1
|
Harada K, Matsuoka H, Inoue M. Expression of Mitochondrial Uncoupling Proteins and GABA Signaling Molecules in Unstimulated and Nerve Growth Factor-Stimulated PC12 Cells: Models for Chromaffin Cells and Sympathetic Neurons. J Histochem Cytochem 2025:221554251332981. [PMID: 40289998 PMCID: PMC12037542 DOI: 10.1369/00221554251332981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
PC12 cells are a cell line originating from rat adrenal medullary chromaffin (AMC) cells. They extend a neurite-like structure in response to nerve growth factor (NGF). Thus, unstimulated and NGF-stimulated PC12 cells are used as models for AMC cells and sympathetic ganglion cells, respectively. However, how closely unstimulated and stimulated PC12 cells resemble AMC cells and sympathetic neurons, respectively, has not been elucidated sufficiently. We explored these issues by using biochemical and immunocytochemical methods. AMC cells and PC12 cells selectively expressed uncoupling protein 3 (UCP3) and uncoupling protein 4 (UCP4), respectively, and glucocorticoid activity inhibited UCP4 expression in PC12 cells. PC12 cells expressed extremely low levels of chromaffin granule-associated proteins, whereas the amount of synaptophysin, a synaptic vesicle-associated protein, was much higher than that in the adrenal medulla. Similar to AMC cells, the muscarinic receptor type 1 was located at the cell periphery in unstimulated PC12 cells, and its expression was markedly enhanced by NGF. Furthermore, NGF stimulation abolished the expression of GABA signaling molecules in PC12 cells. The results suggest that the properties of unstimulated PC12 cells are between those of AMC cells and sympathetic ganglion cells and GABA signaling is intrinsic to AMC cells.
Collapse
Affiliation(s)
- Keita Harada
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hidetada Matsuoka
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
2
|
Suda C, Takayama Y, Tominaga M, Akase T. Propofol reduces human TRPA1 activity in a warm environment. Biochem Biophys Rep 2025; 41:101918. [PMID: 39963338 PMCID: PMC11831737 DOI: 10.1016/j.bbrep.2025.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Propofol, an intravenous anesthetic, has a side effect of causing vascular pain at the injection site. However, no effective method to inhibit this vascular pain has been established. Propofol-induced vascular pain is caused by activation of transient receptor potential ankyrin1 (TRPA1), which is expressed in the sensory nerve endings distributed around blood vessels. TRPA1 exhibits temperature sensitivity, and the degree of its activation has been reported to change with temperature. However, whether the temperature of propofol influences human TRPA1 (hTRPA1) activation and regulates the extent of vascular pain has not been examined. We investigated hTRPA1 activity in HEK293T cells in response to cooled or heated propofol using the patch-clamp method. We found that hTRPA1 currents were smaller in a warm environment (>35 °C) with heated propofol. Our results suggest that propofol should be kept above 35 °C to minimize hTRPA1 activation. Moreover, heating propofol decreased hTRPA1-mediated currents but did not alter activation of human GABAA receptors. This finding suggest that heated propofol can inhibit hTRPA1 activation and reduce vascular pain without losing its anesthetic function.
Collapse
Affiliation(s)
- Chihiro Suda
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya, 467-8601, Japan
| | - Tomoko Akase
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Aggarwal Y, Dixit AB, Tripathi M, Doddamani R, Sharma MC, Chandra PS, Banerjee J. Action potential-dependent α4-containing GABA A receptors contribute to epileptogenicity in focal cortical dysplasia. Epilepsy Res 2025; 210:107520. [PMID: 39919537 DOI: 10.1016/j.eplepsyres.2025.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
FCD is a developmental disorder associated with drug-resistant seizures. Alterations in GABAA receptor-mediated activity contribute to seizures in FCD. However, the exact mechanism of altered GABAergic synaptic activity is still unclear. Previously, we showed increased GABAA receptor α4 subunit expression in FCD. In this study, we investigated whether changes in GABAA receptor configuration at synaptic or extrasynaptic sites contribute to enhanced GABAergic activity in the resected samples of FCD patients. Results showed increase in the frequency and amplitude of spontaneous inhibitory postsynaptic currents on treatment with gaboxadol (agonist for α4δ-containing GABAA receptors). In the presence of tetrodotoxin (voltage-gated Na+ channel inhibitor), frequency and amplitude of miniature inhibitory postsynaptic currents were also increased upon treatment with gaboxadol. However, higher magnitude of change was observed in spontaneous inhibitory postsynaptic currents compared to miniature inhibitory postsynaptic currents on gaboxadol treatment, suggesting action potential-dependent α4-containing GABAA receptor activity may influence epileptogenicity in FCD.
