1
|
Tonne JM, Budzik K, Carrasco TF, Ebbert L, Thompson J, Nace R, Kendall B, Diaz RM, Russell SJ, Vile RG. Smoldering oncolysis by foamy virus carrying CD19 as a CAR target escapes CAR T detection by genomic modification. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200852. [PMID: 39220111 PMCID: PMC11362648 DOI: 10.1016/j.omton.2024.200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have had limited success against solid tumors. Here, we used an oncolytic foamy virus (oFV) to display a model CAR target antigen (CD19) on tumors in combination with anti-CD19 CAR T cells. We generated oFV-Δbel2 and oFV-bel2 vectors to test the efficiency and stability of viral/CD19 spread. While both viruses conferred equal CAR T killing in vitro, the oFV-Δbel2 virus acquired G-to-A mutations, whereas oFV-bel2 virus had genome deletions. In subcutaneous tumor models in vivo, CAR T cells led to a significant decrease in oFV-specific bioluminescence, confirming clearance of oFV-infected tumor cells. However, the most effective therapy was with high-dose oFV in the absence of CAR T cells, indicating that CAR T clearance of oFV was detrimental. Moreover, in tumors that escaped CAR T cell treatment, resurgent virus contained deletions within the oFV-CD19 transgene, allowing the virus to escape CAR T elimination. Therefore, oFV represents a slow smoldering type of oncolytic virus, whose chronic spread through tumors generates anti-tumor therapy, which is abolished by CAR T therapy. These results suggest that further development of this oncolytic platform, with additional immunotherapeutic arming, may allow for an effective combination of chronic oncolysis.
Collapse
Affiliation(s)
- Jason M. Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Karol Budzik
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Talia Fernandez Carrasco
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Vyriad Inc, Rochester, MN 55901, USA
| | - Landon Ebbert
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Kendall
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa M. Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Vyriad Inc, Rochester, MN 55901, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Sumiyoshi A, Kitao K, Miyazawa T. Genetic and biological characterization of feline foamy virus isolated from a leopard cat (Prionailurus bengalensis) in Vietnam. J Vet Med Sci 2021; 84:157-165. [PMID: 34880191 PMCID: PMC8810315 DOI: 10.1292/jvms.21-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foamy viruses have been isolated from various mammals and show long-term co-speciation with their hosts. However, the frequent inter-species transmission of feline foamy viruses (FFVs) from
domestic cats to wild cats across genera has been reported. Because infectious molecular clones of FFVs derived from wild cats have not been available, whether there are specific
characteristics enabling FFVs to adapt to the new host species is still unknown. Here, we obtained the complete genome sequences of two FFV isolates (strains NV138 and SV201) from leopard
cats (Prionailurus bengalensis) in Vietnam and constructed an infectious molecular clone, named pLC960, from strain NV138. The growth kinetics of the virus derived from
pLC960 were comparable to those of other FFVs derived from domestic cats. Phylogenetic analysis revealed that these two FFVs from leopard cats are clustered in the same clade as FFVs from
domestic cats in Vietnam. Comparisons of the amino acid sequences of Env and Bet proteins showed more than 97% identity among samples and no specific amino acid substitutions between FFVs
from domestic cats and ones from leopard cats. These results indicate the absence of genetic constraint of FFVs for interspecies transmission from domestic cats to leopard cats.
Collapse
Affiliation(s)
- Aoi Sumiyoshi
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| |
Collapse
|
3
|
Aso S, Kitao K, Hashimoto-Gotoh A, Sakaguchi S, Miyazawa T. Identification of Feline Foamy Virus-derived MicroRNAs. Microbes Environ 2021; 36. [PMID: 34776460 PMCID: PMC8674446 DOI: 10.1264/jsme2.me21055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MicroRNAs (miRNAs) classified as non-coding RNAs regulate various metabolic systems and viral life cycles. To date, numerous DNA viruses, many of which are members of the herpesvirus family, and a relatively small number of RNA viruses, including retroviruses, have been reported to encode and express miRNAs in infected cells. A few retroviruses have been shown to express miRNAs, and foamy viruses (FVs) were initially predicted by computational analyses to possess miRNA-coding regions. Subsequent studies on simian and bovine FVs confirmed the presence of functional and biologically active miRNA expression cassettes. We herein identified feline FV-derived miRNAs using a small RNA deep sequencing analysis. We confirmed their repressive functions on gene expression by dual-luciferase reporter assays. We found that the seed sequences of the miRNAs identified in the present study were conserved among all previously reported FFV isolates. These results suggest that FFV-derived miRNAs play a pivotal role in FFV infection.
