1
|
Deborde S, Wong RJ. The Role of Schwann Cells in Cancer. Adv Biol (Weinh) 2022; 6:e2200089. [PMID: 35666078 PMCID: PMC9474572 DOI: 10.1002/adbi.202200089] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/14/2022] [Indexed: 01/28/2023]
Abstract
Schwann cells (SCs) are the most abundant cell type in the nerves in the peripheral nervous system and compose a family of subtypes that are endowed with a variety of different functions. SCs facilitate the transmission of neural impulses, provide nutrients and protection for neurons, guide axons in nerve repair, and regulate immune functions. In the context of cancer, recent studies have revealed an active role of SCs in promoting cancer cell invasion, modulating immune responses, and transmitting pain sensation.
Collapse
Affiliation(s)
- Sylvie Deborde
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Richard J Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
2
|
Muke I, Sprenger A, Bobylev I, Wiemer V, Barham M, Neiss WF, Lehmann HC. Ultrastructural characterization of mitochondrial damage in experimental autoimmune neuritis. J Neuroimmunol 2020; 343:577218. [PMID: 32251941 DOI: 10.1016/j.jneuroim.2020.577218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Data are sparse about mitochondrial damage in GBS and in its most frequently employed animal model, experimental autoimmune neuritis (EAN). We here characterized changes in mitochondrial content and morphology at different time points during EAN by use of ultrastructural imaging and immunofluorescent labelling. Histological examination revealed that demyelinated axons and their adjacent Schwann cells showed reduced mitochondrial content and remaining mitochondria appeared swollen with greater diameter in Schwann cells and unmyelinated axons. Our findings indicate that in EAN, particularly mitochondria in Schwann cells are damaged. Further studies are warranted to address whether these changes are amenable to novel, mitoprotective treatments.
Collapse
Affiliation(s)
- Ines Muke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Alina Sprenger
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Ilja Bobylev
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Valerie Wiemer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany
| | - Mohammed Barham
- Department of Anatomy I, Faculty of Medicine, University of Cologne, Germany
| | | | - Helmar Christoph Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
3
|
Pitarokoili K, Sgodzai M, Grüter T, Bachir H, Motte J, Ambrosius B, Pedreiturria X, Yoon MS, Gold R. Intrathecal triamcinolone acetonide exerts anti-inflammatory effects on Lewis rat experimental autoimmune neuritis and direct anti-oxidative effects on Schwann cells. J Neuroinflammation 2019; 16:58. [PMID: 30851725 PMCID: PMC6408772 DOI: 10.1186/s12974-019-1445-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
Background Corticosteroids dominate in the treatment of chronic autoimmune neuropathies although long-term use is characterized by devastating side effects. Methods We introduce the intrathecal application of the synthetic steroid triamcinolone (TRIAM) as a novel therapeutic option in experimental autoimmune neuritis in Lewis rats Results After immunization with neuritogenic P2 peptide, we show a dose-dependent therapeutic effect of one intrathecal injection of 0.3 or 0.6 mg/kg TRIAM on clinical and electrophysiological parameters of neuritis with a lower degree of inflammatory infiltrates (T cells and macrophages) and demyelination in the sciatic nerve. In vitro studies in Schwann cell cultures showed an increased expression of IL-1 receptor antagonist and reduced expression of Toll-like receptor 4 after incubation with TRIAM as well as a protective effect of TRIAM against oxidative stress after H2O2 exposure. Conclusion Intrathecal TRIAM application could be a novel immunomodulatory and potentially neuroprotective option for autoimmune neuropathies with a direct effect on Schwann cells.
