Beppu M, Misawa S, Matsui N, Miyashiro A, Maeda T, Takeshita Y, Nishihara H, Sano Y, Sato R, Kaji R, Kuwabara S, Kanda T. Increased IP-10 production by blood-nerve barrier in multifocal acquired demyelinating sensory and motor neuropathy and multifocal motor neuropathy. J Neurol Neurosurg Psychiatry 2019; 90:444-450. [PMID: 30523038 DOI: 10.1136/jnnp-2018-319270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/06/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Dysfunction of the blood-nerve barrier (BNB) plays important roles in chronic inflammatory demyelinating polyneuropathy (CIDP) and multifocal motor neuropathy (MMN). The aim of the present study was to identify the candidate cytokines/chemokines that cause the breakdown of the BNB using sera from patients with CIDP and MMN. METHODS We determined the levels of 27 cytokines and chemokines in human peripheral nerve microvascular endothelial cells (PnMECs) after exposure to sera obtained from patients with CIDP variants (typical CIDP and multifocal acquired demyelinating sensory and motor neuropathy [MADSAM]), MMN and amyotrophic lateral sclerosis (ALS), and healthy controls (HC), using a multiplexed fluorescent bead-based immunoassay system. RESULTS The induced protein (IP)10 level in the cells in both the MADSAM and MMN groups was markedly increased in comparison with the typical CIDP, ALS and HC groups. The other cytokines, including granulocyte colony-stimulating factor,vascular endothelial growth factor (VEGF) and interleukin-7, were also significantly upregulated in the MADSAM group. The increase of IP-10 produced by PnMECs was correlated with the presence of conduction block in both the MADSAM and MMN groups. CONCLUSION The autocrine secretion of IP-10 induced by patient sera in PnMECs was markedly upregulated in both the MADSAM and MMN groups. The overproduction of IP-10 by PnMECs leads to the focal breakdown of the BNB and may help to mediate the transfer of pathogenic T cells across the BNB, thereby resulting in the appearance of conduction block in electrophysiological studies of patients with MADSAM and MMN.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Mariko Oishi
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Setsu Sawai
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Minako Beppu
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sonoko Misawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Matsui
- Department of Clinical Neuroscience, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ai Miyashiro
- Department of Clinical Neuroscience, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Toshihiko Maeda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yukio Takeshita
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hideaki Nishihara
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Ryota Sato
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
22
|
Löscher WN, Oberreiter EM, Erdler M, Quasthoff S, Culea V, Berek K, Embacher N, Grinzinger S, Hess I, Höger FS, Horlings CGC, Huemer M, Jecel J, Kleindienst W, Laich E, Müller P, Oel D, Örtl W, Lenzenweger E, Rath J, Stadler K, Stieglbauer K, Thaler-Wolf C, Wanschitz J, Zimprich F, Cetin H, Topakian R. Multifocal motor neuropathy in Austria: a nationwide survey of clinical features and response to treatment. J Neurol 2018; 265:2834-2840. [PMID: 30259176 PMCID: PMC6244652 DOI: 10.1007/s00415-018-9071-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Multifocal motor neuropathy (MMN) is a rare neuropathy and detailed descriptions of larger patient cohorts are scarce. The objective of this study was to evaluate epidemiological, clinical, and laboratory features of MMN patients and their response to treatment in Austria and to compare these data with those from the literature. METHODS Anonymized demographic and clinical data about MMN patients until 31.12.2017 were collected from registered Austrian neurologists. Exploratory statistics on clinical and laboratory features as well as treatment regimens and responses were performed. RESULTS 57 Patients with MMN were identified, resulting in a prevalence of 0.65/100.000. Mean age of onset was 44.1 ± 13.1 years, the diagnostic delay 5.5 ± 8.4 years. In 77% of patients, symptom onset was in the upper limbs, and in 92%, it occurred in distal muscles. Proximal onset was never observed in the lower limbs. At the final follow-up, the majority of patients had atrophy (88%) in affected regions. Definite motor conduction blocks (CB) were found in 54 patients. Anti-GM1-IgM antibodies were present in 43%. Treatment with intravenous immunoglobulins improved muscle strength and INCAT score initially, but at last follow-up, both scores deteriorated to values before treatment. DISCUSSION The findings of the present study corroborate the previous findings in MMN. Onset typically occurs in the upper limbs and mostly distal, CBs are found in the majority of cases, while anti-GM1-IgM antibodies are detected in only approximately 40%. Our study underlines that the initial good response to treatment fades over time.
Collapse
Affiliation(s)
- Wolfgang N Löscher
- Department of Neurology, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria.