Collapse
Affiliation(s)
- Yogesh Aggarwal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Meher Chand Sharma
- Department of Neuropathology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
Gajić Bojić M, Aranđelović J, Škrbić R, Savić MM. Peripheral GABA A receptors - Physiological relevance and therapeutic implications. Pharmacol Ther 2025; 266:108759. [PMID: 39615599 DOI: 10.1016/j.pharmthera.2024.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024]
Abstract
The role of γ- aminobutyric acid (GABA) and GABAA receptors is not only essential for neurotransmission in the central nervous system (CNS), but they are also involved in communication in various peripheral tissues such as the pancreas, liver, kidney, gastrointestinal tract, trachea, immune cells and blood vessels. GABAA receptors located outside the CNS ("peripheral GABAA receptors") enable both neuronal and non-neuronal GABA-ergic signaling in various physiological processes and are generally thought to have similar properties to the extrasynaptic receptors in the CNS. By activating these peripheral receptors, GABA and various GABAA receptor modulators, including drugs such as benzodiazepines and general anesthetics, may contribute to or otherwise affect the maintenance of general body homeostasis. However, the existing data in the literature on the role of non-neuronal GABA-ergic signaling in insulin secretion, glucose metabolism, renal function, intestinal motility, airway tone, immune response and blood pressure regulation are far from complete. In fact, they mainly focus on the identification of components for the local synthesis and utilization of GABA and on the expression repertoire of GABAA receptor subunits rather than on subunit composition, activation effects and (sub)cellular localization. A deeper understanding of how modulation of peripheral GABAA receptors can have significant therapeutic effects on a range of pathological conditions such as multiple sclerosis, diabetes, irritable bowel syndrome, asthma or hypertension could contribute to the development of more specific pharmacological strategies that would provide an alternative or complement to existing therapies. Selective GABAA receptor modulators with improved peripheral efficacy and reduced central side effects would therefore be highly desirable first-in-class drug candidates. This review updates recent advances unraveling the molecular components and cellular determinants of the GABA signaling machinery in peripheral organs, tissues and cells of both, humans and experimental animals.
Collapse
Affiliation(s)
- Milica Gajić Bojić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina; Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Banja Luka - Faculty of Medicine, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Jovana Aranđelović
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade 11000, Serbia
| | - Ranko Škrbić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina; Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Banja Luka - Faculty of Medicine, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Miroslav M Savić
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade 11000, Serbia.
| |
Collapse
|
5
|
Magro G. Early Polytherapy for Probably Benzodiazepine Refractory Naïve Status Epilepticus (Stage 1 Plus). Neurol Int 2025; 17:11. [PMID: 39852775 PMCID: PMC11767287 DOI: 10.3390/neurolint17010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Stage 1 Plus is defined here as a naïve, previously untreated, status epilepticus (SE) that is probably refractory to Benzodiazepines (BDZ). These cases include not only prolonged SE as previously proposed by the author (SE lasting > 10 min) but also other cases notoriously associated with BDZ refractoriness such as the absence of prominent motor phenomena and acute etiology (especially primary central nervous system etiology). Interestingly, the absence of prominent motor phenomena as is the case of non convulsive SE might implicitly fall in the category of prolonged SE due to the delay in recognition and treatment. Future studies should help identify other factors associated with BDZ refractoriness, therefore widening the definition of Stage 1 Plus. The appropriate timing for defining prolonged SE may also differ depending on different etiology. Consequently, in future tailored models of SE, the definition of prolonged SE could be enhanced by defining it for a longer duration than Tx, a time point that changes based on different etiologies (x), Tx being much shorter than 10 min in acute etiologies. These cases of naïve probably BDZ refractory SE (Stage 1 Plus) might require a different approach: combined polytherapy from the start. The objective of this review is to provide pathophysiological and pre-clinical evidence, mostly from animal studies, for the different approach of combined polytherapy from the start for those cases of SE falling in the definition of Stage 1 Plus.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Neuroscience, "Giovanni Paolo II" Hospital, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
6
|
Wang X, Xia X, Song X, Zhou Y, Ma M, Ren Y, Chen X, Xia Z, Guo Y, Song C. Therapeutic potential of rutin in premenstrual depression: evidence from in vivo and in vitro studies. Front Pharmacol 2025; 15:1525753. [PMID: 39877393 PMCID: PMC11772486 DOI: 10.3389/fphar.2024.1525753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Premenstrual dysphoric disorder (PMDD) is a cyclical mood disorder that severely affects the daily life of women of reproductive age. Most of the medications being used clinically have limitations such as low efficacy, side effects, and high cost, so there is an urgent need to discover safer and more effective medications. Rutin is a natural flavonol glycoside with various pharmacological properties including antidepressant. The study of the efficacy and mechanism of action of rutin in PMDD-depressed subtype model rats plays an important role in the discovery of new drugs for the treatment of PMDD. Methods Binding of rutin to gamma-aminobutyric acid type A receptors (GABAA receptors) was probed using molecular docking, microscale thermophoresis, radioactive receptor ligand binding assay and cell membrane clamp experiment. Behavioral tests in mice were performed to screen the optimal dose of rutin. Behavioral tests were performed to evaluate the effects of rutin on depressed mood, memory impairment, and social impairment in PMDD-depressed subtype model rats. HE staining and Golgi staining were performed to observe the neuronal damage in rat hippocampus. UHPLC-MS/MS targeted metabolomics was performed to detect the changes of neurotransmitter content in rat hippocampus. PCR array to detect the effect of rutin on mRNA expression of GABAA receptor partial subunits in rat hippocampus. Results The docking score of rutin with the GABAA receptor benzodiazepine site was -11.442 and the gliding score was -11.470. The Kd of rutin with the GABAA receptor (α1β2γ2) was 1.17 ± 0.89 μM. Rutin competed with [H3]-flunitrazepam for the GABAA receptor benzodiazepine site and inhibited the inward flow of chloride ions (P < 0.05). In PMDD-depressed subtype rats, rutin alleviated depressed mood, memory impairment and social impairment, ameliorated hippocampal neuronal damage and reduces gamma-aminobutyric acid (GABA) and acetylcholine (ACh) levels (P < 0.05). Moreover, we found that rutin did not affect the relative mRNA expression of GABAA receptor subunits in rat hippocampus. Discussion Overall, rutin alleviated depressed mood, memory impairment and social impairment in PMDD-depressed subtype rats, which may be related to binding to GABAA receptor benzodiazepine sites, inhibiting chloride ions inward flow, ameliorating hippocampal neuronal damage and reducing GABA and ACh levels. The results of this study provide an experimental basis and scientific evidence for the development of new drugs for the treatment of PMDD.