Collapse
Affiliation(s)
- Kalliopi Pitarokoili
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany.
| | - Melissa Sgodzai
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Thomas Grüter
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Hussein Bachir
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Jeremias Motte
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Björn Ambrosius
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Xiomara Pedreiturria
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Min-Suk Yoon
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| |
Collapse
|
4
|
Tzekova N, Heinen A, Küry P. Molecules involved in the crosstalk between immune- and peripheral nerve Schwann cells. J Clin Immunol 2014; 34 Suppl 1:S86-104. [PMID: 24740512 DOI: 10.1007/s10875-014-0015-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
Abstract
Schwann cells are the myelinating glial cells of the peripheral nervous system and establish myelin sheaths on large caliber axons in order to accelerate their electrical signal propagation. Apart from this well described function, these cells revealed to exhibit a high degree of differentiation plasticity as they were shown to re- and dedifferentiate upon injury and disease as well as to actively participate in regenerative- and inflammatory processes. This review focuses on the crosstalk between glial- and immune cells observed in many peripheral nerve pathologies and summarizes functional evidences of molecules, regulators and factors involved in this process. We summarize data on Schwann cell's role presenting antigens, on interactions with the complement system, on Schwann cell surface molecules/receptors and on secreted factors involved in immune cell interactions or para-/autocrine signaling events, thus strengthening the view for a broader (patho) physiological role of this cell lineage.
Collapse
Affiliation(s)
- Nevena Tzekova
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, D-40225, Düsseldorf, Germany
| | | | | |
Collapse
|
5
|
Han F, Luo B, Shi R, Han C, Zhang Z, Xiong J, Jiang M, Zhang Z. Curcumin ameliorates rat experimental autoimmune neuritis. J Neurosci Res 2014; 92:743-50. [DOI: 10.1002/jnr.23357] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/24/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Fuyu Han
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Bangwei Luo
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Rongchen Shi
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Changhao Han
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Zhonghao Zhang
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Jian Xiong
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Man Jiang
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Zhiren Zhang
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| |
Collapse
|
6
|
|
7
|
Lu C, Schoenfeld R, Shan Y, Tsai C, Hammock B, Cortopassi G. Frataxin deficiency induces Schwann cell inflammation and death. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:1052-61. [PMID: 19679182 PMCID: PMC3563672 DOI: 10.1016/j.bbadis.2009.07.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 06/18/2009] [Accepted: 07/27/2009] [Indexed: 12/15/2022]
Abstract
Mutations in the frataxin gene cause dorsal root ganglion demyelination and neurodegeneration, which leads to Friedreich's ataxia. However the consequences of frataxin depletion have not been measured in dorsal root ganglia or Schwann cells. We knocked down frataxin in several neural cell lines, including two dorsal root ganglia neural lines, 2 neuronal lines, a human oligodendroglial line (HOG) and multiple Schwann cell lines and measured cell death and proliferation. Only Schwann cells demonstrated a significant decrease in viability. In addition to the death of Schwann cells, frataxin decreased proliferation in Schwann, oligodendroglia, and slightly in one neural cell line. Thus the most severe effects of frataxin deficiency were on Schwann cells, which enwrap dorsal root ganglia neurons. Microarray of frataxin-deficient Schwann cells demonstrated strong activations of inflammatory and cell death genes including interleukin-6 and Tumor Necrosis Factor which were confirmed at the mRNA and protein levels. Frataxin knockdown in Schwann cells also specifically induced inflammatory arachidonate metabolites. Anti-inflammatory and anti-apoptotic drugs significantly rescued frataxin-dependent Schwann cell toxicity. Thus, frataxin deficiency triggers inflammatory changes and death of Schwann cells that is inhibitable by inflammatory and anti-apoptotic drugs.