| | - Eva-Maria Oberreiter
- Department of Neurology, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
| | | | - Stefan Quasthoff
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Valeriu Culea
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Klaus Berek
- Department of Neurology, BKH Kufstein, Kufstein, Austria
| | - Norbert Embacher
- Department of Neurology, St. Pölten University, Sankt Pölten, Austria
| | - Susanne Grinzinger
- Department of Neurology, Paracelsus University of Salzburg, Salzburg, Austria
| | | | | | - Corinne G C Horlings
- Department of Neurology, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
| | - Michael Huemer
- Department of Neurology, Kardinal Schwarzenberg Hospital, Schwarzach im Pongau, Austria
| | - Julia Jecel
- 2. Department of Neurology, KH Hietzing, Vienna, Austria
| | | | - Eva Laich
- Department of Neurology, LKH Steyr, Steyr, Austria
| | - Petra Müller
- Department of Neurology, KH Wels-Grieskirchen, Wels, Austria
| | - Dierk Oel
- Department of Neurology, KH Wels-Grieskirchen, Wels, Austria
| | - Wolfgang Örtl
- Department of Neurology, Johannes Kepler-University Linz, Linz, Austria
| | - Eva Lenzenweger
- Department of Neurology 2, Johannes Kepler-University Linz, Linz, Austria
| | - Jakob Rath
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Klaus Stadler
- Department of Neurology, KH Wels-Grieskirchen, Wels, Austria
| | | | | | - Julia Wanschitz
- Department of Neurology, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Raffi Topakian
- Department of Neurology, KH Wels-Grieskirchen, Wels, Austria
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This article reviews the chronic demyelinating neuropathies, with a focus on the diagnosis and treatment of immune-mediated neuropathies and the features that can help differentiate immune-mediated neuropathies from other chronic demyelinating peripheral nerve conditions. RECENT FINDINGS Advances in clinical phenotyping and outcomes assessment have enabled neurologists to improve disease recognition, treatment, and disease monitoring. Our understanding of the immunopathogenesis of demyelinating neuropathies is evolving. Identification of new antibodies and recognition that node of Ranvier dysfunction may be an early pathogenic feature may herald further diagnostic and treatment advancements. SUMMARY The chronic demyelinating polyneuropathies are heterogeneous. The clinical and diagnostic features are sometimes overlapping, and the specific disorders are variable in pathogenesis, treatment, and prognosis. This heterogeneity underscores the importance of achieving diagnostic accuracy and implementing disease-specific treatment approaches.
Collapse
|
24
|
Cramps frequency and severity are correlated with small and large nerve fiber measures in type 1 diabetes. Clin Neurophysiol 2018; 129:122-126. [DOI: 10.1016/j.clinph.2017.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/04/2017] [Accepted: 10/29/2017] [Indexed: 11/20/2022]
|
25
|
Neuropatie motorie multifocali con blocco della conduzione. Neurologia 2017. [DOI: 10.1016/s1634-7072(17)85563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Saccomanno D, Tomba C, Magri F, Backelandt P, Roncoroni L, Doneda L, Bardella MT, Comi GP, Bresolin N, Conte D, Elli L. Anti-sulfatide reactivity in patients with celiac disease. Scand J Gastroenterol 2017; 52:409-413. [PMID: 27908207 DOI: 10.1080/00365521.2016.1263679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To explore a possible significance of the presence of anti-ganglioside and anti-sulfatide antibodies in sera of adult patients with celiac disease (CD) in different clinical scenario. METHODS We selected 22 adult patients with newly diagnosed CD and 20 age-sex matched non-CD controls. Patients' serum was tested - before and after at least 6 months on a gluten-free diet (GFD) - for anti-GM1, GM2, GM3, GD1a, GD1b, GD3, GT1a, GT1b, GQ1b and sulfatide IgM, IgG and IgA auto-antibodies, by means of a dot blot technique and enzyme-linked immunosorbent assay (ELISA). RESULTS We found the presence of auto-antibodies in untreated patients. In particular, anti-sulfatide IgG antibodies were present in 8 (36%) patients independently of the presence of neurological symptoms. Anti-sulfatide IgA antibodies were present in 3 (19%) patients. During GFD, anti-sulfatide IgG disappeared in all the patients, whereas IgA were observed in 2 patients. Anti-sulfatide, anti-GM1 and anti-GM2 IgM antibodies were also observed in 2 patients on a GFD. All the other auto-antibodies were absent and no demographic or clinical parameters were associated. Non-CD controls did not present any auto-antibody. CONCLUSIONS We found anti-sulfatide IgG antibodies in CD patients on a gluten-containing diet. Anti-sulfatide IgA antibodies persisted during GFD together with the occurrence of other IgM auto-antibodies. These data suggest a possible link between gluten and IgG auto-antibodies.