Collapse
Affiliation(s)
- Xiangjun Wang
- Laboratory of Traditional Chinese Medicine and Stress Injury of Shandong Province, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaowen Xia
- Laboratory of Traditional Chinese Medicine and Stress Injury of Shandong Province, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianliang Song
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Yi Zhou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mingyu Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yashuang Ren
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xitai Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zenghui Xia
- Laboratory of Traditional Chinese Medicine and Stress Injury of Shandong Province, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yinghui Guo
- Laboratory of Liver Viscera-State and Syndrome of Emotional Disease, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunhong Song
- Laboratory of Traditional Chinese Medicine and Stress Injury of Shandong Province, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Michałowski MA, Kłopotowski K, Wiera G, Czyżewska MM, Mozrzymas JW. Molecular mechanisms of the GABA type A receptor function. Q Rev Biophys 2025; 58:e3. [PMID: 39806800 DOI: 10.1017/s0033583524000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABAAR structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABAAR functional and structural properties. The review begins with an outline of the functional and structural studies of GABAAR, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABAAR features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABAARs. We additionally summarize the current knowledge on the binding sites for major GABAAR modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABAAR as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.
Collapse
Affiliation(s)
- Michał A Michałowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Karol Kłopotowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Wiera
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Marta M Czyżewska
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
8
|
Fujioka Y, Shiura H, Ishii M, Ono R, Endo T, Kiyonari H, Hirate Y, Ito H, Kanai-Azuma M, Kohda T, Kaneko-Ishino T, Ishino F. Targeting of retrovirus-derived Rtl8a/ 8b causes late-onset obesity, reduced social response and increased apathy-like behaviour. Open Biol 2025; 15:240279. [PMID: 39875098 PMCID: PMC11774587 DOI: 10.1098/rsob.240279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
Retrotransposon Gag-like (RTL) 8A, 8B and 8C are eutherian-specific genes derived from a certain retrovirus. They cluster as a triplet of genes on the X chromosome, but their function remains unknown. Here, we demonstrate that Rtl8a and Rtl8b play important roles in the brain: their double knockout (DKO) mice not only exhibit reduced social responses and increased apathy-like behaviour, but also become obese from young adulthood, similar to patients with late Prader-Willi syndrome (PWS), a neurodevelopmental genomic imprinting disorder. Mouse RTL8A/8B proteins are expressed in the prefrontal cortex and hypothalamus and localize to both the nucleus and cytoplasm of neurons, presumably due to the N-terminal nuclear localization signal-like sequence at the N-terminus. An RNAseq study in the cerebral cortex revealed reduced expression of several GABA type A receptor subunit genes in DKO, in particular Gabrb2, which encodes its β2 subunit. We confirmed the reduction of GABRB2 protein in the DKO cerebral cortex by western blotting. As GABRB2 has been implicated in the aetiology of several neurodevelopmental and neuropsychiatric disorders, it is likely that the reduction of GABRB2 is one of the major causes of the neuropsychiatric defects in the DKO mice.
Collapse
Affiliation(s)
- Yoshifumi Fujioka
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
| | - Hirosuke Shiura
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kohfu,Yamanashi 400-8510, Japan
| | - Masayuki Ishii
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
| | - Ryuichi Ono
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa210-9501, Japan
| | - Tsutomu Endo
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo650-0047, Japan
| | | | - Hikaru Ito
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
- Research Facility Center for Science and Technology, Kagawa University, Takamatsu,Kagawa 761-0793, Japan
| | | | - Takashi Kohda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kohfu,Yamanashi 400-8510, Japan
| | - Tomoko Kaneko-Ishino
- Faculty of Nursing, Tokai University School of Medicine, Isehara, Kanagawa259-1193, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
| |
Collapse
|
9
|
Li PP, Zhou YY, Gao L, Lv JN, Xu SS, Zhao YW, Xu D, Huang R, Zhang X, Li P, Fu X, He Z. The de novo missense mutation F224S in GABRB2, identified in epileptic encephalopathy and developmental delay, impairs GABA AR function. Neuroscience 2024; 553:172-184. [PMID: 38964454 DOI: 10.1016/j.neuroscience.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Genetic variants in genes encoding subunits of the γ-aminobutyric acid-A receptor (GABAAR) have been found to cause neurodevelopmental disorders and epileptic encephalopathy. In a patient with epilepsy and developmental delay, a de novo heterozygous missense mutation c.671 T > C (p.F224S) was discovered in the GABRB2 gene, which encodes the β2 subunit of GABAAR. Based on previous studies on GABRB2 variants, this new GABRB2 variant (F224S) would be pathogenic. To confirm and investigate the effects of this GABRB2 mutation on GABAAR channel function, we conducted transient expression experiments using GABAAR subunits in HEK293T cells. The GABAARs containing mutant β2 (F224S) subunit showed poor trafficking to the cell membrane, while the expression and distribution of the normal α1 and γ2 subunits were unaffected. Furthermore, the peak current amplitude of the GABAAR containing the β2 (F224S) subunit was significantly smaller compared to the wild type GABAAR. We propose that GABRB2 variant F224S is pathogenic and GABAARs containing this β2 mutant reduce response to GABA under physiological conditions, which could potentially disrupt the excitation/inhibition balance in the brain, leading to epilepsy.
