1
|
Lützenkirchen FP, Zhu Y, Maric HM, Boeck DS, Gromova KV, Kneussel M. Neurobeachin regulates receptor downscaling at GABAergic inhibitory synapses in a protein kinase A-dependent manner. Commun Biol 2024; 7:1635. [PMID: 39668217 PMCID: PMC11638247 DOI: 10.1038/s42003-024-07294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
GABAergic synapses critically modulate neuronal excitability, and plastic changes in inhibitory synaptic strength require reversible interactions between GABAA receptors (GABAARs) and their postsynaptic anchor gephyrin. Inhibitory long-term potentiation (LTP) depends on the postsynaptic recruitment of gephyrin and GABAARs, whereas the neurotransmitter GABA can induce synaptic removal of GABAARs. However, the mechanisms and players underlying plastic adaptation of synaptic strength are incompletely understood. Here we show that neurobeachin (Nbea), a receptor trafficking protein, is a component of inhibitory synapses, interacts with gephyrin and regulates the downscaling of inhibitory synaptic transmission. We found that the recruitment of Nbea to GABAergic synapses is activity-dependent and that Nbea regulates GABAAR internalization in a protein kinase A (PKA)-dependent manner. In heterozygous neurons lacking one Nbea allele, re-expression of Nbea but not expression of a PKA binding-deficient Nbea mutant rescued the internalization of GABAARs. Our data suggest a mechanism by which Nbea mediates PKA anchoring at inhibitory postsynaptic sites to downregulate GABAergic transmission. They emphasize the importance of kinase positioning in the regulation of synaptic strength.
Collapse
Affiliation(s)
- Felix P Lützenkirchen
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yipeng Zhu
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Dominik S Boeck
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kira V Gromova
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center of Neuroscience, HCNS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Martinez M, Petit J, Leyva A, Sogues A, Megrian D, Rodriguez A, Gaday Q, Ben Assaya M, Portela MM, Haouz A, Ducret A, Grangeasse C, Alzari PM, Durán R, Wehenkel AM. Eukaryotic-like gephyrin and cognate membrane receptor coordinate corynebacterial cell division and polar elongation. Nat Microbiol 2023; 8:1896-1910. [PMID: 37679597 PMCID: PMC10522489 DOI: 10.1038/s41564-023-01473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
The order Corynebacteriales includes major industrial and pathogenic Actinobacteria such as Corynebacterium glutamicum or Mycobacterium tuberculosis. These bacteria have multi-layered cell walls composed of the mycolyl-arabinogalactan-peptidoglycan complex and a polar growth mode, thus requiring tight coordination between the septal divisome, organized around the tubulin-like protein FtsZ, and the polar elongasome, assembled around the coiled-coil protein Wag31. Here, using C. glutamicum, we report the discovery of two divisome members: a gephyrin-like repurposed molybdotransferase (Glp) and its membrane receptor (GlpR). Our results show how cell cycle progression requires interplay between Glp/GlpR, FtsZ and Wag31, showcasing a crucial crosstalk between the divisome and elongasome machineries that might be targeted for anti-mycobacterial drug discovery. Further, our work reveals that Corynebacteriales have evolved a protein scaffold to control cell division and morphogenesis, similar to the gephyrin/GlyR system that mediates synaptic signalling in higher eukaryotes through network organization of membrane receptors and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Mariano Martinez
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Julienne Petit
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Alejandro Leyva
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adrià Sogues
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniela Megrian
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Azalia Rodriguez
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Quentin Gaday
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Mathildeb Ben Assaya
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Maria Magdalena Portela
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ahmed Haouz
- Plate-forme de cristallographie, C2RT-Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Adrien Ducret
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, Lyon, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, Lyon, France
| | - Pedro M Alzari
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Anne Marie Wehenkel
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Hassan AH, Ihling C, Iacobucci C, Kastritis PL, Sinz A, Kruse T. The structural principles underlying molybdenum insertase complex assembly. Protein Sci 2023; 32:e4753. [PMID: 37572332 PMCID: PMC10461460 DOI: 10.1002/pro.4753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/16/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Within the cell, the trace element molybdenum (Mo) is only biologically active when complexed either within the nitrogenase-specific FeMo cofactor or within the molybdenum cofactor (Moco). Moco consists of an organic part, called molybdopterin (MPT) and an inorganic part, that is, the Mo-center. The enzyme which catalyzes the Mo-center formation is the molybdenum insertase (Mo-insertase). Mo-insertases consist of two functional domains called G- and E-domain. The G-domain catalyzes the formation of adenylated MPT (MPT-AMP), which is the substrate for the E-domain, that catalyzes the actual molybdate insertion reaction. Though the functions of E- and G-domain have been elucidated to great structural and mechanistic detail, their combined function is poorly characterized. In this work, we describe a structural model of the eukaryotic Mo-insertase Cnx1 complex that was generated based on cross-linking mass spectrometry combined with computational modeling. We revealed Cnx1 to form an asymmetric hexameric complex which allows the E- and G-domain active sites to align in a catalytic productive orientation toward each other.
Collapse
Affiliation(s)
- Ahmed H. Hassan
- TU BraunschweigInstitute of Plant BiologyBraunschweigGermany
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Christian Ihling
- Department of Pharmaceutical Chemistry & BioanalyticsInstitute of PharmacyHalle (Saale)Germany
- Center for Structural Mass SpectrometryHalle (Saale)Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry & BioanalyticsInstitute of PharmacyHalle (Saale)Germany
- Center for Structural Mass SpectrometryHalle (Saale)Germany
- Department of Physical and Chemical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Panagiotis L. Kastritis
- ZIK HALOmem and Institute of Biochemistry and BiotechnologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & BioanalyticsInstitute of PharmacyHalle (Saale)Germany
- Center for Structural Mass SpectrometryHalle (Saale)Germany
| | - Tobias Kruse
- TU BraunschweigInstitute of Plant BiologyBraunschweigGermany
| |
Collapse
|
4
|
Patt L, Tascio D, Domingos C, Timmermann A, Jabs R, Henneberger C, Steinhäuser C, Seifert G. Impact of Developmental Changes of GABA A Receptors on Interneuron-NG2 Glia Transmission in the Hippocampus. Int J Mol Sci 2023; 24:13490. [PMID: 37686294 PMCID: PMC10488269 DOI: 10.3390/ijms241713490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
NG2 glia receive synaptic input from neurons, but the functional impact of this glial innervation is not well understood. In the developing cerebellum and somatosensory cortex the GABAergic input might regulate NG2 glia differentiation and myelination, and a switch from synaptic to extrasynaptic neuron-glia signaling was reported in the latter region. Myelination in the hippocampus is sparse, and most NG2 glia retain their phenotype throughout adulthood, raising the question of the properties and function of neuron-NG2 glia synapses in that brain region. Here, we compared spontaneous and evoked GABAA receptor-mediated currents of NG2 glia in juvenile and adult hippocampi of mice of either sex and assessed the mode of interneuron-glial signaling changes during development. With patch-clamp and pharmacological analyses, we found a decrease in innervation of hippocampal NG2 glia between postnatal days 10 and 60. At the adult stage, enhanced activation of extrasynaptic receptors occurred, indicating a spillover of GABA. This switch from synaptic to extrasynaptic receptor activation was accompanied by downregulation of γ2 and upregulation of the α5 subunit. Molecular analyses and high-resolution expansion microscopy revealed mechanisms of glial GABAA receptor trafficking and clustering. We found that gephyrin and radixin are organized in separate clusters along glial processes. Surprisingly, the developmental loss of γ2 and postsynaptic receptors were not accompanied by altered glial expression of scaffolding proteins, auxiliary receptor subunits or postsynaptic interaction proteins. The GABAergic input to NG2 glia might contribute to the release of neurotrophic factors from these cells and influence neuronal synaptic plasticity.