Collapse
Affiliation(s)
- Domenica Saccomanno
- a Department of Pathophysiology and Transplantation, Neurology Unit , Dino Ferrari Center, University of Milan, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - Carolina Tomba
- b Centre for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit , Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - Francesca Magri
- a Department of Pathophysiology and Transplantation, Neurology Unit , Dino Ferrari Center, University of Milan, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | | | - Leda Roncoroni
- b Centre for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit , Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy.,d Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| | - Luisa Doneda
- d Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| | - Maria Teresa Bardella
- b Centre for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit , Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - Giacomo Pietro Comi
- a Department of Pathophysiology and Transplantation, Neurology Unit , Dino Ferrari Center, University of Milan, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - Nereo Bresolin
- a Department of Pathophysiology and Transplantation, Neurology Unit , Dino Ferrari Center, University of Milan, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - Dario Conte
- b Centre for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit , Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - Luca Elli
- b Centre for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit , Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| |
Collapse
|
27
|
Kumar A, Patwa HS, Nowak RJ. Immunoglobulin therapy in the treatment of multifocal motor neuropathy. J Neurol Sci 2017; 375:190-197. [DOI: 10.1016/j.jns.2017.01.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/30/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
|
28
|
Illes Z, Blaabjerg M. Cerebrospinal fluid findings in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2017; 146:125-138. [PMID: 29110767 DOI: 10.1016/b978-0-12-804279-3.00009-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The classic immunologic alteration of the cerebrospinal fluid (CSF) in Guillain-Barré syndrome (GBS), albuminocytologic dissociation, has been known since the original paper by Guillain, Barré, and Strohl. Albuminocytologic dissociation has been also described in other forms of the GBS spectrum, such as axonal motor or motor-sensory forms (AMAN, AMSAN), the anti-GQ1b spectrum of Miller Fisher syndrome, and Bickerstaff brainstem encephalitis. Cytokines, chemokines, antibodies, complement components, and molecules with a putative neuroprotective role or indicating axonal damage have also been examined using different methods. Besides these candidate approaches, proteomics has been recently applied to discover potential biomarkers. The overall results support the immunopathogenesis of GBS, but albuminocytologic dissociation remained the only consistent CSF biomarker supporting the diagnosis of GBS. Chronic inflammatory neuropathies also comprise a heterogeneous group of diseases. Increased protein in the CSF is a supportive factor of chronic inflammatory demyelinating polyneuropathy, especially in the absence of definite electrophysiologic criteria. A number of other markers have also been investigated in the CSF of patients with chronic inflammatory neuropathies, similar to GBS. However, none has been used in supporting diagnosis, differentiating among syndromes, or predicting the clinical course and treatment responses.
Collapse
Affiliation(s)
- Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
29
|
Abstract
Peripheral neuropathies are diseases of the peripheral nervous system that can be divided into mononeuropathies, multifocal neuropathies, and polyneuropathies. Symptoms usually include numbness and paresthesia. These symptoms are often accompanied by weakness and can be painful. Polyneuropathies can be divided into axonal and demyelinating forms, which is important for diagnostic reasons. Most peripheral neuropathies develop over months or years, but some are rapidly progressive. Some patients only suffer from mild, unilateral, slowly progressive tingling in the fingers due to median nerve compression in the wrist (carpal tunnel syndrome), while other patients can be tetraplegic, with respiratory insufficiency within 1-2 days due to Guillain-Barré syndrome. Carpal tunnel syndrome, with a prevalence of 5% and incidence of 1-2 per 1000 person-years, is the most common mononeuropathy. Population-based data for chronic polyneuropathy are relatively scarce. Prevalence is estimated at 1% and increases to 7% in persons over 65 years of age. Incidence is approximately 1 per 1000 person-years. Immune-mediated polyneuropathies like Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy are rare diseases, with an annual incidence of approximately 1-2 and 0.2-0.5 per 100 000 persons respectively. Most peripheral neuropathies are more prevalent in older adults and in men, except for carpal tunnel syndrome, which is more common in women. Diabetes is a common cause of peripheral neuropathy and is associated with both mono- and polyneuropathies. Among the group of chronic polyneuropathies, in about 20-25% no direct cause can be found. These are slowly progressive axonal polyneuropathies.
Collapse
Affiliation(s)
- R Hanewinckel
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M A Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - P A Van Doorn
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, Pagani W, Lodin D, Orozco G, Chinea A. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 6:171. [PMID: 26629397 PMCID: PMC4653353 DOI: 10.4103/2152-7806.169561] [Citation(s) in RCA: 402] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease affecting motor neurons with an incidence of about 1/100,000. Most ALS cases are sporadic, but 5–10% of the cases are familial ALS. Both sporadic and familial ALS (FALS) are associated with degeneration of cortical and spinal motor neurons. The etiology of ALS remains unknown. However, mutations of superoxide dismutase 1 have been known as the most common cause of FALS. In this study, we provide a comprehensive review of ALS. We cover all aspects of the disease including epidemiology, comorbidities, environmental risk factor, molecular mechanism, genetic factors, symptoms, diagnostic, treatment, and even the available supplement and management of ALS. This will provide the reader with an advantage of receiving a broad range of information about the disease.
Collapse
Affiliation(s)
- Sara Zarei
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Karen Carr
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Luz Reiley
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Kelvin Diaz
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Orleiquis Guerra
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | | | - Wilfredo Pagani
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Daud Lodin
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Gloria Orozco
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Angel Chinea
- Neurologist, Caribbean Neurological Center, Caguas, USA
| |
Collapse
|
31
|
Pitarokoili K, Gold R, Yoon MS. Nerve ultrasound in a case of multifocal motor neuropathy without conduction block. Muscle Nerve 2015; 52:294-9. [DOI: 10.1002/mus.24583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Kalliopi Pitarokoili
- Department of Neurology; St. Josef Hospital, Ruhr-University of Bochum; Gudrunstr. 56 44791 Bochum Germany
| | - Ralf Gold
- Department of Neurology; St. Josef Hospital, Ruhr-University of Bochum; Gudrunstr. 56 44791 Bochum Germany
| | - Min-Suk Yoon
- Department of Neurology; St. Josef Hospital, Ruhr-University of Bochum; Gudrunstr. 56 44791 Bochum Germany
| |
Collapse
|
32
|
Edelman F, Naddaf E, Waclawik AJ. Upper Extremity Multifocal Neuropathy in a 10-Year-Old Boy Associated With NS6S Disaccharide Antibodies. J Child Neurol 2015; 30:945-8. [PMID: 25038124 DOI: 10.1177/0883073814541472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 06/01/2014] [Indexed: 12/13/2022]
Abstract
We present a 10-year-old boy with a predominantly motor multifocal neuropathy with demyelinating and axonal changes with sensory involvement, affecting only one upper extremity. Laboratory studies revealed an elevated titer of immunoglobulin M (IgM) antibodies against the NS6S antigen. He responded to treatment with high dose intravenous immunoglobulins. Focal or multifocal immune-mediated neuropathies are not common in children and may be underdiagnosed.