Collapse
Affiliation(s)
- Ping-Ping Li
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yue-Yuan Zhou
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Li Gao
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jia-Nan Lv
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shi-Shi Xu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yan-Wen Zhao
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Di Xu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ruoke Huang
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peijun Li
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Xiaoqin Fu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zhiyong He
- Department of Pediatric Rehabilitation, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
10
|
Li X, Guo S, Sun Y, Ding J, Chen C, Wu Y, Li P, Sun T, Wang X. GABRG2 mutations in genetic epilepsy with febrile seizures plus: structure, roles, and molecular genetics. J Transl Med 2024; 22:767. [PMID: 39143639 PMCID: PMC11323400 DOI: 10.1186/s12967-024-05387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024] Open
Abstract
Genetic epilepsy with febrile seizures plus (GEFS+) is a genetic epilepsy syndrome characterized by a marked hereditary tendency inherited as an autosomal dominant trait. Patients with GEFS+ may develop typical febrile seizures (FS), while generalized tonic-clonic seizures (GTCSs) with fever commonly occur between 3 months and 6 years of age, which is generally followed by febrile seizure plus (FS+), with or without absence seizures, focal seizures, or GTCSs. GEFS+ exhibits significant genetic heterogeneity, with polymerase chain reaction, exon sequencing, and single nucleotide polymorphism analyses all showing that the occurrence of GEFS+ is mainly related to mutations in the gamma-aminobutyric acid type A receptor gamma 2 subunit (GABRG2) gene. The most common mutations in GABRG2 are separated in large autosomal dominant families, but their pathogenesis remains unclear. The predominant types of GABRG2 mutations include missense (c.983A → T, c.245G → A, p.Met199Val), nonsense (R136*, Q390*, W429*), frameshift (c.1329delC, p.Val462fs*33, p.Pro59fs*12), point (P83S), and splice site (IVS6+2T → G) mutations. All of these mutations types can reduce the function of ion channels on the cell membrane; however, the degree and mechanism underlying these dysfunctions are different and could be linked to the main mechanism of epilepsy. The γ2 subunit plays a special role in receptor trafficking and is closely related to its structural specificity. This review focused on investigating the relationship between GEFS+ and GABRG2 mutation types in recent years, discussing novel aspects deemed to be great significance for clinically accurate diagnosis, anti-epileptic treatment strategies, and new drug development.
Collapse
Affiliation(s)
- Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Shengnan Guo
- Department of Rehabilitative Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China
| | - Jiangwei Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yuehui Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peidong Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China.
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
11
|
Zavalin K, Hassan A, Zhang Y, Khera Z, Lagrange AH. Region and layer-specific expression of GABA A receptor isoforms and KCC2 in developing cortex. Front Cell Neurosci 2024; 18:1390742. [PMID: 38894703 PMCID: PMC11184147 DOI: 10.3389/fncel.2024.1390742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction γ-Aminobutyric acid (GABA) type A receptors (GABAARs) are ligand-gated Cl-channels that mediate the bulk of inhibitory neurotransmission in the mature CNS and are targets of many drugs. During cortical development, GABAAR-mediated signals are significantly modulated by changing subunit composition and expression of Cl-transporters as part of developmental processes and early network activity. To date, this developmental evolution has remained understudied, particularly at the level of cortical layer-specific changes. In this study, we characterized the expression of nine major GABAAR subunits and K-Cl transporter 2 (KCC2) in mouse somatosensory cortex from embryonic development to postweaning maturity. Methods We evaluated expression of α1-5, β2-3, γ2, and δ GABAAR subunits using immunohistochemistry and Western blot techniques, and expression of KCC2 using immunohistochemistry in cortices from E13.5 to P25 mice. Results We found that embryonic cortex expresses mainly α3, α5, β3, and γ2, while expression of α1, α2, α4, β2, δ, and KCC2 begins at later points in development; however, many patterns of nuanced expression can be found in specific lamina, cortical regions, and cells and structures. Discussion While the general pattern of expression of each subunit and KCC2 is similar to previous studies, we found a number of unique temporal, regional, and laminar patterns that were previously unknown. These findings provide much needed knowledge of the intricate developmental evolution in GABAAR composition and KCC2 expression to accommodate developmental signals that transition to mature neurotransmission.
Collapse
Affiliation(s)
- Kirill Zavalin
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Anjana Hassan
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Yueli Zhang
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Zain Khera
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Andre H. Lagrange
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Neurology, TVH VA Medical Center, Nashville, TN, United States
| |
Collapse
|
12
|
Tateiwa H, Evers AS. Neurosteroids and their potential as a safer class of general anesthetics. J Anesth 2024; 38:261-274. [PMID: 38252143 PMCID: PMC10954990 DOI: 10.1007/s00540-023-03291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
Neurosteroids (NS) are a class of steroids that are synthesized within the central nervous system (CNS). Various NS can either enhance or inhibit CNS excitability and they play important biological roles in brain development, brain function and as mediators of mood. One class of NS, 3α-hydroxy-pregnane steroids such as allopregnanolone (AlloP) or pregnanolone (Preg), inhibits neuronal excitability; these endogenous NS and their analogues have been therapeutically applied as anti-depressants, anti-epileptics and general anesthetics. While NS have many favorable properties as anesthetics (e.g. rapid onset, rapid recovery, minimal cardiorespiratory depression, neuroprotection), they are not currently in clinical use, largely due to problems with formulation. Recent advances in understanding NS mechanisms of action and improved formulations have rekindled interest in development of NS as sedatives and anesthetics. In this review, the synthesis of NS, and their mechanism of action will be reviewed with specific emphasis on their binding sites and actions on γ-aminobutyric acid type A (GABAA) receptors. The potential advantages of NS analogues as sedative and anesthetic agents will be discussed.