Collapse
Affiliation(s)
- Linda Patt
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Dario Tascio
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Catia Domingos
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| |
Collapse
|
5
|
Martinez M, Petit J, Leyva A, Sogues A, Megrian D, Rodriguez A, Gaday Q, Ben Assaya M, Portela M, Haouz A, Ducret A, Grangeasse C, Alzari PM, Durán R, Wehenkel A. Eukaryotic-like gephyrin and cognate membrane receptor coordinate corynebacterial cell division and polar elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526586. [PMID: 36778425 PMCID: PMC9915583 DOI: 10.1101/2023.02.01.526586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The order Corynebacteriales includes major industrial and pathogenic actinobacteria such as Corynebacterium glutamicum or Mycobacterium tuberculosis . Their elaborate multi-layered cell wall, composed primarily of the mycolyl-arabinogalactan-peptidoglycan complex, and their polar growth mode impose a stringent coordination between the septal divisome, organized around the tubulin-like protein FtsZ, and the polar elongasome, assembled around the tropomyosin-like protein Wag31. Here, we report the identification of two new divisome members, a gephyrin-like repurposed molybdotransferase (GLP) and its membrane receptor (GLPR). We show that the interplay between the GLPR/GLP module, FtsZ and Wag31 is crucial for orchestrating cell cycle progression. Our results provide a detailed molecular understanding of the crosstalk between two essential machineries, the divisome and elongasome, and reveal that Corynebacteriales have evolved a protein scaffold to control cell division and morphogenesis similar to the gephyrin/GlyR system that in higher eukaryotes mediates synaptic signaling through network organization of membrane receptors and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- M. Martinez
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - J. Petit
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Leyva
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Sogues
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - D. Megrian
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Rodriguez
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Q. Gaday
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - M. Ben Assaya
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - M. Portela
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Haouz
- Plate-forme de cristallographie, C2RT-Institut Pasteur, CNRS, UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Ducret
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - C. Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - P. M. Alzari
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - R. Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Wehenkel
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| |
Collapse
|
6
|
Reconstitution of an N-AChR from Brugia malayi an evolved change in acetylcholine receptor accessory protein requirements in filarial parasites. PLoS Pathog 2022; 18:e1010962. [DOI: 10.1371/journal.ppat.1010962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/01/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022] Open
Abstract
Neurotransmission is an important target for anthelmintic drugs, where receptor characteristics and response can be examined through reconstitution ex vivo in Xenopus laevis oocytes. The homomeric ACR-16 nicotine sensitive acetylcholine receptors (N-AChRs) of several helminth species have been characterized in this way. Our efforts to reconstitute the N-AChR from the clade III filarial parasite, Brugia malayi using similar conditions, initially produced no detectable response. A robust response to acetylcholine is obtained from the closely related clade III parasite Ascaris suum, suggesting that specific changes have occurred between Ascaris and Brugia. N-AChRs from three species intermediate between A. suum and B. malayi were characterized to provide information on the cause. Maximal response to acetylcholine did not change abruptly, consistent with a discrete event, but rather decreased progressively from A. suum through Dracunculus medinensis, Gonglylonema pulchrum and Thelazia callipaeda. Receptor responses to the characteristic nicotine, and other agonists were generally similar. The decrease in maximal current did correlate with a delayed time to reach larger response. Together, this suggested that the failure to reconstitute the B. malayi N-AChR was one extreme of a progressive decrease and that an issue with synthesis of the receptor in oocytes was responsible. Addition of accessory proteins EMC-6, NRA-2 and NRA-4, in addition to RIC-3, produced a small, but measurable B. malayi N-AChR response. Pharmacological properties of a chimeric B. malayi N-AChR were equivalent to the other species, confirming the receptor response remains unchanged while its production is increasingly dependent on accessory proteins. One possibility is that loss of many subunits for acetylcholine receptors from the filarial nematode genome is linked to new subunit combinations that lead to such a dependence. This novel phylogenetic approach allowed the first characterization of a B. malayi AChR ex vivo and in doing so, provides a framework for the successful characterization of other receptors that have yet to be reconstituted.
Collapse
|
7
|
Salceda R. Glycine neurotransmission: Its role in development. Front Neurosci 2022; 16:947563. [PMID: 36188468 PMCID: PMC9525178 DOI: 10.3389/fnins.2022.947563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The accurate function of the central nervous system (CNS) depends of the consonance of multiple genetic programs and external signals during the ontogenesis. A variety of molecules including neurotransmitters, have been implied in the regulation of proliferation, survival, and cell-fate of neurons and glial cells. Among these, neurotransmitters may play a central role since functional ligand-gated ionic channel receptors have been described before the establishment of synapses. This review argues on the function of glycine during development, and show evidence indicating it regulates morphogenetic events by means of their transporters and receptors, emphasizing the role of glycinergic activity in the balance of excitatory and inhibitory signals during development. Understanding the mechanisms involved in these processes would help us to know the etiology of cognitive dysfunctions and lead to improve brain repair strategies.
Collapse
|
8
|
Abstract
Neurons are highly specialized cells equipped with a sophisticated molecular machinery for the reception, integration, conduction and distribution of information. The evolutionary origin of neurons remains unsolved. How did novel and pre-existing proteins assemble into the complex machinery of the synapse and of the apparatus conducting current along the neuron? In this review, the step-wise assembly of functional modules in neuron evolution serves as a paradigm for the emergence and modification of molecular machinery in the evolution of cell types in multicellular organisms. The pre-synaptic machinery emerged through modification of calcium-regulated large vesicle release, while the postsynaptic machinery has different origins: the glutamatergic postsynapse originated through the fusion of a sensory signaling module and a module for filopodial outgrowth, while the GABAergic postsynapse incorporated an ancient actin regulatory module. The synaptic junction, in turn, is built around two adhesion modules controlled by phosphorylation, which resemble septate and adherens junctions. Finally, neuronal action potentials emerged via a series of duplications and modifications of voltage-gated ion channels. Based on these origins, key molecular innovations are identified that led to the birth of the first neuron in animal evolution.
Collapse
|
9
|
Zhan FX, Wang SG, Cao L. Advances in hyperekplexia and other startle syndromes. Neurol Sci 2021; 42:4095-4107. [PMID: 34379238 DOI: 10.1007/s10072-021-05493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
Startle, a basic alerting reaction common to all mammals, is described as a sudden involuntary movement of the body evoked by all kinds of sudden and unexpected stimulus. Startle syndromes are heterogeneous groups of disorders with abnormal and exaggerated responses to startling events, including hyperekplexia, stimulus-induced disorders, and neuropsychiatric startle syndromes. Hyperekplexia can be attributed to a genetic, idiopathic, or symptomatic cause. Excluding secondary factors, hereditary hyperekplexia, a rare neurogenetic disorder with highly genetic heterogeneity, is characterized by neonatal hypertonia, exaggerated startle response provoked by the sudden external stimuli, and followed by a short period of general stiffness. It mainly arises from defects of inhibitory glycinergic neurotransmission. GLRA1 is the major pathogenic gene of hereditary hyperekplexia, along with many other genes involved in the function of glycinergic inhibitory synapses. While about 40% of patients remain negative genetic findings. Clonazepam, which can specifically upgrade the GABARA1 chloride channels, is the main and most effective administration for hereditary hyperekplexia patients. In this review, with the aim at enhancing the recognition and prompting potential treatment for hyperekplexia, we focused on discussing the advances in hereditary hyperekplexia genetics and the expound progress in pathogenic mechanisms of the glycinergic-synapse-related pathway and then followed by a brief overview of other common startle syndromes.
Collapse
Affiliation(s)
- Fei-Xia Zhan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Shi-Ge Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
10
|
Yang X, Le Corronc H, Legendre P, Triller A, Specht CG. Differential regulation of glycinergic and GABAergic nanocolumns at mixed inhibitory synapses. EMBO Rep 2021; 22:e52154. [PMID: 34047007 PMCID: PMC8256292 DOI: 10.15252/embr.202052154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Super‐resolution imaging has revealed that key synaptic proteins are dynamically organized within sub‐synaptic domains (SSDs). To examine how different inhibitory receptors are regulated, we carried out dual‐color direct stochastic optical reconstruction microscopy (dSTORM) of GlyRs and GABAARs at mixed inhibitory synapses in spinal cord neurons. We show that endogenous GlyRs and GABAARs as well as their common scaffold protein gephyrin form SSDs that align with pre‐synaptic RIM1/2, thus creating trans‐synaptic nanocolumns. Strikingly, GlyRs and GABAARs occupy different sub‐synaptic spaces, exhibiting only a partial overlap at mixed inhibitory synapses. When network activity is increased by 4‐aminopyridine treatment, the GABAAR copy numbers and the number of GABAAR SSDs are reduced, while GlyRs remain largely unchanged. This differential regulation is likely the result of changes in gephyrin phosphorylation that preferentially occurs outside of SSDs. The activity‐dependent regulation of GABAARs versus GlyRs suggests that different signaling pathways control the receptors' sub‐synaptic clustering. Taken together, our data reinforce the notion that the precise sub‐synaptic organization of GlyRs, GABAARs, and gephyrin has functional consequences for the plasticity of mixed inhibitory synapses.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Institute of Biology of the École Normale Supérieure (IBENS), CNRS, Inserm, PSL Research University, Paris, France.,School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Hervé Le Corronc
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS, Inserm, UPMC, Sorbonne University, Paris, France
| | - Pascal Legendre
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS, Inserm, UPMC, Sorbonne University, Paris, France
| | - Antoine Triller
- Institute of Biology of the École Normale Supérieure (IBENS), CNRS, Inserm, PSL Research University, Paris, France
| | - Christian G Specht
- Institute of Biology of the École Normale Supérieure (IBENS), CNRS, Inserm, PSL Research University, Paris, France.,Diseases and Hormones of the Nervous System (DHNS), Inserm, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Jeckel P, Kriebel M, Volkmer H. Autism Spectrum Disorder Risk Factor Met Regulates the Organization of Inhibitory Synapses. Front Mol Neurosci 2021; 14:659856. [PMID: 34054427 PMCID: PMC8155383 DOI: 10.3389/fnmol.2021.659856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022] Open
Abstract
A common hypothesis explains autism spectrum disorder (ASD) as a neurodevelopmental disorder linked to excitatory/inhibitory (E/I) imbalance in neuronal network connectivity. Mutation of genes including Met and downstream signaling components, e.g., PTEN, Tsc2 and, Rheb are involved in the control of synapse formation and stabilization and were all considered as risk genes for ASD. While the impact of Met on glutamatergic synapses was widely appreciated, its contribution to the stability of inhibitory, GABAergic synapses is poorly understood. The stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin. Here, we show in vivo and in vitro that Met is necessary and sufficient for the stabilization of GABAergic synapses via induction of gephyrin clustering. Likewise, we provide evidence for Met-dependent gephyrin clustering via activation of mTOR. Our results support the notion that deficient GABAergic signaling represents a pathomechanism for ASD.