Collapse
Affiliation(s)
- Shiro Aso
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Akira Hashimoto-Gotoh
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Osaka Medical College
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| |
Collapse
|
4
|
Kehl T, Tan J, Materniak M. Non-simian foamy viruses: molecular virology, tropism and prevalence and zoonotic/interspecies transmission. Viruses 2013; 5:2169-209. [PMID: 24064793 PMCID: PMC3798896 DOI: 10.3390/v5092169] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/27/2022] Open
Abstract
Within the field of retrovirus, our knowledge of foamy viruses (FV) is still limited. Their unique replication strategy and mechanism of viral persistency needs further research to gain understanding of the virus-host interactions, especially in the light of the recent findings suggesting their ancient origin and long co-evolution with their nonhuman hosts. Unquestionably, the most studied member is the primate/prototype foamy virus (PFV) which was originally isolated from a human (designated as human foamy virus, HFV), but later identified as chimpanzee origin; phylogenetic analysis clearly places it among other Old World primates. Additionally, the study of non-simian animal FVs can contribute to a deeper understanding of FV-host interactions and development of other animal models. The review aims at highlighting areas of special interest regarding the structure, biology, virus-host interactions and interspecies transmission potential of primate as well as non-primate foamy viruses for gaining new insights into FV biology.
Collapse
Affiliation(s)
- Timo Kehl
- German Cancer Research Center, INF242, Heidelberg 69120, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-6221-42-4935; Fax: +49-6221-42-4932
| | - Juan Tan
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; E-Mail:
| | - Magdalena Materniak
- Department of Biochemistry, National Veterinary Research Institute, Partyzantow Ave. 57, Pulawy 24-100, Poland; E-Mail:
| |
Collapse
|
5
|
Guo HY, Liang ZB, Li Y, Tan J, Chen QM, Qiao WT. A new indicator cell line established to monitor bovine foamy virus infection. Virol Sin 2011; 26:315-23. [PMID: 21979571 DOI: 10.1007/s12250-011-3204-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/05/2011] [Indexed: 11/24/2022] Open
Abstract
In order to improve the accuracy for quantitating the bovine foamy virus (BFV) in vitro, we developed a baby hamster kidney cell (BHK)-21-derived indicator cell line containing a plasmid that encodes the firefly luciferase driven by the BFV long terminal repeat promoter (LTR, from -7 to 1012). The BFV titer could be determined by detecting the luciferase expression since the viral trans-activator BTas protein activates the promoter activity of the LTR. One clone, designated BFVL, was selected from ten neomycin-resistant clones. BFVL showed a specific and inducible dose- and time-dependent luciferase activity in response to BFV infection. Although the changes in luciferase activity of BFVL peaked at 84 h post infection, it was possible to differentiate infected and uninfected cells at 48 h post infection. A linear relationship was established between the multiplicity of infection (MOI) of BFV and the activated ratio of luciferase expression in BFVL. Moreover, the sensitivity of the BFVL-based assay for detecting infectious BFV was 10,000 times higher than the conventional CPE-based assay at 48 h post infection. These findings suggest that the BFVL-based assay is rapid, easy, sensitive, quantitative and specific for detection of BFV infection.
Collapse
Affiliation(s)
- Hong-Yan Guo
- Key Laboratory of Molecular Microbiology and Biotechnology, Ministry of Education, and Key Laboratory of Microbial Functional Genomics of Tianjin, College of Life Sciences, Nankai University, China
| | | | | | | | | | | |
Collapse
|
6
|
[Receptors for animal retroviruses]. Uirusu 2010; 59:223-42. [PMID: 20218331 DOI: 10.2222/jsv.59.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diseases caused by animal retroviruses have been recognized since 19th century in veterinary field. Most livestock and companion animals have own retroviruses. To disclose the receptors for these retroviruses will be useful for understanding retroviral pathogenesis, developments of anti-retroviral drugs and vectors for human and animal gene therapies. Of retroviruses in veterinary field, receptors for the following viruses have been identified; equine infectious anemia virus, feline immunodeficiency virus, feline leukemia virus subgroups A, B, C, and T, Jaagsiekte sheep retrovirus, enzootic nasal tumor virus, avian leukosis virus subgroups A, B, C, D, E, and J, reticuloendotheliosis virus, RD-114 virus (a feline endogenous retrovirus), and porcine endogenous retrovirus subgroup A. Primate lentiviruses require two molecules (CD4 and chemokine receptors such as CXCR4) as receptors. Likewise, feline immunodeficiency virus also requires two molecules, i.e., CD134 (an activation marker of CD4 T cells) and CXCR4 in infection. Gammaretroviruses utilize multi-spanning transmembrane proteins, most of which are transporters of amino acids, vitamins and inorganic ions. Betaretroviruses and alpharetroviruses utilize transmembrane and/or GPI-anchored proteins as receptors. In this review, I overviewed receptors for animal retroviruses in veterinary field.