Collapse
Affiliation(s)
- Hiroki Tateiwa
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kochi, Japan
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Phillips S, Chatham JC, McMahon L. Forskolin reverses the O-GlcNAcylation dependent decrease in GABAAR current amplitude at hippocampal synapses possibly through a neurosteroid site on GABAARs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583612. [PMID: 38496430 PMCID: PMC10942432 DOI: 10.1101/2024.03.06.583612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
GABAergic transmission is influenced by post-translational modifications, like phosphorylation, impacting channel conductance, allosteric modulator sensitivity, and membrane trafficking. O-GlcNAcylation is a post-translational modification involving the O-linked attachment of β-N-acetylglucosamine on serine/threonine residues. Previously we reported an acute increase in O-GlcNAcylation elicits a long-term depression of evoked GABAAR inhibitory post synaptic currents (eIPSCs) onto hippocampal principal cells. Importantly O-GlcNAcylation and phosphorylation can co-occur or compete for the same residue; whether they interact in modulating GABAergic IPSCs is unknown. We tested this by recording IPSCs from hippocampal principal cells and pharmacologically increased O-GlcNAcylation, before or after increasing serine phosphorylation using the adenylate cyclase activator, forskolin. Although forskolin had no significant effect on baseline eIPSC amplitude, we found that a prior increase in O-GlcNAcylation unmasks a forskolin-dependent increase in eIPSC amplitude, reversing the O-GlcNAc-induced eIPSC depression. Inhibition of adenylate cyclase or protein kinase A did not prevent the potentiating effect of forskolin, indicating serine phosphorylation is not the mechanism. Surprisingly, increasing O-GlcNAcylation also unmasked a potentiating effect of the neurosteroids 5α-pregnane-3α,21-diol-20-one (THDOC) and progesterone on eIPSC amplitude, mimicking forskolin. Our findings show under conditions of heightened O-GlcNAcylation, the neurosteroid site on synaptic GABAARs is accessible to agonists, permitting strengthening of synaptic inhibition.
Collapse
|
14
|
Li C, McElroy BD, Phillips J, McCloskey NS, Shi X, Unterwald EM, Kirby LG. Role of α1-GABA A receptors in the serotonergic dorsal raphe nucleus in models of opioid reward, anxiety, and depression. J Psychopharmacol 2024; 38:188-199. [PMID: 38293836 PMCID: PMC10921389 DOI: 10.1177/02698811241227672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND The serotonin (5-hydroxytryptamine (5-HT))-mediated system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous studies showed that stress and drug exposure can modulate the dorsal raphe nucleus (DRN)-5-HT system via γ-aminobutyric acid (GABA)A receptors. Moreover, GABAA receptor-mediated inhibition of serotonergic DRN neurons is required for stress-induced reinstatement of opioid seeking. AIM/METHODS To further test the role of GABAA receptors in the 5-HT system in stress and opioid-sensitive behaviors, our current study generated mice with conditional genetic deletions of the GABAA α1 subunit to manipulate GABAA receptors in either the DRN or the entire population of 5-HT neurons. The GABAA α1 subunit is a constituent of the most abundant GABAA subtype in the brain and the most highly expressed subunit in 5-HT DRN neurons. RESULTS Our results showed that mice with DRN-specific knockout of α1-GABAA receptors exhibited a normal phenotype in tests of anxiety- and depression-like behaviors as well as swim stress-induced reinstatement of morphine-conditioned place preference. By contrast, mice with 5-HT neuron-specific knockout of α1-GABAA receptors exhibited an anxiolytic phenotype at baseline and increased sensitivity to post-morphine withdrawal-induced anxiety. CONCLUSIONS Our data suggest that GABAA receptors on 5-HT neurons contribute to anxiety-like behaviors and sensitivity of those behaviors to opioid withdrawal.
Collapse
Affiliation(s)
- Chen Li
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Bryan D McElroy
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jared Phillips
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Xiangdang Shi
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
Maguire JL, Mennerick S. Neurosteroids: mechanistic considerations and clinical prospects. Neuropsychopharmacology 2024; 49:73-82. [PMID: 37369775 PMCID: PMC10700537 DOI: 10.1038/s41386-023-01626-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Like other classes of treatments described in this issue's section, neuroactive steroids have been studied for decades but have risen as a new class of rapid-acting, durable antidepressants with a distinct mechanism of action from previous antidepressant treatments and from other compounds covered in this issue. Neuroactive steroids are natural derivatives of progesterone but are proving effective as exogenous treatments. The best understood mechanism is that of positive allosteric modulation of GABAA receptors, where subunit selectivity may promote their profile of action. Mechanistically, there is some reason to think that neuroactive steroids may separate themselves from liabilities of other GABA modulators, although research is ongoing. It is also possible that intracellular targets, including inflammatory pathways, may be relevant to beneficial actions. Strengths and opportunities for further development include exploiting non-GABAergic targets, structural analogs, enzymatic production of natural steroids, precursor loading, and novel formulations. The molecular mechanisms of behavioral effects are not fully understood, but study of brain network states involved in emotional processing demonstrate a robust influence on affective states not evident with at least some other GABAergic drugs including benzodiazepines. Ongoing studies with neuroactive steroids will further elucidate the brain and behavioral effects of these compounds as well as likely underpinnings of disease.