Collapse
Affiliation(s)
- Chunye Lu
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| | - Robert Schoenfeld
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| | - Yuxi Shan
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| | - Cindy Tsai
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| | - Bruce Hammock
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, California, 95616
| |
Collapse
|
8
|
Meyer zu Hörste G, Hu W, Hartung HP, Lehmann HC, Kieseier BC. The immunocompetence of Schwann cells. Muscle Nerve 2007; 37:3-13. [PMID: 17823955 DOI: 10.1002/mus.20893] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Schwann cells are the myelinating glial cells of the peripheral nervous system that support and ensheath axons with myelin to enable rapid saltatory signal propagation in the axon. Immunocompetence, however, has only recently been recognized as an important feature of Schwann cells. An autoimmune response against components of the peripheral nervous system triggers disabling inflammatory neuropathies in patients and corresponding animal models. The immune system participates in nerve damage and disease manifestation even in non-inflammatory hereditary neuropathies. A growing body of evidence suggests that Schwann cells may modulate local immune responses by recognizing and presenting antigens and may also influence and terminate nerve inflammation by secreting cytokines. This review summarizes current knowledge on the interaction of Schwann cells with the immune system, which is involved in diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Gerd Meyer zu Hörste
- Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The aim of this review is to describe the local immune circuitry in the peripheral nervous system and its dialogue with systemic immunity under pathological conditions. Specifically, interactions of the immune system with cellular and extracellular components within peripheral nerve and immune functions of tissue-resident endoneurial macrophages and Schwann cells will be discussed. RECENT FINDINGS New insights into the elements involved in the pathogenesis of immune-mediated disorders of the peripheral nervous system provide a better understanding of the complex interplay of these cellular and molecular components in the immunology of the peripheral nervous system. SUMMARY The application of innovative and cutting-edge technologies to the study of immunoinflammatory disorders of the peripheral nervous system provides a better understanding of underlying principles of the organization of the immune network present in the peripheral nerve and its dialogue with the systemic immune system. This may foster the development of specific and highly effective therapies for immune-mediated disorders of the peripheral nerve.
Collapse
Affiliation(s)
- Bernd C Kieseier
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | |
Collapse
|
10
|
Skaper SD, Facci L, Culbert AA, Evans NA, Chessell I, Davis JB, Richardson JC. P2X(7) receptors on microglial cells mediate injury to cortical neurons in vitro. Glia 2006; 54:234-42. [PMID: 16817206 DOI: 10.1002/glia.20379] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The P2X(7) receptor has been implicated in the release of cytokines and in the induction of cell death, and is up-regulated in a transgenic mouse model of Alzheimer's disease. Using cocultures of rat cortical neurons and microglia, we show that ATP and the more potent P2X(7) agonist benzoylbenzoyl-ATP (BzATP) cause neuronal cell injury. The deleterious effects of BzATP-treated microglia were prevented by nonselective P2X antagonists (PPADS and oxidized ATP) and by the more selective P2X(7) antagonist Brilliant Blue G. Similar concentrations of BzATP caused release of superoxide and nitric oxide from isolated microglia, and neuronal cell injury was attenuated by a superoxide dismutase mimetic and by a peroxynitrite decomposition catalyst, suggesting a role for reactive oxide species. Cocultures composed of wild-type cortical neurons, and microglia from P2X(7) receptor-deficient mice failed to exhibit neuronal cell injury in the presence of BzATP, but retained sensitivity to injury when microglia were derived from genotypically matched normal (P2X(7) (+/+) mice), thereby establishing P2X(7) involvement in the injury process. P2X(7) receptor activation on microglia thus appears necessary for microglial-mediated injury of neurons, and proposes that targeting P2X(7) receptors may constitute a novel approach for the treatment of acute and chronic neurodegenerative disorders where a microglial component is evident.