Collapse
|
7
|
Ma Z, Hao P, Yao X, Liu C, Tan J, Liu L, Yang R, Geng Y, Chen Q, Qiao W. Establishment of an indicator cell line to quantify bovine foamy virus infection. J Basic Microbiol 2008; 48:278-83. [PMID: 18720504 DOI: 10.1002/jobm.200700295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A cell line derived from baby hamster kidney (BHK-21) cells was transfected with the enhanced green fluorescent protein gene driven by the bovine foamy virus (BFV) long terminal repeat (LTR) to establish a BFV indicator cell line (BICL). Among 48 clones, one clone was chosen for its little constitutive enhanced green fluorescent protein (EGFP) expression and high level of EGFP expression after activation by BFV infection. By detecting the EGFP expression of the BFV indicator cell line, the titers of BFV were quantified by the end point method. As a result, the titer determined by the EGFP based assay 5-6 days post infection (d.p.i.) was 100 fold higher than traditional assays measuring cytopathic effects 8-9 d.p.i.. Moreover, the EGFP based assay was also used to determine the titer of those cells infected by BFV without inducing cytopathic effects. Using this simple and rapid assay, we examined the in vitro host range of BFV. It was found that BFV can productively infect various cell lines derived from bovine, human, rat and monkey.
Collapse
Affiliation(s)
- Zhe Ma
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Omatsu T, Watanabe S, Akashi H, Yoshikawa Y. Biological characters of bats in relation to natural reservoir of emerging viruses. Comp Immunol Microbiol Infect Dis 2007; 30:357-74. [PMID: 17706776 PMCID: PMC7112585 DOI: 10.1016/j.cimid.2007.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 05/30/2007] [Indexed: 12/19/2022]
Abstract
Many investigators focused on bats (Chiroptera) for their specific character, i.e. echolocation system, phylogenic tree, food practice and unique reproduction. However, most of basic information about the vital functions related to anti-viral activity has been unclear. For evaluating some animals as a natural reservoir or host of infectious pathogens, it is necessary that not only their immune system but also their biology, the environment of their living, food habits and physiological features should be clarified and they should be analyzed from these multi-view points. The majority of current studies on infectious diseases have been conducted for the elucidation of viral virulence using experimental animals or viral gene function in vitro, but in a few case, researchers focused on wild animal itself. In this paper, we described basic information about bats as follows; genetic background, character of the immunological factors, histological character of immune organs, the physiological function and sensitivity of bat cells to viral infection.
Collapse
Affiliation(s)
- Tsutomu Omatsu
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
9
|
Ma Z, Qiao WT, Xuan CH, Xie JH, Chen QM, Geng YQ. Detection and analysis of bovine foamy virus infection by an indicator cell line. Acta Pharmacol Sin 2007; 28:994-1000. [PMID: 17588335 DOI: 10.1111/j.1745-7254.2007.00563.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To determine the infectivity and replication strategy of bovine foamy virus (BFV) in different cultured cells using the BFV indicator cell line (BICL) system. METHODS BFV infection was induced by the co-culture method or the transient transfection of the infectious BFV plasmid [pCMV (cytomegalovirus) - BFV] clone. The infectivity of BFV was monitored by the percentage of green fluorescent protein-positive cells in the BICL. The effect of reverse transcriptase inhibitor zidovudine (AZT) on BFV replication was also evaluated in the BICL. RESULTS The titer of BFV in fetal bovine lung cells was 4-5-folds more than that in either 293T or HeLa (Cells from Henrietta lacks) cells using the co-culture method, and in the meantime was significantly higher than that produced by the infectious clone pCMV-BFV in the same cells. AZT had only a minor effect on viral titers when added to cells prior to the virus infection. In contrast, viral titers reduced sharply to the level of the negative control when the virus was produced from cells in the presence of AZT. CONCLUSIONS BICL can be used for the titration of the BFV viral infection in non-cytopathic condition. In addition, we provide important evidence to show that reverse transcription is essential for BFV replication at a late step of viral infection.
Collapse
Affiliation(s)
- Zhe Ma
- Laboratory of Molecular Virology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
10
|
Phung HTT, Tohya Y, Miyazawa T, Akashi H. Characterization of Env antigenicity of feline foamy virus (FeFV) using FeFV-infected cat sera and a monoclonal antibody. Vet Microbiol 2005; 106:201-7. [PMID: 15778026 DOI: 10.1016/j.vetmic.2004.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 12/24/2004] [Accepted: 12/24/2004] [Indexed: 11/29/2022]
Abstract
To characterize neutralizing antigenicity in relation to env genotypes of feline foamy virus (FeFV), serological analyses were performed using FeFV-infected cat sera and several field isolates including two env genotypes (F17- and FUV-types). Since three cats from which FeFV were isolated were found to have undetectable titers of virus neutralization (VN) antibodies, even to the homologous virus, VN antibodies were further examined with complement supplementation as an enhancement factor. With the presence of complement, the VN titers of FeFV-infected cat sera increased drastically. Although most of serum samples neutralized strains of either env genotype, sera sampled from two cats neutralized all the strains examined at similar titers, suggesting that superinfection with both env genotypes of FeFV might have occurred in the two cats. Further, we produced a monoclonal antibody (mAb) specifically neutralizing FeFV strains of FUV-type. The mAb was shown to have higher affinity to an epitope on Env of FUV-type than that of F17-type by immunoprecipitation assay. This study supplies basic information important for studies on FeFV vector development as well as on the relationship between the virus and the host immune response.
Collapse
Affiliation(s)
- Hang T T Phung
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|