Collapse
Affiliation(s)
- Pauline Jeckel
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Martin Kriebel
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Hansjürgen Volkmer
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
12
|
Bregestovski PD, Ponomareva DN. Photochromic Modulation of Cys-loop
Ligand-gated Ion Channels. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Bai X, Kirchhoff F, Scheller A. Oligodendroglial GABAergic Signaling: More Than Inhibition! Neurosci Bull 2021; 37:1039-1050. [PMID: 33928492 PMCID: PMC8275815 DOI: 10.1007/s12264-021-00693-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
GABA is the main inhibitory neurotransmitter in the CNS acting at two distinct types of receptor: ligand-gated ionotropic GABAA receptors and G protein-coupled metabotropic GABAB receptors, thus mediating fast and slow inhibition of excitability at central synapses. GABAergic signal transmission has been intensively studied in neurons in contrast to oligodendrocytes and their precursors (OPCs), although the latter express both types of GABA receptor. Recent studies focusing on interneuron myelination and interneuron-OPC synapses have shed light on the importance of GABA signaling in the oligodendrocyte lineage. In this review, we start with a short summary on GABA itself and neuronal GABAergic signaling. Then, we elaborate on the physiological role of GABA receptors within the oligodendrocyte lineage and conclude with a description of these receptors as putative targets in treatments of CNS diseases.
Collapse
Affiliation(s)
- Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| |
Collapse
|
14
|
Kim S, Kang M, Park D, Lee AR, Betz H, Ko J, Chang I, Um JW. Impaired formation of high-order gephyrin oligomers underlies gephyrin dysfunction-associated pathologies. iScience 2021; 24:102037. [PMID: 33532714 PMCID: PMC7822942 DOI: 10.1016/j.isci.2021.102037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gephyrin is critical for the structure, function, and plasticity of inhibitory synapses. Gephyrin mutations have been linked to various neurological disorders; however, systematic analyses of the functional consequences of these mutations are lacking. Here, we performed molecular dynamics simulations of gephyrin to predict how six reported point mutations might change the structural stability and/or function of gephyrin. Additional in silico analyses revealed that the A91T and G375D mutations reduce the binding free energy of gephyrin oligomer formation. Gephyrin A91T and G375D displayed altered clustering patterns in COS-7 cells and nullified the inhibitory synapse-promoting effect of gephyrin in cultured neurons. However, only the G375D mutation reduced gephyrin interaction with GABAA receptors and neuroligin-2 in mouse brain; it also failed to normalize deficits in GABAergic synapse maintenance and neuronal hyperactivity observed in hippocampal dentate gyrus-specific gephyrin-deficient mice. Our results provide insights into biochemical, cell-biological, and network-activity effects of the pathogenic G375D mutation.
Collapse
Affiliation(s)
- Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Mooseok Kang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ae-Ree Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| | - Heinrich Betz
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Iksoo Chang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea.,Supercomputing Bigdata Center, DGIST, Daegu 42988, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| |
Collapse
|
15
|
Schäfer J, Förster L, Mey I, Papadopoulos T, Brose N, Steinem C. Neuroligin-2 dependent conformational activation of collybistin reconstituted in supported hybrid membranes. J Biol Chem 2020; 295:18604-18613. [PMID: 33127642 PMCID: PMC7939476 DOI: 10.1074/jbc.ra120.015347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
The assembly of the postsynaptic transmitter sensing machinery at inhibitory nerve cell synapses requires the intimate interplay between cell adhesion proteins, scaffold and adaptor proteins, and γ-aminobutyric acid (GABA) or glycine receptors. We developed an in vitro membrane system to reconstitute this process, to identify the essential protein components, and to define their mechanism of action, with a specific focus on the mechanism by which the cytosolic C terminus of the synaptic cell adhesion protein Neuroligin-2 alters the conformation of the adaptor protein Collybistin-2 and thereby controls Collybistin-2-interactions with phosphoinositides (PtdInsPs) in the plasma membrane. Supported hybrid membranes doped with different PtdInsPs and 1,2-dioleoyl-sn-glycero-3-{[N-(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl} nickel salt (DGS-NTA(Ni)) to allow for the specific adsorption of the His6-tagged intracellular domain of Neuroligin-2 (His-cytNL2) were prepared on hydrophobically functionalized silicon dioxide substrates via vesicle spreading. Two different collybistin variants, the WT protein (CB2SH3) and a mutant that adopts an intrinsically 'open' and activated conformation (CB2SH3/W24A-E262A), were bound to supported membranes in the absence or presence of His-cytNL2. The corresponding binding data, obtained by reflectometric interference spectroscopy, show that the interaction of the C terminus of Neuroligin-2 with Collybistin-2 induces a conformational change in Collybistin-2 that promotes its interaction with distinct membrane PtdInsPs.
Collapse
Affiliation(s)
- Jonas Schäfer
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany
| | - Lucas Förster
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany
| | - Ingo Mey
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany
| | | | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
| |
Collapse
|
16
|
A proline-rich motif in the large intracellular loop of the glycine receptor α1 subunit interacts with the Pleckstrin homology domain of collybistin. J Adv Res 2020; 29:95-106. [PMID: 33842008 PMCID: PMC8020344 DOI: 10.1016/j.jare.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/14/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction The inhibitory glycine receptor (GlyR), a mediator of fast synaptic inhibition, is located and held at neuronal synapses through the anchoring proteins gephyrin and collybistin. Stable localization of neurotransmitter receptors is essential for synaptic function. In case of GlyRs, only beta subunits were known until now to mediate synaptic anchoring. Objectives We identified a poly-proline II helix (PPII) in position 365–373 of the intra-cellular TM3-4 loop of the human GlyRα1 subunit as a novel potential synaptic anchoring site. The potential role of the PPII helix as synaptic anchoring site was tested. Methods Glycine receptors and collybistin variants were generated and recombinantly expressed in HEK293 cells and cultured neurons. Receptor function was assessed using patch-clamp electrophysiology, protein-protein interaction was studied using co-immuno-precipitation and pulldown experiments. Results Recombinantly expressed collybistin bound to isolated GlyRα1 TM3-4 loops in GST-pulldown assays. When the five proline residues P365A, P366A, P367A, P369A, P373A (GlyRα1P1-5A) located in the GlyRα1-PPII helix were replaced by alanines, the PPII secondary structure was disrupted. Recombinant GlyRα1P1-5A mutant subunits displayed normal cell surface expression and wildtype-like ion channel function, but binding to collybistin was abolished. The GlyRα1-collybistin interaction was independently confirmed by o-immunoprecipitation assays using full-length GlyRα1 subunits. Surprisingly, the interaction was not mediated by the SH3 domain of collybistin, but by its Pleckstrin homology (PH) domain. The mutation GlyRα1P366L, identified in a hyperekplexia patient, is also disrupting the PPII helix, and caused reduced collybistin binding. Conclusion Our data suggest a novel interaction between α1 GlyR subunits and collybistin, which is physiologically relevant in vitro and in vivo and may contribute to postsynaptic anchoring of glycine receptors.