Collapse
Affiliation(s)
- Frederick Edelman
- Child Neurology Division, Department of Neurology, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Elie Naddaf
- Neurology Resident, Department of Neurology, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Andrew J Waclawik
- Neuromuscular Division, Department of Neurology, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| |
Collapse
|
33
|
Umapathi T, Hughes RAC, Nobile‐Orazio E, Léger J. Immunosuppressant and immunomodulatory treatments for multifocal motor neuropathy. Cochrane Database Syst Rev 2015; 2015:CD003217. [PMID: 25739040 PMCID: PMC6781840 DOI: 10.1002/14651858.cd003217.pub5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Multifocal motor neuropathy (MMN) is characterised by progressive, predominantly distal, asymmetrical limb weakness and usually multiple partial motor nerve conduction blocks. Intravenous immunoglobulin (IVIg) is beneficial but the role of immunosuppressive agents is uncertain. This is an update of a review first published in 2002 and previously updated in 2003, 2005, 2008 and 2011. OBJECTIVES To assess the effects of immunosuppressive agents for the treatment of multifocal motor neuropathy. SEARCH METHODS On 22 September 2014 we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE, EMBASE and LILACS for trials of MMN. We also searched two trials registers for ongoing studies. SELECTION CRITERIA We planned to include randomised controlled trials (RCTs) and quasi-RCTs. We considered prospective and retrospective case series and case reports in the Discussion. DATA COLLECTION AND ANALYSIS Two review authors searched the titles and abstracts of the articles identified and extracted the data independently. MAIN RESULTS Only one RCT of an immunosuppressive or immunomodulatory agent has been performed in MMN. This study randomised 28 participants and showed that mycophenolate mofetil, when used with IVIg, did not significantly improve strength, function or reduce the need for IVIg. No serious adverse events were observed. The study was deemed at low risk of bias. We summarised the results of retrospective and prospective case series in the discussion. AUTHORS' CONCLUSIONS According to moderate quality evidence, mycophenolate mofetil did not produce significant benefit in terms of reducing need for IVIg or improving muscle strength in MMN. Trials of other immunosuppressants should be undertaken.
Collapse
Affiliation(s)
- T Umapathi
- National Neuroscience InstituteDepartment of Neurology11 Jalan TanTock SengSingaporeSingapore308433
| | - Richard AC Hughes
- National Hospital for Neurology and NeurosurgeryMRC Centre for Neuromuscular DiseasesPO Box 114Queen SquareLondonUKWC1N 3BG
| | - Eduardo Nobile‐Orazio
- Milan UniversityIRCCS Humanitas Clinical Institute, Neurology 2Istituto Clinico HumanitasVia Manzoni 56, RozzanoMilanItaly20089
| | - Jean‐Marc Léger
- Groupe Hospitalier Pitrie Salpêtrière and University Paris VINational Reference Center for Rare Neuromuscular DiseasesBâtiment Balinski47‐83 Boulevard de l'HôpitalParis Cedex 13France75651
| | | |
Collapse
|
34
|
Grimm A, Décard BF, Athanasopoulou I, Schweikert K, Sinnreich M, Axer H. Nerve ultrasound for differentiation between amyotrophic lateral sclerosis and multifocal motor neuropathy. J Neurol 2015; 262:870-80. [PMID: 25626722 DOI: 10.1007/s00415-015-7648-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/15/2022]
Abstract
Ultrasound is useful for non-invasive visualization of focal nerve pathologies probably resulting from demyelination, remyelination, edema or inflammation. In patients with progressive muscle weakness, differentiation between multifocal motor neuropathy (MMN) and amyotrophic lateral sclerosis (ALS) is essential regarding therapy and prognosis. Therefore, the objective of this study was to investigate whether nerve ultrasound can differentiate between ALS and MMN. Systematic ultrasound measurements of peripheral nerves and the 6th cervical nerve root (C6) were performed in 17 patients with ALS, in 8 patients with MMN and in 28 healthy controls. Nerve conduction studies of corresponding nerves were undertaken in MMN and ALS patients. Electromyography was performed in ALS patients according to revised El-Escorial criteria. ANOVA and unpaired t test with Bonferroni correction revealed significant differences in cross-sectional areas (CSA) of different nerves and C6 diameter between the groups. Nerve enlargement was found significantly more frequently in MMN than in other groups (p < 0.001). Receiver operating characteristics analysis revealed detection of enlarged nerves/roots in at least four measurement points to serve as a good marker to differentiate MMN from ALS with a sensitivity of 87.5% and a specificity of 94.1%. Ultrasonic focal nerve enlargement in MMN was often not colocalized with areas of conduction blocks found in nerve conduction studies. Systematic ultrasound measurements in different nerves and nerve roots are valuable for detecting focal nerve enlargement in MMN, generally not found in ALS and thus could serve as a diagnostic marker to differentiate between both entities in addition to electrodiagnostic studies.