Collapse
Affiliation(s)
- Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Steven Mennerick
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Gutierrez BA, González-Coronel JM, Arellano RO, Limon A. Transcriptional and bioinformatic analysis of GABA A receptors expressed in oligodendrocyte progenitor cells from the human brain. Front Mol Neurosci 2023; 16:1279232. [PMID: 37953877 PMCID: PMC10637375 DOI: 10.3389/fnmol.2023.1279232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Oligodendrocyte progenitor cells (OPCs) are vital for neuronal myelination and remyelination in the central nervous system. While the molecular mechanisms involved in OPCs' differentiation and maturation are not completely understood, GABA is known to positively influence these processes through the activation of GABAA receptors (GABAARs). The molecular identity of GABAARs expressed in human OPCs remains unknown, which restricts their specific pharmacological modulation to directly assess their role in oligodendrocytes' maturation and remyelination. Methods In this study, we conducted a transcriptomic analysis to investigate the molecular stoichiometry of GABAARs in OPCs from the human brain. Using eight available transcriptomic datasets from the human brain cortex of control individuals, we analyzed the mRNA expression of all 19 known GABAARs subunit genes in OPCs, with variations observed across different ages. Results Our analysis indicated that the most expressed subunits in OPCs are α1-3, β1-3, γ1-3, and ε. Moreover, we determined that the combination of any α with β2 and γ2 is likely to form heteropentameric GABAARs in OPCs. Importantly, we also found a strong correlation between GABAAR subunits and transcripts for postsynaptic scaffold proteins, suggesting the potential postsynaptic clustering of GABAARs in OPCs. Discussion This study presents the first transcriptional-level identification of GABAAR subunits expressed in human OPCs, providing potential receptor combinations. Understanding the molecular composition of GABAARs in OPCs not only enhances our knowledge of the underlying mechanisms in oligodendrocyte maturation but also opens avenues for targeted pharmacological interventions aimed at modulating these receptors to promote remyelination in neurological disorders.
Collapse
Affiliation(s)
- Berenice A. Gutierrez
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - José Manuel González-Coronel
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Rogelio O. Arellano
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
17
|
Liu M, Wang X, Zhang D, Zhang L, Pan C, Liu H. Development and validation of LC-MS/MS methods for the determination of EVT201 and its five metabolites in human urine: Application to a mass balance study. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1223:123723. [PMID: 37099883 DOI: 10.1016/j.jchromb.2023.123723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
In this study, two simple and accurate LC-MS/MS methods were firstly developed and validated to quantify EVT201, a new partial GABAA receptor agonist used for the treatment of insomnia, and its metabolites comprising M1, M2, M3, M4 and M6 in human urine. The analytes in urine samples were determined after simple dilution, and ideal chromatographic separations were obtained on C18 columns using gradient elution. The assays were performed in MRM mode on AB QTRAP 5500 tandem mass spectrometry (ESI+). The concentration ranges (ng/mL) of analytes in human urine were as follows: EVT201, 1.00 to 36.0; M1, 1.40 to 308; M2, 2.00 to 72.0; M3, 5.00 to 1100; M4, 2.00 to 300; and M6, 2.80 to 420. The methods were fully validated including selectivity, carryover, matrix effect, recovery, linearity, accuracy, precision, dilution integrity and stability, and acceptable criteria were obtained. The methods were successfully applied to a mass balance study of EVT201. The results showed that the total cumulative urinary excretion rate of EVT201 and its five metabolites was 74.25 ± 6.50%, which suggested that EVT201 had high oral bioavailability, and urinary elimination was its major excretion pathway in human.
Collapse
Affiliation(s)
- Man Liu
- Phase I Clinical Trial Ward, National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Department of Clinical Pharmacology, Aerospace Center Hospital, Beijing, PR China
| | - Xiaolin Wang
- Department of Clinical Pharmacology, Aerospace Center Hospital, Beijing, PR China
| | - Dan Zhang
- Department of Clinical Pharmacology, Aerospace Center Hospital, Beijing, PR China
| | - Lina Zhang
- Department of Clinical Pharmacology, Aerospace Center Hospital, Beijing, PR China
| | - Chunmiao Pan
- Zhejiang Jingxin Pharmaceutical Co. LTD, Zhejiang, PR China
| | - Huichen Liu
- Phase I Clinical Trial Ward, National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Department of Clinical Pharmacology, Aerospace Center Hospital, Beijing, PR China.
| |
Collapse
|
18
|
Beltrán-Matas P, Hartveit E, Veruki ML. Functional properties of GABA A receptors of AII amacrine cells of the rat retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1134765. [PMID: 38983040 PMCID: PMC11182327 DOI: 10.3389/fopht.2023.1134765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/08/2023] [Indexed: 07/11/2024]
Abstract
Amacrine cells are a highly diverse group of inhibitory retinal interneurons that sculpt the responses of bipolar cells, ganglion cells, and other amacrine cells. They integrate excitatory inputs from bipolar cells and inhibitory inputs from other amacrine cells, but for most amacrine cells, little is known about the specificity and functional properties of their inhibitory inputs. Here, we have investigated GABAA receptors of the AII amacrine, a critical neuron in the rod pathway microcircuit, using patch-clamp recording in rat retinal slices. Puffer application of GABA evoked robust responses, but, surprisingly, spontaneous GABAA receptor-mediated postsynaptic currents were not observed, neither under control conditions nor following application of high-K+ solution to facilitate release. To investigate the biophysical and pharmacological properties of GABAA receptors in AIIs, we therefore used nucleated patches and a fast application system. Both brief and long pulses of GABA (3 mM) evoked GABAA receptor-mediated currents with slow, multi-exponential decay kinetics. The average weighted time constant (τw) of deactivation was ~163 ms. Desensitization was even slower, with τw ~330 ms. Non-stationary noise analysis of patch responses and directly observed channel gating yielded a single-channel conductance of ~23 pS. Pharmacological investigation suggested the presence of α2 and/or α3 subunits, as well as the γ2 subunit. Such subunit combinations are typical of GABAA receptors with slow kinetics. If synaptic GABAA receptors of AII amacrines have similar functional properties, the slow deactivation and desensitization kinetics will facilitate temporal summation of GABAergic inputs, allowing effective summation and synaptic integration to occur even for relatively low frequencies of inhibitory inputs.