Collapse
|
17
|
Rauschenberger V, von Wardenburg N, Schaefer N, Ogino K, Hirata H, Lillesaar C, Kluck CJ, Meinck H, Borrmann M, Weishaupt A, Doppler K, Wickel J, Geis C, Sommer C, Villmann C. Glycine Receptor
Autoantibodies Impair Receptor Function and Induce Motor Dysfunction. Ann Neurol 2020; 88:544-561. [DOI: 10.1002/ana.25832] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Vera Rauschenberger
- Institute for Clinical NeurobiologyUniversity Hospital, Julius Maximilian University of Würzburg Würzburg Germany
| | - Niels von Wardenburg
- Institute for Clinical NeurobiologyUniversity Hospital, Julius Maximilian University of Würzburg Würzburg Germany
| | - Natascha Schaefer
- Institute for Clinical NeurobiologyUniversity Hospital, Julius Maximilian University of Würzburg Würzburg Germany
| | - Kazutoyo Ogino
- Department of Chemistry and Biological ScienceCollege of Science and Engineering, Aoyama Gakuin University Tokyo Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological ScienceCollege of Science and Engineering, Aoyama Gakuin University Tokyo Japan
| | - Christina Lillesaar
- Department of Child and Adolescent PsychiatryCenter of Mental Health, University Hospital of Würzburg Würzburg Germany
| | - Christoph J. Kluck
- Institute of Biochemistry, Emil Fischer Center, Friedrich Alexander University Erlangen–Nürnberg Erlangen Germany
| | | | - Marc Borrmann
- WittenHelios University Hospital Wuppertal, Department of Nephrology and Rheumatology, Witten/Herdecke University Germany
| | - Andreas Weishaupt
- Department of NeurologyUniversity Hospital Würzburg Würzburg Germany
| | - Kathrin Doppler
- Department of NeurologyUniversity Hospital Würzburg Würzburg Germany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of NeurologyJena University Hospital Jena Germany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of NeurologyJena University Hospital Jena Germany
| | - Claudia Sommer
- Department of NeurologyUniversity Hospital Würzburg Würzburg Germany
| | - Carmen Villmann
- Institute for Clinical NeurobiologyUniversity Hospital, Julius Maximilian University of Würzburg Würzburg Germany
| |
Collapse
|
18
|
Kosaka Y, Yafuso T, Shimizu-Okabe C, Kim J, Kobayashi S, Okura N, Ando H, Okabe A, Takayama C. Development and persistence of neuropathic pain through microglial activation and KCC2 decreasing after mouse tibial nerve injury. Brain Res 2020; 1733:146718. [PMID: 32045595 DOI: 10.1016/j.brainres.2020.146718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Gamma-amino butyric acid (GABA) is an inhibitory neurotransmitter in the mature brain, but is excitatory during development and after motor nerve injury. This difference in GABAergic action depends on the intracellular chloride ion concentration ([Cl-]i), primarily regulated by potassium chloride co-transporter 2 (KCC2). To reveal precise processes of the neuropathic pain through changes in GABAergic action, we prepared tibial nerve ligation and severance models using male mice, and examined temporal relationships amongst changes in (1) the mechanical withdrawal threshold in the sural nerve area, (2) localization of the molecules involved in GABAergic transmission and its upstream signaling in the dorsal horn, and (3) histology of the tibial nerve. In the ligation model, tibial nerve degeneration disappeared by day 56, but mechanical allodynia, reduced KCC2 localization, and increased microglia density remained until day 90. Microglia density was higher in the tibial zone than the sural zone before day 21, but this result was inverted after day 28. In contrast, in the severance model, all above changes were detected until day 28, but were simultaneously and significantly recovered by day 90. These results suggested that in male mice, allodynia may be caused by reduced GABAergic synaptic inhibition, resulting from elevated [Cl-]i after the reduction of KCC2 by activated microglia. Furthermore, our results suggested that factors from degenerating nerve terminals may diffuse into the sural zone, whereby they induced the development of allodynia in the sural nerve area, while other factors in the sural zone may mediate persistent allodynia through the same pathway.
Collapse
Affiliation(s)
- Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Hironobu Ando
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
19
|
Morales-Calixto E, Velázquez-Flores MÁ, Sánchez-Chávez G, Ruiz Esparza-Garrido R, Salceda R. Glycine receptor is differentially expressed in the rat retina at early stages of streptozotocin-induced diabetes. Neurosci Lett 2019; 712:134506. [DOI: 10.1016/j.neulet.2019.134506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
|
20
|
Sorting nexin 27 rescues neuroligin 2 from lysosomal degradation to control inhibitory synapse number. Biochem J 2019; 476:293-306. [PMID: 30602588 DOI: 10.1042/bcj20180504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/14/2023]
Abstract
Retromer is an evolutionarily conserved endosomal trafficking complex that mediates the retrieval of cargo proteins from a degradative pathway for sorting back to the cell surface. To promote cargo recycling, the core retromer trimer of VPS (vacuolar protein sorting)26, VPS29 and VPS35 recognises cargo either directly, or through an adaptor protein, the most well characterised of which is the PDZ [postsynaptic density 95 (PSD95), disk large, zona occludens] domain-containing sorting nexin SNX27. Neuroligins (NLGs) are postsynaptic trans-synaptic scaffold proteins that function in the clustering of postsynaptic proteins to maintain synaptic stability. Here, we show that each of the NLGs (NLG1-3) bind to SNX27 in a direct PDZ ligand-dependent manner. Depletion of SNX27 from neurons leads to a decrease in levels of each NLG protein and, for NLG2, this occurs as a result of enhanced lysosomal degradation. Notably, while depletion of the core retromer component VPS35 leads to a decrease in NLG1 and NLG3 levels, NLG2 is unaffected, suggesting that, for this cargo, SNX27 acts independently of retromer. Consistent with loss of SNX27 leading to enhanced lysosomal degradation of NLG2, knockdown of SNX27 results in fewer NLG2 clusters in cultured neurons, and loss of SNX27 or VPS35 reduces the size and number of gephyrin clusters. Together, these data indicate that NLGs are SNX27-retromer cargoes and suggest that SNX27-retromer controls inhibitory synapse number, at least in part through trafficking of NLG2.
Collapse
|
21
|
Specht CG. Fractional occupancy of synaptic binding sites and the molecular plasticity of inhibitory synapses. Neuropharmacology 2019; 169:107493. [PMID: 30648560 DOI: 10.1016/j.neuropharm.2019.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/01/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023]
Abstract
The postsynaptic density (PSD) at inhibitory synapses is a complex molecular assembly that serves as a platform for the interaction of neurotransmitter receptors, scaffold and adapter proteins, cytoskeletal elements and signalling molecules. The stability of the PSD depends on a multiplicity of interactions linking individual components. At the same time the PSD retains a substantial degree of flexibility. The continuous exchange of synaptic molecules and the preferential addition or removal of certain components induce plastic changes in the synaptic structure. This property necessarily implies that interactors are in dynamic equilibrium and that not all synaptic binding sites are occupied simultaneously. This review discusses the molecular plasticity of inhibitory synapses in terms of the connectivity of their components. Whereas stable protein complexes are marked by stoichiometric relationships between subunits, the majority of synaptic interactions have fractional occupancy, which is here defined as the non-saturation of synaptic binding sites. Fractional occupancy can have several causes: reduced kinetic or thermodynamic stability of the interactions, an imbalance in the concentrations or limited spatio-temporal overlap of interacting proteins, negative cooperativity or mutually exclusive binding. The role of fractional occupancy in the regulation of synaptic structure and function is explored based on recent data about the connectivity of inhibitory receptors and scaffold proteins. I propose that the absolute quantification of interactors and their stoichiometry at identified synapses can provide new mechanistic insights into the dynamic properties of inhibitory PSDs at the molecular level. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Christian G Specht
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institute of Biology (IBENS), Paris, 75005, France.