Collapse
Affiliation(s)
- Alexander Grimm
- Department of Neurology, Neuromuscular Center, Basel University Hospital, University Basel, Petersgraben 4, 4000, Basel, Switzerland,
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Chronic neuropathies are operationally classified as primarily demyelinating or axonal, on the basis of electrodiagnostic or pathological criteria. Demyelinating neuropathies are further classified as hereditary or acquired-this distinction is important, because the acquired neuropathies are immune-mediated and, thus, amenable to treatment. The acquired chronic demyelinating neuropathies include chronic inflammatory demyelinating polyneuropathy (CIDP), neuropathy associated with monoclonal IgM antibodies to myelin-associated glycoprotein (MAG; anti-MAG neuropathy), multifocal motor neuropathy (MMN), and POEMS syndrome. They have characteristic--though overlapping--clinical presentations, are mediated by distinct immune mechanisms, and respond to different therapies. CIDP is the default diagnosis if the neuropathy is demyelinating and no other cause is found. Anti-MAG neuropathy is diagnosed on the basis of the presence of anti-MAG antibodies, MMN is characterized by multifocal weakness and motor conduction blocks, and POEMS syndrome is associated with IgG or IgA λ-type monoclonal gammopathy and osteosclerotic myeloma. The correct diagnosis, however, can be difficult to make in patients with atypical or overlapping presentations, or nondefinitive laboratory studies. First-line treatments include intravenous immunoglobulin (IVIg), corticosteroids or plasmapheresis for CIDP; IVIg for MMN; rituximab for anti-MAG neuropathy; and irradiation or chemotherapy for POEMS syndrome. A correct diagnosis is required for choosing the appropriate treatment, with the aim of preventing progressive neuropathy.
Collapse
Affiliation(s)
- Norman Latov
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 1305 York Avenue, Suite 217, New York, NY 10021, USA
| |
Collapse
|
36
|
Harschnitz O, Jongbloed BA, Franssen H, Straver DCG, van der Pol WL, van den Berg LH. MMN: from immunological cross-talk to conduction block. J Clin Immunol 2014; 34 Suppl 1:S112-9. [PMID: 24728842 PMCID: PMC4050293 DOI: 10.1007/s10875-014-0026-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022]
Abstract
Multifocal motor neuropathy (MMN) is a rare inflammatory neuropathy characterized by progressive, asymmetric distal limb weakness and conduction block (CB). Clinically MMN is a pure motor neuropathy, which as such can mimic motor neuron disease. GM1-specific IgM antibodies are present in the serum of approximately half of all MMN patients, and are thought to play a key role in the immune pathophysiology. Intravenous immunoglobulin (IVIg) treatment has been shown to be effective in MMN in five randomized placebo-controlled trials. Despite long-term treatment with intravenous immunoglobulin (IVIg), which is efficient in the majority of patients, slowly progressive axonal degeneration and subsequent muscle weakness cannot be fully prevented. In this review, we will discuss the current understanding of the immune pathogenesis underlying MMN and how this may cause CB, available treatment strategies and future therapeutic targets.
Collapse
Affiliation(s)
- Oliver Harschnitz
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
| | - Bas A. Jongbloed
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
- Department of Neurology, St. Elisabeth Hospital, Tilburg, 5000 LC The Netherlands
| | - Hessel Franssen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
| | - Dirk C. G Straver
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
| | - Leonard H. van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
| |
Collapse
|
37
|
Shimizu F, Omoto M, Sano Y, Mastui N, Miyashiro A, Tasaki A, Maeda T, Koga M, Kaji R, Kanda T. Sera from patients with multifocal motor neuropathy disrupt the blood-nerve barrier. J Neurol Neurosurg Psychiatry 2014; 85:526-37. [PMID: 23926278 DOI: 10.1136/jnnp-2013-305405] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE In multifocal motor neuropathy (MMN), the destruction of the blood-nerve barrier (BNB) has been considered to be the key step in the disease process. The purpose of the present study was to ascertain whether sera from patients with MMN can open the BNB, and which component of patient sera is the most important for this disruption. METHODS We evaluated the effects of sera from patients with MMN, patients with amyotrophic lateral sclerosis, and control subjects on the expression of tight junction proteins and vascular cell adhesion molecule-1 (VCAM-1), and on the transendothelial electrical resistance (TEER) in human peripheral nerve microvascular endothelial cells (PnMECs). RESULTS The sera from patients with MMN decreased the claudin-5 protein expression and the TEER in PnMECs. However, this effect was reversed after application of an anti-vascular endothelial growth factor (anti-VEGF) neutralising antibody. The VEGF secreted by PnMECs was significantly increased after exposure to the sera from patients with MMN. The sera from patients with MMN also increased the VCAM-1 protein expression by upregulating the nuclear factor kappa-B (NF-κB) signalling. The immunoglobulin G purified from MMN sera decreased the expression of claudin-5 and increased the VCAM-1 expression in PnMECs. CONCLUSIONS The sera from MMN patients may disrupt the BNB function via the autocrine secretion of VEGF in PnMECs, or the exposure to autoantibodies against PnMECs that are contained in the MMN sera. Autoantibodies against PnMECs in MMN sera may activate the BNB by upregulating the VCAM-1 expression, thereby allowing for the entry of a large number of circulating inflammatory cells into the peripheral nervous system.