Collapse
Affiliation(s)
| | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
19
|
Kłopotowski K, Michałowski MA, Gos M, Mosiądz D, Czyżewska MM, Mozrzymas JW. Mutation of valine 53 at the interface between extracellular and transmembrane domains of the β 2 principal subunit affects the GABA A receptor gating. Eur J Pharmacol 2023; 947:175664. [PMID: 36934960 DOI: 10.1016/j.ejphar.2023.175664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
GABAA receptors (gamma-aminobutyric acid type A receptors) are pentameric ligand-gated ion channels mediating inhibition in adult mammalian brains. Their static structure has been intensely studied in the past years but the underlying molecular activatory mechanisms remain obscure. The interface between extracellular and transmembrane domains has been recognized as a key player in the receptor gating. However, the role of the valine 53 in the β1-β2 loop of the principal subunit (β2) remains controversial showing differences compared to homologous residues in some cys-loop counterparts such as nAChR. To address the role of the β2V53 residue in the α1β2γ2L receptor gating, we performed high resolution macroscopic and single-channel recordings. To explore underlying molecular mechanisms a variety of substituting amino acids were investigated: Glutamate and Lysine (different electric charge), Alanine (aliphatic, larger than Valine) and Histidine (same residue as in homologous α1H55). We report that mutation of the β2V53 residue results in alterations of nearly all gating transitions including opening/closing, preactivation and desensitization. A dramatic gating impairment was observed for glutamate substitution (β2V53E) but β2V53K mutation had a weak effect. The impact of histidine substitution was also small while β2V53A markedly affected the receptor but to a smaller extent than β2V53E. Considering available structures in desensitized and bicuculline blocked shut states we propose that strongly detrimental effect of β2V53E mutation on receptor activation results from electrostatic interaction between the glutamate and β2K274 on the loop M2-M3 which stabilizes the receptor in the shut state. We conclude that β2V53 is strongly involved in mechanisms underlying the receptor gating.
Collapse
Affiliation(s)
- Karol Kłopotowski
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland.
| | - Michał A Michałowski
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Michalina Gos
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland; University of Wroclaw, Department of Molecular Physiology and Neurobiology, Sienkiewicza 21, Wrocław, Dolnośląskie, Pl 50-335, Poland
| | - Daniela Mosiądz
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Marta M Czyżewska
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Jerzy W Mozrzymas
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland; University of Wroclaw, Department of Molecular Physiology and Neurobiology, Sienkiewicza 21, Wrocław, Dolnośląskie, Pl 50-335, Poland.
| |
Collapse
|
20
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
21
|
Kuanyshbek A, Wang M, Andersson Å, Tuifua M, Palmer EE, Sachdev RK, Mu TW, Vetter I, Keramidas A. Anti-seizure mechanisms of midazolam and valproate at the β2(L51M) variant of the GABA A receptor. Neuropharmacology 2022; 221:109295. [PMID: 36257447 PMCID: PMC9981329 DOI: 10.1016/j.neuropharm.2022.109295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Genetic sequencing is identifying an expanding number of variants of GABAA receptors associated with human epilepsies. We identified a new de novo variant of the β2 subunit (β2L51M) of the inhibitory GABAA receptor associated with seizures. Our analysis determined the pathogenicity of the variant and the effects of anti-seizure medications. Our data demonstrates that the variant reduced cell surface trafficking and peak GABA-gated currents. Synaptic currents mediated by variant-containing receptors decayed faster than wild-type and single receptor currents showed that the variant shortened the duration of receptor activity by decreasing receptor open times. We tested the effects of the anti-seizure medications, midazolam, carbamazepine and valproate and found that all three enhance variant receptor surface expression. Additionally, midazolam restored receptor function by increasing single receptor active periods and synaptic current decay times towards wild-type levels. By contrast, valproate increased synaptic peak currents, event frequency and promoted synaptic bursting. Our study identifies a new disease-causing variant to the GABAA receptor, profiles its pathogenic effects and demonstrates how anti-seizure drugs correct its functional deficits.
Collapse
Affiliation(s)
- Alibek Kuanyshbek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Meng Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Åsa Andersson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Marie Tuifua
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Elizabeth E Palmer
- Sydney Children's Hospital Network, Randwick Sydney Australia and School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Rani K Sachdev
- Sydney Children's Hospital Network, Randwick Sydney Australia and School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, 4102, Australia
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
22
|
Zhao T, Shi Z, Ling N, Qin J, Zhou Q, Wu L, Wang Y, Lin C, Ma D, Song X. Sevoflurane Ameliorates Schizophrenia in a Mouse Model and Patients: A Pre-Clinical and Clinical Feasibility Study. Curr Neuropharmacol 2022; 20:2369-2380. [PMID: 35272593 DOI: 10.2174/1570159x20666220310115846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 03/05/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND GABAergic deficits have been considered to be associated with the pathophysiology of schizophrenia, and hence, GABA receptors subtype A (GABAARs) modulators, such as commonly used volatile anesthetic sevoflurane, may have therapeutic values for schizophrenia. The present study investigates the therapeutic effectiveness of low-concentration sevoflurane in MK801-induced schizophrenia-like mice and schizophrenia patients. METHODS Three weeks after MK801 administration (0.5 mg kg-1, i.p. twice a day for 5 days), mice were exposed to 1% sevoflurane 1hr/day for 5 days. Behavioral tests, immunohistochemical analysis, western blot assay, and electrophysiology assessments were performed 1-week post-exposure. Ten schizophrenia patients received 1% sevoflurane 5 hrs per day for 6 days and were assessed with the Positive and Negative Syndrome Scale (PANSS) and the 18-item Brief Psychiatric Rating Scale (BPRS-18) at week 1 and week 2. RESULTS MK801 induced hypolocomotion and social deficits, downregulated expression of NMDARs subunits and postsynaptic density protein 95 (PSD95), reduced parvalbumin - and GAD67-positive neurons, altered amplitude and frequency of mEPSCs and mIPSCs, and increased the excitation/inhibition ratio. All these changes induced by MK-801 were attenuated by sevoflurane administration. Six and eight patients achieved a response defined as a reduction of at least 30% in the PANSS total score at 1st and 2nd week after treatments. The BPRS-18 total score was found to be significantly decreased by 38% at the 2nd week (p < 0.01). CONCLUSION Low-concentration sevoflurane effectively reversed MK801-induced schizophrenialike disease in mice and alleviated schizophrenia patients' symptoms. Our work suggests sevoflurane to be a valuable therapeutic strategy for treating schizophrenia patients.