| |
Collapse
|
22
|
Groeneweg FL, Trattnig C, Kuhse J, Nawrotzki RA, Kirsch J. Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Histochem Cell Biol 2018; 150:489-508. [DOI: 10.1007/s00418-018-1725-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
|
23
|
Kasaragod VB, Schindelin H. Structure-Function Relationships of Glycine and GABA A Receptors and Their Interplay With the Scaffolding Protein Gephyrin. Front Mol Neurosci 2018; 11:317. [PMID: 30258351 PMCID: PMC6143783 DOI: 10.3389/fnmol.2018.00317] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/16/2018] [Indexed: 12/03/2022] Open
Abstract
Glycine and γ-aminobutyric acid (GABA) are the major determinants of inhibition in the central nervous system (CNS). These neurotransmitters target glycine and GABAA receptors, respectively, which both belong to the Cys-loop superfamily of pentameric ligand-gated ion channels (pLGICs). Interactions of the neurotransmitters with the cognate receptors result in receptor opening and a subsequent influx of chloride ions, which, in turn, leads to hyperpolarization of the membrane potential, thus counteracting excitatory stimuli. The majority of glycine receptors and a significant fraction of GABAA receptors (GABAARs) are recruited and anchored to the post-synaptic membrane by the central scaffolding protein gephyrin. This ∼93 kDa moonlighting protein is structurally organized into an N-terminal G-domain (GephG) connected to a C-terminal E-domain (GephE) via a long unstructured linker. Both inhibitory neurotransmitter receptors interact via a short peptide motif located in the large cytoplasmic loop located in between transmembrane helices 3 and 4 (TM3-TM4) of the receptors with a universal receptor-binding epitope residing in GephE. Gephyrin engages in nearly identical interactions with the receptors at the N-terminal end of the peptide motif, and receptor-specific interaction toward the C-terminal region of the peptide. In addition to its receptor-anchoring function, gephyrin also interacts with a rather large collection of macromolecules including different cytoskeletal elements, thus acting as central scaffold at inhibitory post-synaptic specializations. Dysfunctions in receptor-mediated or gephyrin-mediated neurotransmission have been identified in various severe neurodevelopmental disorders. Although biochemical, cellular and electrophysiological studies have helped to understand the physiological and pharmacological roles of the receptors, recent high resolution structures of the receptors have strengthened our understanding of the receptors and their gating mechanisms. Besides that, multiple crystal structures of GephE in complex with receptor-derived peptides have shed light into receptor clustering by gephyrin at inhibitory post-synapses. This review will highlight recent biochemical and structural insights into gephyrin and the GlyRs as well as GABAA receptors, which provide a deeper understanding of the molecular machinery mediating inhibitory neurotransmission.
Collapse
Affiliation(s)
- Vikram B Kasaragod
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Kim J, Kobayashi S, Shimizu-Okabe C, Okabe A, Moon C, Shin T, Takayama C. Changes in the expression and localization of signaling molecules in mouse facial motor neurons during regeneration of facial nerves. J Chem Neuroanat 2018; 88:13-21. [PMID: 29113945 DOI: 10.1016/j.jchemneu.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/20/2022]
Abstract
After injury, peripheral axons usually re-extend toward their target, and neuronal functions recover. Previous studies have reported that expression of various molecules are transiently altered in motor neurons after nerve injury, but the time course of these changes and their relationship with functional recovery have not been clearly demonstrated. We used the mouse facial nerve transection and suturing model, and examined the changes in expression of five molecules, choline acetyl transferase (ChAT), galanin, calcitonin gene-related protein (CGRP), gephyrin, and potassium chloride co-transporter 2 (KCC2) in the facial motor neurons after surgery until recovery. Number of ChAT-positive neurons was markedly decreased at days 3 and 7, and recovered to the normal level by day 60, when facial motor functions recovered. Localization of two neuropeptides, CGRP and galanin, was increased in the perikarya and axons during regeneration, and returned to the normal levels by days 60 and 28, respectively. Expression of two postsynaptic elements of γ-amino butyric acid synapses, gephyrin and KCC2, was decreased at days 3 and 7, and recovered by day 60. These results suggest that ChAT, CGRP, and KCC2 may be objective indicators of regeneration, and altering their expression may be related to the functional recovery and axonal re-extension.
Collapse
Affiliation(s)
- Jeongtae Kim
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan; Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Taekyun Shin
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.
| |
Collapse
|
25
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
26
|
Sequences Flanking the Gephyrin-Binding Site of GlyRβ Tune Receptor Stabilization at Synapses. eNeuro 2018; 5:eN-NWR-0042-17. [PMID: 29464196 PMCID: PMC5818551 DOI: 10.1523/eneuro.0042-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 12/26/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via the cytoplasmic loop in the β-subunit (β-loop). This binding involves high- and low-affinity interactions, but the molecular mechanism of this bimodal binding and its implication in GlyR stabilization at synapses remain unknown. We have approached this question using a combination of quantitative biochemical tools and high-density single molecule tracking in cultured rat spinal cord neurons. The high-affinity binding site could be identified and was shown to rely on the formation of a 310-helix C-terminal to the β-loop core gephyrin-binding motif. This site plays a structural role in shaping the core motif and represents the major contributor to the synaptic confinement of GlyRs by gephyrin. The N-terminal flanking sequence promotes lower affinity interactions by occupying newly identified binding sites on gephyrin. Despite its low affinity, this binding site plays a modulatory role in tuning the mobility of the receptor. Together, the GlyR β-loop sequences flanking the core-binding site differentially regulate the affinity of the receptor for gephyrin and its trapping at synapses. Our experimental approach thus bridges the gap between thermodynamic aspects of receptor-scaffold interactions and functional receptor stabilization at synapses in living cells.
Collapse
|
27
|
Yamasaki T, Hoyos-Ramirez E, Martenson JS, Morimoto-Tomita M, Tomita S. GARLH Family Proteins Stabilize GABA A Receptors at Synapses. Neuron 2017; 93:1138-1152.e6. [PMID: 28279354 DOI: 10.1016/j.neuron.2017.02.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 05/26/2016] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
Ionotropic neurotransmitter receptors mediate fast synaptic transmission by functioning as ligand-gated ion channels. Fast inhibitory transmission in the brain is mediated mostly by ionotropic GABAA receptors (GABAARs), but their essential components for synaptic localization remain unknown. Here, we identify putative auxiliary subunits of GABAARs, which we term GARLHs, consisting of LH4 and LH3 proteins. LH4 forms a stable tripartite complex with GABAARs and neuroligin-2 in the brain. Moreover, LH4 is required for the synaptic localization of GABAARs and inhibitory synaptic transmission in the hippocampus. Our findings propose GARLHs as the first identified auxiliary subunits for anion channels. These findings provide new insights into the regulation of inhibitory transmission and the molecular constituents of native anion channels in vivo.
Collapse
Affiliation(s)
- Tokiwa Yamasaki
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Erika Hoyos-Ramirez
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James S Martenson
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Megumi Morimoto-Tomita
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
28
|
Sánchez-Chávez G, Velázquez-Flores MÁ, Ruiz Esparza-Garrido R, Salceda R. Glycine receptor subunits expression in the developing rat retina. Neurochem Int 2017; 108:177-182. [DOI: 10.1016/j.neuint.2017.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022]
|
29
|
Tuem KB, Atey TM. Neuroactive Steroids: Receptor Interactions and Responses. Front Neurol 2017; 8:442. [PMID: 28894435 PMCID: PMC5581316 DOI: 10.3389/fneur.2017.00442] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity.
Collapse
Affiliation(s)
- Kald Beshir Tuem
- Department of Pharmacology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Tesfay Mehari Atey
- Clinical Pharmacy Unit, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
30
|
Papadopoulos T, Rhee HJ, Subramanian D, Paraskevopoulou F, Mueller R, Schultz C, Brose N, Rhee JS, Betz H. Endosomal Phosphatidylinositol 3-Phosphate Promotes Gephyrin Clustering and GABAergic Neurotransmission at Inhibitory Postsynapses. J Biol Chem 2016; 292:1160-1177. [PMID: 27941024 DOI: 10.1074/jbc.m116.771592] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- From the Department of Molecular Biology, Center of Biochemistry and Molecular Cell Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany,
| | - Hong Jun Rhee
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Devaraj Subramanian
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Foteini Paraskevopoulou
- From the Department of Molecular Biology, Center of Biochemistry and Molecular Cell Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Rainer Mueller
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Carsten Schultz
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,the Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Nils Brose
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Jeong-Seop Rhee
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Heinrich Betz
- the Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt am Main, Germany, and.,the Max Planck Institute of Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
32
|
Ogino K, Hirata H. Defects of the Glycinergic Synapse in Zebrafish. Front Mol Neurosci 2016; 9:50. [PMID: 27445686 PMCID: PMC4925712 DOI: 10.3389/fnmol.2016.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/13/2016] [Indexed: 12/26/2022] Open
Abstract
Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish.