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, , Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Miyashiro A, Matsui N, Shimatani Y, Nodera H, Izumi Y, Kuwabara S, Imai T, Baba M, Komori T, Sonoo M, Mezaki T, Kawamata J, Hitomi T, Kawamata J, Hitomi T, Kohara N, Arimura K, Hashimoto S, Arisawa K, Kusunoki S, Kaji R. Are multifocal motor neuropathy patients underdiagnosed? An epidemiological survey in Japan. Muscle Nerve 2014; 49:357-61. [PMID: 24741683 DOI: 10.1002/mus.23930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Our objective was to do an epidemiologic survey of patients with multifocal motor neuropathy (MMN) in comparison with those with amyotrophic lateral sclerosis (ALS) in Japan. METHODS In this retrospective study, we examined 46 patients with MMN and 1,051 patients with ALS from major neuromuscular centers in Japan from 2005 to 2009. Diagnosis was based on the European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) and the revised El Escorial criteria. The efficacy of intravenous immunoglobulin (IVIg) was also taken into consideration in the diagnosis of MMN. RESULTS The ratio of MMN to ALS patients (0–0.10) varied among the centers, but mostly converged to 0.05. The prevalence was estimated to be 0.29 MMN patients and 6.63 ALS patients per 100,000 population. CONCLUSIONS The frequency of MMN patients was around 1 out of 20 ALS patients, and MMN was possibly underdiagnosed in some centers.
Collapse
|
39
|
Hersalis Eldar A, Chapman J. Guillain Barré syndrome and other immune mediated neuropathies: Diagnosis and classification. Autoimmun Rev 2014; 13:525-30. [DOI: 10.1016/j.autrev.2014.01.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 10/25/2022]
|
40
|
Nobile-Orazio E, Gallia F. Multifocal motor neuropathy: current therapies and novel strategies. Drugs 2014; 73:397-406. [PMID: 23516024 DOI: 10.1007/s40265-013-0029-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multifocal motor neuropathy (MMN) is a purely motor mononeuritis multiplex characterized by the presence of conduction block on motor but not on sensory nerves and by the presence of high titers of anti-GM1 antibodies. Several data point to a pathogenetic role of the immune system in this neuropathy, although this has not yet been proved. Several uncontrolled studies and randomized controlled trials have demonstrated the efficacy of therapy with high-dose intravenous immunoglobulin (IVIg) in MMN. However, this therapy has a short-lasting effect that needs to be maintained with periodic infusions. This can be partly overcome by the use of subcutaneous immunoglobulin (SCIg) at the same dose. The high cost and need for repeated infusions have led to the search for other immune therapies, the efficacy of which have not yet been confirmed in randomized trials. In addition, some therapies, including corticosteroids and plasma exchange, are not only ineffective but have been associated with clinical worsening. More recently, a number of novel therapies have been investigated in MMN, including interferon-β1a, the anti-CD20 monoclonal antibody rituximab and the complement inhibitor eculizumab. Preliminary data from open-label uncontrolled studies show that some patients improve after these therapies; however, randomized controlled trials are needed to confirm efficacy. Until then, IVIg (and SCIg) remains the mainstay of treatment in MMN, and the use of other immune therapies should only be considered for patients not responding to, or becoming resistant to, IVIg.
Collapse
Affiliation(s)
- Eduardo Nobile-Orazio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), 2nd Neurology, Humanitas Clinical and Research Center, IRCCS Humanitas Clinical Institute, Milan University, Via Manzoni 56, Rozzano, 20089 Milan, Italy.
| | | |
Collapse
|
41
|
Lawson VH, Arnold WD. Multifocal motor neuropathy: a review of pathogenesis, diagnosis, and treatment. Neuropsychiatr Dis Treat 2014; 10:567-76. [PMID: 24741315 PMCID: PMC3983019 DOI: 10.2147/ndt.s39592] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multifocal motor neuropathy (MMN) is an uncommon, purely motor neuropathy associated with asymmetric deficits with predilection for upper limb involvement. Even in the early descriptions of MMN, the associations of anti-GM1 antibodies and robust response to immunomodulatory treatment were recognized. These features highlight the likelihood of an underlying autoimmune etiology of MMN. The clinical presentation of MMN can closely mimic several neurological conditions including those with more malignant prognoses such as motor neuron disease. Therefore early and rapid recognition of MMN is critical. Serological evidence of anti GM-1 antibodies and electrodiagnostic findings of conduction block are helpful diagnostic clues for MMN. Importantly, these diagnostic features are not universally present, and patients lacking these characteristic findings can demonstrate similar robust response to immunodulatory treatment. In the current review, recent research in the areas of diagnosis, pathogenesis, and treatment of MMN and needs for the future are discussed. The characteristic findings of MMN and treatment implications are reviewed and contrasted with other mimicking disorders.