Collapse
Affiliation(s)
- Stephen D Skaper
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, Harlow CM19 5AW, Essex, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
11
|
Miletic H, Utermöhlen O, Wedekind C, Hermann M, Stenzel W, Lassmann H, Schlüter D, Deckert M. P0(106-125) is a neuritogenic epitope of the peripheral myelin protein P0 and induces autoimmune neuritis in C57BL/6 mice. J Neuropathol Exp Neurol 2005; 64:66-73. [PMID: 15715086 DOI: 10.1093/jnen/64.1.66] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present study describes a new model of autoimmune neuritis in C57BL/6 mice induced by immunization with the novel neuritogenic epitope P0(106-125), derived from mouse peripheral myelin protein P0. Immunization with this peptide in combination with pertussis toxin induced high levels of peptide-specific CD4+ T cells in spleen and popliteal lymph nodes. Clinical symptoms of autoimmune neuritis started with a flaccid tail at day 10 postimmunization (p.i.), progressed to moderate paraparesis at day 15 p.i., declining thereafter with undetectable symptoms at day 40 p.i. Clinical disease activity paralleled decreased sciatic nerve motor conduction and histopathologic alterations of sciatic nerves. These included inflammatory infiltrates, mainly consisting of inducible nitric oxide synthase (iNOS)+ macrophages and CD4+ T cells. These data fit into the pathogenetic concept of murine autoimmune neuritis as a CD4+ TH1 cell-mediated disease. Our new mouse model provides an attractive tool to identify critical factors that regulate the severity of autoimmune responses in the peripheral nervous system.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Injections, Subcutaneous
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Myelin P0 Protein/administration & dosage
- Myelin P0 Protein/genetics
- Myelin P0 Protein/immunology
- Neuritis, Autoimmune, Experimental/genetics
- Neuritis, Autoimmune, Experimental/immunology
- Neuritis, Autoimmune, Experimental/pathology
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Hrvoje Miletic
- Abteilung für Neuropathologie, Universität zu Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Colomar A, Marty V, Médina C, Combe C, Parnet P, Amédée T. Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J Biol Chem 2003; 278:30732-40. [PMID: 12796490 DOI: 10.1074/jbc.m304534200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The P2X7 receptor, mainly expressed by immune cells, is a ionotropic receptor activated by high concentration of extracellular ATP. It is involved in several processes relevant to immunomodulation and inflammation. Among these processes, the production of extracellular interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, plays a major role in the activation of the cytokine network. We have investigated the role of P2X7 receptor and of an associated calcium-activated potassium conductance (BK channels) in IL-1beta maturation and releasing processes by Schwann cells. Lipopolysaccharide-primed Schwann cells synthesized large amounts of pro-IL-1beta but did not release detectable amounts of pro or mature IL-1beta. ATP on its own had no effect on the synthesis of pro-IL-1beta, but a co-treatment with lipopolysaccharide and ATP led to the maturation and the release of IL-1beta by Schwann cells. Both mechanisms were blocked by oxidized ATP. IL-1beta-converting enzyme (ICE), the caspase responsible for the maturation of pro-IL-1beta in IL-1beta, was activated by P2X7 receptor stimulation. The specific inhibition of ICE by the caspase inhibitor Ac-Tyr-Val-Ala-Asp-aldehyde blocked the maturation of IL-1beta. In searching for a link between the P2X7 receptor and the activation of ICE, we found that enhancing potassium efflux from Schwann cells upregulated the production of IL-1beta, while strongly reducing potassium efflux led to opposite effects. Blocking BK channels actually modulated IL-1beta release. Taken together, these results show that P2X7 receptor stimulation and associated BK channels, through the activation of ICE, leads to the maturation and the release of IL-1beta by immune-challenged Schwann cells.
Collapse
Affiliation(s)
- Aurore Colomar
- Département de Physiologie, Centre de Recherches en Sciences Neurologiques, Université de Montréal, Montréal H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Skundric DS, Dai R, James J, Lisak RP. Activation of IL-1 signaling pathway in Schwann cells during diabetic neuropathy. Ann N Y Acad Sci 2002; 958:393-8. [PMID: 12021148 DOI: 10.1111/j.1749-6632.2002.tb03011.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our results show activation of the IL-1 signaling pathway in Schwann cells (SC), prior to and during early stages of diabetic neuropathy, thus suggesting its role in the initiation of SC-axonal miscommunication.
Collapse
Affiliation(s)
- Dusanka S Skundric
- Division of Neuroimmunology, Department of Neurology, Wayne State University, Detroit Medical Center, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|