Collapse
Affiliation(s)
- Kazutoyo Ogino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara, Japan
| |
Collapse
|
33
|
Langlhofer G, Villmann C. The Intracellular Loop of the Glycine Receptor: It's not all about the Size. Front Mol Neurosci 2016; 9:41. [PMID: 27330534 PMCID: PMC4891346 DOI: 10.3389/fnmol.2016.00041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/17/2016] [Indexed: 11/15/2022] Open
Abstract
The family of Cys-loop receptors (CLRs) shares a high degree of homology and sequence identity. The overall structural elements are highly conserved with a large extracellular domain (ECD) harboring an α-helix and 10 β-sheets. Following the ECD, four transmembrane domains (TMD) are connected by intracellular and extracellular loop structures. Except the TM3–4 loop, their length comprises 7–14 residues. The TM3–4 loop forms the largest part of the intracellular domain (ICD) and exhibits the most variable region between all CLRs. The ICD is defined by the TM3–4 loop together with the TM1–2 loop preceding the ion channel pore. During the last decade, crystallization approaches were successful for some members of the CLR family. To allow crystallization, the intracellular loop was in most structures replaced by a short linker present in prokaryotic CLRs. Therefore, no structural information about the large TM3–4 loop of CLRs including the glycine receptors (GlyRs) is available except for some basic stretches close to TM3 and TM4. The intracellular loop has been intensively studied with regard to functional aspects including desensitization, modulation of channel physiology by pharmacological substances, posttranslational modifications, and motifs important for trafficking. Furthermore, the ICD interacts with scaffold proteins enabling inhibitory synapse formation. This review focuses on attempts to define structural and functional elements within the ICD of GlyRs discussed with the background of protein-protein interactions and functional channel formation in the absence of the TM3–4 loop.
Collapse
Affiliation(s)
- Georg Langlhofer
- Institute of Clinical Neurobiology, University of Würzburg Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
34
|
Maleeva GV, Bregestovski PD. [GLYCINE RECEPTOR: MOLECULAR ORGANIZATION AND PATHOLOGY]. ACTA ACUST UNITED AC 2016; 61:107-17. [PMID: 26845851 DOI: 10.15407/fz61.05.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glycine receptor is the anion-selective channel, providing fast synaptic transmission in the central nervous system of vertebrates. Together with the nicotinic acetylcholine, GABA and serotonin (5-HT3R) receptors, it belongs to the superfamily of pentameric cys-loop receptors. In this review we briefly describe main functions of these transmembrane proteins, their distribution and molecular architecture. Special attention is paid to recent studies on the molecular physiology of these receptors, as well as on presenting of molecular domains responsible for their dysfunction.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Central Nervous System/metabolism
- Central Nervous System/physiopathology
- Gene Expression
- Humans
- Ion Transport
- Mutation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, GABA/chemistry
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
- Receptors, Glycine/chemistry
- Receptors, Glycine/genetics
- Receptors, Glycine/metabolism
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Receptors, Serotonin, 5-HT3/chemistry
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/metabolism
- Reflex, Startle/genetics
- Serotonin/metabolism
- Synaptic Transmission
Collapse
|
35
|
Schwale C, Schumacher S, Bruehl C, Titz S, Schlicksupp A, Kokocinska M, Kirsch J, Draguhn A, Kuhse J. KCC2 knockdown impairs glycinergic synapse maturation in cultured spinal cord neurons. Histochem Cell Biol 2016; 145:637-46. [PMID: 26780567 DOI: 10.1007/s00418-015-1397-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 11/26/2022]
Abstract
Synaptic inhibition in the spinal cord is mediated mainly by strychnine-sensitive glycine (GlyRs) and by γ-aminobutyric acid type A receptors (GABAAR). During neuronal maturation, neonatal GlyRs containing α2 subunits are replaced by adult-type GlyRs harboring α1 and α3 subunits. At the same time period of postnatal development, the transmembrane chloride gradient is changed due to increased expression of the potassium-chloride cotransporter (KCC2), thereby shifting the GABA- and glycine-mediated synaptic currents from mostly excitatory depolarization to inhibitory hyperpolarization. Here, we used RNA interference to suppress KCC2 expression during in vitro maturation of spinal cord neurons. Morphological analysis revealed reduced numbers and size of dendritic GlyR clusters containing α1 subunits but not of clusters harboring neonatal α2 subunits. The morphological changes were accompanied by decreased frequencies and amplitudes of glycinergic miniature inhibitory currents, whereas GABAergic synapses appeared functionally unaltered. Our data indicate that KCC2 exerts specific functions for the maturation of glycinergic synapses in cultured spinal cord neurons.
Collapse
Affiliation(s)
- Chrysovalandis Schwale
- Institute for Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Stefanie Schumacher
- Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany
| | - Claus Bruehl
- Institute for Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Stefan Titz
- Institute for Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Andrea Schlicksupp
- Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany
| | - Mirka Kokocinska
- Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany
| | - Joachim Kirsch
- Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Jochen Kuhse
- Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Ludolphs M, Schneeberger D, Soykan T, Schäfer J, Papadopoulos T, Brose N, Schindelin H, Steinem C. Specificity of Collybistin-Phosphoinositide Interactions: IMPACT OF THE INDIVIDUAL PROTEIN DOMAINS. J Biol Chem 2015; 291:244-54. [PMID: 26546675 DOI: 10.1074/jbc.m115.673400] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 01/01/2023] Open
Abstract
The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally "opens" CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.
Collapse
Affiliation(s)
- Michaela Ludolphs
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Daniela Schneeberger
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Tolga Soykan
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany, and
| | - Jonas Schäfer
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Theofilos Papadopoulos
- Universitätsmedizin Göttingen, Department of Molecular Biology, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany, and
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Claudia Steinem
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany,
| |
Collapse
|
37
|
Maleeva G, Buldakova S, Bregestovski P. Selective potentiation of alpha 1 glycine receptors by ginkgolic acid. Front Mol Neurosci 2015; 8:64. [PMID: 26578878 PMCID: PMC4624854 DOI: 10.3389/fnmol.2015.00064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022] Open
Abstract
Glycine receptors (GlyRs) belong to the superfamily of pentameric cys-loop receptor-operated channels and are involved in numerous physiological functions, including movement, vision, and pain. In search for compounds performing subunit-specific modulation of GlyRs we studied action of ginkgolic acid, an abundant Ginkgo biloba product. Using patch-clamp recordings, we analyzed the effects of ginkgolic acid in concentrations from 30 nM to 25 μM on α1–α3 and α1/β, α2/β configurations of GlyR and on GABAARs expressed in cultured CHO-K1 cells and mouse neuroblastoma (N2a) cells. Ginkgolic acid caused an increase in the amplitude of currents mediated by homomeric α1 and heteromeric α1/β GlyRs and provoked a left-shift of the concentration-dependent curves for glycine. Even at high concentrations (10–25 μM) ginkgolic acid was not able to augment ionic currents mediated by α2, α2/β, and α3 GlyRs, or by GABAAR consisting of α1/β2/γ2 subunits. Mutation of three residues (T59A/A261G/A303S) in the α2 GlyR subunit to the corresponding ones from the α1 converted the action of ginkgolic acid to potentiation with a distinct decrease in EC50 for glycine, suggesting an important role for these residues in modulation by ginkgolic acid. Our results suggest that ginkgolic acid is a novel selective enhancer of α1 GlyRs.
Collapse
Affiliation(s)
- Galyna Maleeva
- Aix Marseille Université, INS UMR_S 1106 Marseille, France ; INSERM, UMR_S 1106 Marseille, France ; Department of Cytology, Bogomoletz Institute of Physiology Kyiv, Ukraine
| | - Svetlana Buldakova
- Aix Marseille Université, INS UMR_S 1106 Marseille, France ; INSERM, UMR_S 1106 Marseille, France
| | - Piotr Bregestovski
- Aix Marseille Université, INS UMR_S 1106 Marseille, France ; INSERM, UMR_S 1106 Marseille, France
| |
Collapse
|
38
|
Radixin regulates synaptic GABAA receptor density and is essential for reversal learning and short-term memory. Nat Commun 2015; 6:6872. [PMID: 25891999 PMCID: PMC4411296 DOI: 10.1038/ncomms7872] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/06/2015] [Indexed: 12/24/2022] Open
Abstract
Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs.