Collapse
Affiliation(s)
- Victoria H Lawson
- Division of Neuromuscular Disorders, Department of Neurology, Wexner Medical Center at The Ohio State University, Columbus, Ohio, USA
| | - W David Arnold
- Division of Neuromuscular Disorders, Department of Neurology, Wexner Medical Center at The Ohio State University, Columbus, Ohio, USA ; Department of Physical Medicine and Rehabilitation, Wexner Medical Center at The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
42
|
Antibodies to Glycoproteins Shared by Human Peripheral Nerve and Campylobacter jejuni in Patients with Multifocal Motor Neuropathy. Autoimmune Dis 2013; 2013:728720. [PMID: 23762534 PMCID: PMC3666391 DOI: 10.1155/2013/728720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
We have tested serum samples from 24 patients with multifocal motor neuropathy (MMN) for reactivity to ganglioside GM1 and to Gal( β 1-3)GalNAc-bearing glycoproteins isolated from human peripheral nerve and from Campylobacter jejuni (Cj) serotype O:19. IgM anti-GM1 antibodies were detected by ELISA in 11 patients (45.8%) with MMN and in only one subject (4%) from the control group. Western blots showed positive reactivity of sera from 6 patients (25%) with MMN to several Gal( β 1-3)GalNAc-bearing glycoproteins from human peripheral nerve and from Cj O:19 isolates. Sera from three patients (12.5%) with MMN showed positively reactive bands with similar electrophoretic mobility in all isolates (60-62 kDa, 48-51 kDa, 42 kDa, and 38 kDa). All six patients showed positive reactivity to 48-52 kDa protein isolated from human peripheral nerve. Increased titer of IgG antibodies to 60-62 kDa protein isolated from Cj O:19 associated with Guillain-Barré syndrome was detected in three patients, and their serum showed also IgG positive reactivity to peripheral nerve antigen with the same electrophoretic mobility. One of these patients had a previous history of Cj infection which suggests the possibility that Cj may be also involved in the pathogenesis of MMN.
Collapse
|
43
|
Abstract
Multifocal motor neuropathy (MMN) is a rare disorder in which the symptoms are caused by persistent conduction block lesions. The mononeuropathy multiplex progresses over time with increasing axonal loss. The cause of the conduction blocks and axonal loss are not completely understood but immune mechanisms are involved and response to intravenous immunoglobulin has been established. The importance of MMN goes beyond its clinical incidence as the increasing understanding of the pathogenesis of this disorder has implications for other peripheral nerve diseases and for our knowledge of peripheral nerve biology.
Collapse
Affiliation(s)
- Ximena Arcila-Londono
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | |
Collapse
|
44
|
Peltier AC, Donofrio PD. Chronic inflammatory demyelinating polyradiculoneuropathy: from bench to bedside. Semin Neurol 2012; 32:187-95. [PMID: 23117943 DOI: 10.1055/s-0032-1329194] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is the most common treatable chronic autoimmune neuropathy. Multiple diagnostic criteria have been established, with the primary goal of identifying neurophysiologic hallmarks of acquired demyelination. Treatment modalities have expanded to include numerous immunomodulatory therapies, although the best evidence continues to be for corticosteroids, plasma exchange, and intravenous immunoglobulin (IVIg). This review describes the pathology, epidemiology, pathogenesis, diagnosis, and treatment of CIDP.
Collapse
Affiliation(s)
- Amanda C Peltier
- Department of Neurology, Vanderbilt Medical Center, Medical Center North, Nashville, Tennessee 37232-2551, USA.
| | | |
Collapse
|
45
|
Mehndiratta MM, Hughes RAC. Plasma exchange for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev 2012:CD003906. [PMID: 22972066 DOI: 10.1002/14651858.cd003906.pub3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an uncommon progressive or relapsing paralysing disease caused by inflammation of the peripheral nerves. If the hypothesis that it is due to autoimmunity is correct, removal of autoantibodies in the blood by plasma exchange should be beneficial. OBJECTIVES To evaluate the efficacy of plasma exchange in CIDP. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (14 May 2012), CENTRAL (2012, Issue 4), MEDLINE (January 1966 to May 2012), EMBASE (January 1980 to May 2012), CINAHL Plus (January 1937 to May 2012) and LILACS (January 1982 to May 2012). We also scrutinised the bibliographies of the trials, and contacted the trial authors and other disease experts. SELECTION CRITERIA Randomised controlled trials (RCTs) or quasi-RCTs in participants of any age comparing plasma exchange with sham treatment or no treatment. DATA COLLECTION AND ANALYSIS Two authors selected the trials, extracted the data and assessed risk of bias independently. Where possible data were combined according to the methods of the Cochrane Neuromuscular Disease Review Group. PRIMARY OUTCOME MEASURE one cross-over trial including 18 participants showed two (95% confidence interval (CI) 0.8 to 3.0) points more improvement after four weeks on an 11-point disability scale with plasma exchange (10 exchanges over four weeks) than with sham exchange. Rapid deterioration after plasma exchange occurred in eight of 12 who had improved. SECONDARY OUTCOME MEASURES when the results of this trial and another with 29 participants treated in a parallel group design trial were combined, there were 31 points (95% CI 16 to 45, maximum score 280) more improvement in an impairment scale after plasma exchange (six exchanges over three weeks) than after sham exchange. There were significant improvements in both trials in an electrophysiological measure, the proximally evoked compound muscle action potential, after three or four weeks. Non-randomised evidence indicates that plasma exchange induces adverse events in 3% to 17% of procedures. These are sometimes serious. A trial showing no significant difference in the benefit between plasma exchange and intravenous immunoglobulin has been included in the Cochrane review of intravenous immunoglobulin for this condition. AUTHORS' CONCLUSIONS Moderate to high quality evidence from two small trials showed that plasma exchange provides significant short-term improvement in disability, clinical impairment and motor nerve conduction velocity in CIDP but rapid deterioration may occur afterwards. Adverse events related to difficulty with venous access, use of citrate and haemodynamic changes are not uncommon. More research is needed to identify agents which will prolong the beneficial action of plasma exchange.