Collapse
|
39
|
Choii G, Ko J. Gephyrin: a central GABAergic synapse organizer. Exp Mol Med 2015; 47:e158. [PMID: 25882190 DOI: 10.1038/emm.2015.5] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/18/2014] [Indexed: 01/22/2023] Open
Abstract
Gephyrin is a central element that anchors, clusters and stabilizes glycine and γ-aminobutyric acid type A receptors at inhibitory synapses of the mammalian brain. It self-assembles into a hexagonal lattice and interacts with various inhibitory synaptic proteins. Intriguingly, the clustering of gephyrin, which is regulated by multiple posttranslational modifications, is critical for inhibitory synapse formation and function. In this review, we summarize the basic properties of gephyrin and describe recent findings regarding its roles in inhibitory synapse formation, function and plasticity. We will also discuss the implications for the pathophysiology of brain disorders and raise the remaining open questions in this field.
Collapse
Affiliation(s)
- Gayoung Choii
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jaewon Ko
- 1] Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea [2] Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Protein kinase C-dependent growth-associated protein 43 phosphorylation regulates gephyrin aggregation at developing GABAergic synapses. Mol Cell Biol 2015; 35:1712-26. [PMID: 25755278 DOI: 10.1128/mcb.01332-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
Growth-associated protein 43 (GAP43) is known to regulate axon growth, but whether it also plays a role in synaptogenesis remains unclear. Here, we found that GAP43 regulates the aggregation of gephyrin, a pivotal protein for clustering postsynaptic GABA(A) receptors (GABA(A)Rs), in developing cortical neurons. Pharmacological blockade of either protein kinase C (PKC) or neuronal activity increased both GAP43-gephyrin association and gephyrin misfolding-induced aggregation, suggesting the importance of PKC-dependent regulation of GABAergic synapses. Furthermore, we found that PKC phosphorylation-resistant GAP43(S41A), but not PKC phosphorylation-mimicking GAP43(S41D), interacted with cytosolic gephyrin to trigger gephyrin misfolding and its sequestration into aggresomes. In contrast, GAP43(S41D), but not GAP43(S41A), inhibited the physiological aggregation/clustering of gephyrin, reduced surface GABA(A)Rs under physiological conditions, and attenuated gephyrin misfolding under transient oxygen-glucose deprivation (tOGD) that mimics pathological neonatal hypoxia. Calcineurin-mediated GAP43 dephosphorylation that accompanied tOGD also led to GAP43-gephyrin association and gephyrin misfolding. Thus, PKC-dependent phosphorylation of GAP43 plays a critical role in regulating postsynaptic gephyrin aggregation in developing GABAergic synapses.
Collapse
|
41
|
GSK3 and KIF5 regulate activity-dependent sorting of gephyrin between axons and dendrites. Eur J Cell Biol 2015; 94:173-8. [DOI: 10.1016/j.ejcb.2015.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/23/2022] Open
|
42
|
Koeppen AH, Ramirez L, Becker AB, Feustel PJ, Mazurkiewicz JE. Friedreich ataxia: failure of GABA-ergic and glycinergic synaptic transmission in the dentate nucleus. J Neuropathol Exp Neurol 2015; 74:166-76. [PMID: 25575136 PMCID: PMC4294979 DOI: 10.1097/nen.0000000000000160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Atrophy of large neurons in the dentate nucleus (DN) is an important pathologic correlate of neurologic disability in patients with Friedreich ataxia (FA). Thinning of the DN was quantified in 29 autopsy cases of FA and 2 carriers by measuring the thickness of the gray matter ribbon on stains with anti-glutamic acid decarboxylase, the rate-limiting enzyme in the biosynthesis of γ-amino-butyric acid (GABA). The DN was thinner than normal in all cases of FA, and atrophy correlated inversely with disease duration but not with age at onset or length of the homozygous guanine-adenine-adenine trinucleotide expansions. In 13 of the FA cases, frozen DN tissue was available for assay of frataxin. Dentate nucleus atrophy was more severe when frataxin was very low. Immunohistochemical staining for glutamic acid decarboxylase revealed grumose reaction and preservation of small GABA-ergic neurons in the DN of FA patients. Residual small DN neurons and varicose axons also contained the glycine transporter 2, identifying them as glycinergic. Immunohistochemistry also confirmed severe loss of GABA-A and glycine receptors in the DN with comparable depletion of the receptor-anchoring protein gephyrin. Thus, loss of gephyrin and failure to position GABA-A and glycine receptors correctly may reduce trophic support of large DN neurons and contribute to their atrophy. By contrast, Purkinje cells may escape retrograde atrophy in FA by issuing new axonal sprouts to small surviving DN neurons where they form reparative grumose clusters.
Collapse
Affiliation(s)
- Arnulf H. Koeppen
- Research Service, VA Medical Center, Albany, New York
- Department of Neurology, Albany Medical College, Albany, New York
- Department of Pathology, Albany Medical College, Albany, New York
| | - Liane Ramirez
- Research Service, VA Medical Center, Albany, New York
| | | | - Paul J. Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York
| | | |
Collapse
|
43
|
Maric HM, Kasaragod VB, Schindelin H. Modulation of gephyrin-glycine receptor affinity by multivalency. ACS Chem Biol 2014; 9:2554-62. [PMID: 25137389 DOI: 10.1021/cb500303a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gephyrin is a major determinant for the accumulation and anchoring of glycine receptors (GlyRs) and the majority of γ-aminobutyric acid type A receptors (GABAARs) at postsynaptic sites. Here we explored the interaction of gephyrin with a dimeric form of a GlyR β-subunit receptor-derived peptide. A 2 Å crystal structure of the C-terminal domain of gephyrin (GephE) in complex with a 15-residue peptide derived from the GlyR β-subunit defined the core binding site, which we targeted with the dimeric peptide. Biophysical analyses via differential scanning calorimetry (DSC), thermofluor, and isothermal titration calorimetry (ITC) demonstrated that this dimeric ligand is capable of binding simultaneously to two receptor binding sites and that this multivalency results in a 25-fold enhanced affinity. Our study therefore suggests that the oligomeric state of gephyrin and the number of gephyrin-binding subunits in the pentameric GABAARs and GlyRs together control postsynaptic receptor clustering.
Collapse
Affiliation(s)
- Hans Michael Maric
- Institute of Structural Biology, Rudolf Virchow Center
for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.
2, 97080 Würzburg, Germany
| | - Vikram Babu Kasaragod
- Institute of Structural Biology, Rudolf Virchow Center
for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.
2, 97080 Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center
for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.
2, 97080 Würzburg, Germany
| |
Collapse
|
44
|
Trojanova J, Kulik A, Janacek J, Kralikova M, Syka J, Turecek R. Distribution of glycine receptors on the surface of the mature calyx of Held nerve terminal. Front Neural Circuits 2014; 8:120. [PMID: 25339867 PMCID: PMC4186306 DOI: 10.3389/fncir.2014.00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/12/2014] [Indexed: 11/13/2022] Open
Abstract
The physiological functions of glycine receptors (GlyRs) depend on their subcellular locations. In axonal terminals of the central neurons, GlyRs trigger a slow facilitation of presynaptic transmitter release; however, their spatial relationship to the release sites is not known. In this study, we examined the distribution of GlyRs in the rat glutamatergic calyx of Held nerve terminal using high-resolution pre-embedding immunoelectron microscopy. We performed a quantitative analysis of GlyR-associated immunogold (IG) labeling in 3D reconstructed calyceal segments. A variable density of IG particles and their putative accumulations, inferred from the frequency distribution of inter-IG distances, indicated a non-uniform distribution of the receptors in the calyx. Subsequently, increased densities of IG particles were found in calyceal swellings, structures characterized by extensive exocytosis of glutamate. In swellings as well as in larger calyceal stalks, IG particles did not tend to accumulate near the glutamate releasing zones. On the other hand, GlyRs in swellings (but not in stalks) preferentially occupied membrane regions, unconnected to postsynaptic cells and presumably accessible by ambient glycine. Furthermore, the sites with increased GlyR concentrations were found in swellings tightly juxtaposed with GABA/glycinergic nerve endings. Thus, the results support the concept of an indirect mechanism underlying the modulatory effects of calyceal GlyRs, activated by glycine spillover. We also suggest the existence of an activity-dependent mechanism regulating the surface distribution of α homomeric GlyRs in axonal terminals of central neurons.