Collapse
|
46
|
Rigamonti A, Lauria G, Stanzani L, Piamarta F, Agostoni E. A case of multifocal motor neuropathy with conduction block associated with gastric and lung adenocarcinoma. J Peripher Nerv Syst 2012; 17:226-8. [DOI: 10.1111/j.1529-8027.2012.00401.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Umapathi T, Hughes RAC, Nobile-Orazio E, Léger JM. Immunosuppressant and immunomodulatory treatments for multifocal motor neuropathy. Cochrane Database Syst Rev 2012:CD003217. [PMID: 22513910 DOI: 10.1002/14651858.cd003217.pub4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Multifocal motor neuropathy is characterised by progressive, predominantly distal, asymmetrical limb weakness and usually multiple partial motor nerve conduction blocks. Intravenous immunoglobulin is beneficial but the role of immunosuppressive agents is uncertain. This is an update of a review first published in 2002 and previously updated in 2003, 2005 and 2008. OBJECTIVES To provide the best available evidence from randomised controlled trials on the role of immunosuppressive agents for the treatment of multifocal motor neuropathy. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (4 October 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (2011, Issue 3 in The Cochrane Library), MEDLINE (January 1966 to September 2011), EMBASE (January 1980 to September 2011), and LILACS (January 1982 to September 2011) for trials of multifocal motor neuropathy. SELECTION CRITERIA We planned to include randomised and quasi-randomised controlled trials. We considered prospective and retrospective case series and case reports in the Discussion. DATA COLLECTION AND ANALYSIS Two review authors searched the titles and abstracts of the articles identified and extracted the data independently. MAIN RESULTS Only one randomised controlled trial of an immunosuppressive or immunomodulatory agent has been performed in multifocal motor neuropathy. This study randomised 28 participants and showed that mycophenolate mofetil, when used with intravenous immunoglobulin, did not significantly improve strength, function or reduce the need for intravenous immunoglobulin. No serious adverse events were observed. The study was deemed at low risk of bias. We summarised the results of retrospective and prospective case series in the discussion. AUTHORS' CONCLUSIONS According to moderate quality evidence, mycophenolate mofetil did not produce significant benefit in terms of reducing need for intravenous immunoglobulin or improving muscle strength. Trials of other immunosuppressants should be undertaken.
Collapse
Affiliation(s)
- T Umapathi
- Department of Neurology, National Neuroscience Institute, Singapore,
| | | | | | | |
Collapse
|
48
|
Peng W. Intravenous immunoglobulin treatment on anti-GM1 antibodies associated neuropathies inhibits cholera toxin and galectin-1 binding to ganglioside GM1. Immunol Lett 2012; 143:146-51. [DOI: 10.1016/j.imlet.2012.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/30/2011] [Accepted: 01/13/2012] [Indexed: 12/17/2022]
|
49
|
Park SB, Lin CSY, Burke D, Kiernan MC. Activity-dependent conduction failure: molecular insights. J Peripher Nerv Syst 2012; 16:159-68. [PMID: 22003929 DOI: 10.1111/j.1529-8027.2011.00358.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Weakness and fatigue are commonly encountered symptoms in neurological disorders and significantly impair quality of life. In the case of motor axons, conduction block contributes to weakness and fatigue and may be associated with aberrant nerve activity including fasciculations and cramp. These symptoms result from dysfunction of the constituent channels and pumps of the axonal membrane. In critically conducting axons, impulse conduction can be impaired by the effects of activity or by other mechanisms that produce a significant shift in membrane potential. Conduction failure may be accentuated or relieved by maneuvers that manipulate the time course of the driving current, including the administration of agents that interfere with Na(+) channel function. In patients with inflammatory neuropathies, normal activity may be sufficient to precipitate conduction failure at sites of impaired function in multifocal motor neuropathy (MMN) and chronic inflammatory demyelinating polyneuropathy (CIDP). From a clinical perspective, these features are not assessed adequately by conventional neurophysiological techniques. As weakness and fatigue may only develop following activity or exertion, it is useful to assess the effects of impulse trains to determine the extent of conduction failure and the resulting symptoms in neurological patients. These techniques and the physiological mechanisms underlying the development of activity-dependent hyperpolarization will be critically appraised in this review, with a focus on demyelinating neuropathies, MMN and the neurodegenerative disease, and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Susanna B Park
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
50
|
Vlam L, van der Pol WL, Cats EA, Straver DC, Piepers S, Franssen H, van den Berg LH. Multifocal motor neuropathy: diagnosis, pathogenesis and treatment strategies. Nat Rev Neurol 2011; 8:48-58. [PMID: 22105211 DOI: 10.1038/nrneurol.2011.175] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|