Collapse
Affiliation(s)
- Johana Trojanova
- Department of Auditory Neuroscience, Laboratory of Synaptic Transmission, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Akos Kulik
- Department of Physiology II, University of Freiburg Freiburg, Germany ; BIOSS Centre for Biological Signalling Studies, University of Freiburg Freiburg, Germany
| | - Jiri Janacek
- Department of Biomathematics, Institute of Physiology, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Michaela Kralikova
- Department of Auditory Neuroscience, Laboratory of Synaptic Transmission, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Laboratory of Synaptic Transmission, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Rostislav Turecek
- Department of Auditory Neuroscience, Laboratory of Synaptic Transmission, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic Prague, Czech Republic
| |
Collapse
|
45
|
Altieri SC, Zhao T, Jalabi W, Maricich SM. Development of glycinergic innervation to the murine LSO and SPN in the presence and absence of the MNTB. Front Neural Circuits 2014; 8:109. [PMID: 25309335 PMCID: PMC4162373 DOI: 10.3389/fncir.2014.00109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/21/2014] [Indexed: 11/13/2022] Open
Abstract
Neurons in the superior olivary complex (SOC) integrate excitatory and inhibitory inputs to localize sounds in space. The majority of these inhibitory inputs have been thought to arise within the SOC from the medial nucleus of the trapezoid body (MNTB). However, recent work demonstrates that glycinergic innervation of the SOC persists in Egr2; En1CKO mice that lack MNTB neurons, suggesting that there are other sources of this innervation (Jalabi et al., 2013). To study the development of MNTB- and non-MNTB-derived glycinergic SOC innervation, we compared immunostaining patterns of glycine transporter 2 (GlyT2) at several postnatal ages in control and Egr2; En1CKO mice. GlyT2 immunostaining was present at birth (P0) in controls and reached adult levels by P7 in the superior paraolivary nucleus (SPN) and by P12 in the lateral superior olive (LSO). In Egr2; En1CKO mice, glycinergic innervation of the LSO developed at a similar rate but was delayed by one week in the SPN. Conversely, consistent reductions in the number of GlyT2+ boutons located on LSO somata were seen at all ages in Egr2; En1CKO mice, while these numbers reached control levels in the SPN by adulthood. Dendritic localization of GlyT2+ boutons was unaltered in both the LSO and SPN of adult Egr2; En1CKO mice. On the postsynaptic side, adult Egr2; En1CKO mice had reduced glycine receptor α1 (GlyRα1) expression in the LSO but normal levels in the SPN. GlyRα2 was not expressed by LSO or SPN neurons in either genotype. These findings contribute important information for understanding the development of MNTB- and non-MNTB-derived glycinergic pathways to the mouse SOC.
Collapse
Affiliation(s)
- Stefanie C Altieri
- Richard King Mellon Foundation Institute for Pediatric Research and Department of Pediatrics, University of Pittsburgh Pittsburgh, PA, USA ; Department of Otolaryngology, University of Pittsburgh Pittsburgh, PA, USA
| | - Tianna Zhao
- Richard King Mellon Foundation Institute for Pediatric Research and Department of Pediatrics, University of Pittsburgh Pittsburgh, PA, USA
| | - Walid Jalabi
- Department of Pediatrics, Case Western Reserve University Cleveland, OH, USA
| | - Stephen M Maricich
- Richard King Mellon Foundation Institute for Pediatric Research and Department of Pediatrics, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
46
|
Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei. J Neurosci 2014; 34:9418-31. [PMID: 25009273 DOI: 10.1523/jneurosci.0401-14.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The principal neurons of the cerebellar nuclei (CN), the sole output of the olivo-cerebellar system, receive a massive inhibitory input from Purkinje cells (PCs) of the cerebellar cortex. Morphological evidence suggests that CN principal cells are also contacted by inhibitory interneurons, but the properties of this connection are unknown. Using transgenic, tracing, and immunohistochemical approaches in mice, we show that CN interneurons form a large heterogeneous population with GABA/glycinergic phenotypes, distinct from GABAergic olive-projecting neurons. CN interneurons are found to contact principal output neurons, via glycine receptor (GlyR)-enriched synapses, virtually devoid of the main GABA receptor (GABAR) subunits α1 and γ2. Those clusters account for 5% of the total number of inhibitory receptor clusters on principal neurons. Brief optogenetic stimulations of CN interneurons, through selective expression of channelrhodopsin 2 after viral-mediated transfection of the flexed gene in GlyT2-Cre transgenic mice, evoked fast IPSCs in principal cells. GlyR activation accounted for 15% of interneuron IPSC amplitude, while the remaining current was mediated by activation of GABAR. Surprisingly, small GlyR clusters were also found at PC synapses onto principal CN neurons in addition to α1 and γ2 GABAR subunits. However, GlyR activation was found to account for <3% of the PC inhibitory synaptic currents evoked by electrical stimulation. This work establishes CN glycinergic neurons as a significant source of inhibition to CN principal cells, forming contacts molecularly distinct from, but functionally similar to, Purkinje cell synapses. Their impact on CN output, motor learning, and motor execution deserves further investigation.
Collapse
|
47
|
Linsalata AE, Chen X, Winters CA, Reese TS. Electron tomography on γ-aminobutyric acid-ergic synapses reveals a discontinuous postsynaptic network of filaments. J Comp Neurol 2014; 522:921-36. [PMID: 23982982 DOI: 10.1002/cne.23453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 12/16/2022]
Abstract
The regulation of synaptic strength at γ-aminobutyric acid (GABA)-ergic synapses is dependent on the dynamic capture, retention, and modulation of GABA A-type receptors by cytoplasmic proteins at GABAergic postsynaptic sites. How these proteins are oriented and organized in the postsynaptic cytoplasm is not yet established. To better understand these structures and gain further insight into the mechanisms by which they regulate receptor populations at postsynaptic sites, we utilized electron tomography to examine GABAergic synapses in dissociated rat hippocampal cultures. GABAergic synapses were identified and selected for tomography by using a set of criteria derived from the structure of immunogold-labeled GABAergic synapses. Tomography revealed a complex postsynaptic network composed of filaments that extend ∼ 100 nm into the cytoplasm from the postsynaptic membrane. The distribution of these postsynaptic filaments was strikingly similar to that of the immunogold label for gephyrin. Filaments were interconnected through uniform patterns of contact, forming complexes composed of 2-12 filaments each. Complexes did not link to form an integrated, continuous scaffold, suggesting that GABAergic postsynaptic specializations are less rigidly organized than glutamatergic postsynaptic densities.
Collapse
Affiliation(s)
- Alexander E Linsalata
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | | | | | | |
Collapse
|
48
|
Lévi S, Le Roux N, Eugène E, Poncer JC. Benzodiazepine ligands rapidly influence GABAA receptor diffusion and clustering at hippocampal inhibitory synapses. Neuropharmacology 2014; 88:199-208. [PMID: 24930360 DOI: 10.1016/j.neuropharm.2014.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/23/2014] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Abstract
Benzodiazepines (BZDs) are widely used in the treatment of a variety of neurological and psychiatric conditions including anxiety, insomnia and epilepsy. BZDs are thought to act predominantly by affecting the gating of GABAA receptor channels, resulting in enhanced GABA-mediated currents in neurons. However, mutations mimicking the effect of BZDs on GABAAR channel gating have been shown to also impact the membrane dynamics and synaptic anchoring of the receptors. Here, using single molecule tracking combined with electrophysiological recordings, we show that BZD ligands rapidly influence the dynamic behavior of GABAARs in hippocampal neurons. Application of the inverse BZD agonist DMCM rapidly increased the diffusion and reduced the clustering of GABAARs at synapses, resulting in reduced postsynaptic currents. Conversely, the BZD full agonist diazepam had little effect at rest but reduced lateral diffusion and increased synaptic stabilization and clustering of GABAARs upon sustained neuronal activity, resulting in enhanced potency of inhibitory synapses. These effects occurred in the absence of detectable changes in gephyrin clusters, suggesting they did not reflect a rapid dispersion of the synaptic scaffold. Thus, alterations of the diffusion and synaptic anchoring of GABAARs represent a novel, unsuspected mechanism through which BZDs rapidly modulate GABA signaling in central neurons.
Collapse
Affiliation(s)
- Sabine Lévi
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France.
| | - Nicolas Le Roux
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France
| | - Emmanuel Eugène
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France.
| |
Collapse
|
49
|
Abstract
The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
Collapse
|
50
|
Heine M, Karpova A, Gundelfinger ED. Counting gephyrins, one at a time: a nanoscale view on the inhibitory postsynapse. Neuron 2013; 79:213-6. [PMID: 23889929 DOI: 10.1016/j.neuron.2013.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gephyrin is the key scaffolding molecule organizing the postsynaptic density at inhibitory synapses. Utilizing localization microscopy, Specht et al. (2013) report in this issue of Neuron on the quantitative assessment of gephyrin clusters and associated glycine receptors and GABAA receptors.
Collapse
Affiliation(s)
- Martin Heine
- Molecular Physiology Research Group, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
| | | | | |
Collapse
|