Collapse
Affiliation(s)
- Tianyun Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ziwen Shi
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Nongxi Ling
- Department of Psychiatry, The Third People\'s Hospital of Xinhui District, Guangdong, China
| | - Jingwen Qin
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Quancai Zhou
- Department of Psychiatry, The Third People\'s Hospital of Xinhui District, Guangdong, China
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Yuansheng Wang
- Department of Anesthesiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Guangdong, China
| | - Chuansong Lin
- Department of Psychiatry, The Third People\'s Hospital of Xinhui District, Guangdong, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Qi W, Fu H, Luo X, Ren Y, Liu X, Dai H, Zheng Q, Liang F. Electroacupuncture at PC6 (Neiguan) Attenuates Angina Pectoris in Rats with Myocardial Ischemia-Reperfusion Injury Through Regulating the Alternative Splicing of the Major Inhibitory Neurotransmitter Receptor GABRG2. J Cardiovasc Transl Res 2022; 15:1176-1191. [PMID: 35377129 DOI: 10.1007/s12265-022-10245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/25/2022] [Indexed: 11/27/2022]
Abstract
Angina pectoris is the most common manifestation of coronary heart disease, causing suffering in patients. Electroacupuncture at PC6 can effectively alleviate angina by regulating the expression of genes, whether the alternative splicing (AS) of genes is affected by acupuncture is still unknown. We established a rat model of myocardial ischemia-reperfusion by coronary artery ligation and confirmed electroacupuncture alleviated the abnormal discharge caused by angina pectoris measured in EMG electromyograms. Analysis of the GSE61840 dataset established that AS events were altered after I/R and regulated by electroacupuncture. I/R decreased the expression of splicing factor Nova1 while electroacupuncture rescued it. Further experiments in dorsal root ganglion cells showed Nova1 regulated the AS of the GABRG2, specifically on its exon 9 where an important phosphorylation site is present. In vivo, results also showed that electroacupuncture can restore AS of GABRG2. Our results proved that electroacupuncture alleviates angina results by regulating alternative splicing.
Collapse
Affiliation(s)
- Wenchuan Qi
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Hongjuan Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xinye Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Yanrong Ren
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030002, Shanxi, China
| | - Xueying Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030002, Shanxi, China
| | - Hongyuan Dai
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Qianhua Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Fanrong Liang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
24
|
Gurrell R, Iredale P, Evrard A, Duveau V, Ruggiero C, Roucard C. Pronounced antiseizure activity of the subtype-selective GABA A positive allosteric modulator darigabat in a mouse model of drug-resistant focal epilepsy. CNS Neurosci Ther 2022; 28:1875-1882. [PMID: 35965432 PMCID: PMC9532903 DOI: 10.1111/cns.13927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Aim Darigabat is an α2/3/5 subunit‐selective positive allosteric modulator of GABAA receptors that has demonstrated broad‐spectrum activity in several preclinical models of epilepsy as well as in a clinical photoepilepsy trial. The objective here was to assess the acute antiseizure effect of darigabat in the mesial temporal lobe epilepsy (MTLE) mouse model of drug‐resistant focal seizures. Methods The MTLE model is generated by single unilateral intrahippocampal injection of low dose (1 nmole) kainic acid in adult mice, and subsequent epileptiform activity is recorded following implantation of a bipolar electrode under general anesthesia. After a period of epileptogenesis (~4 weeks), spontaneous and recurrent hippocampal paroxysmal discharges (HPD; focal seizures) are recorded using intracerebral electroencephalography. The number and cumulated duration of HPDs were recorded following administration of vehicle (PO), darigabat (0.3–10 mg kg−1, PO), and positive control diazepam (2 mg kg−1, IP). RESULTS Darigabat dose‐dependently reduced the expression of HPDs, demonstrating comparable efficacy profile to diazepam at doses of 3 and 10 mg kg−1. CONCLUSIONS Darigabat exhibited a robust efficacy profile in the MTLE model, a preclinical model of drug‐resistant focal epilepsy. A Phase II proof‐of‐concept placebo‐controlled, adjunctive‐therapy trial (NCT04244175) is ongoing to evaluate efficacy and safety of darigabat in patients with drug‐resistant focal seizures.
Collapse
|
25
|
Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Perucca P, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI): II. Drugs in more advanced clinical development. Epilepsia 2022; 63:2883-2910. [PMID: 35950617 DOI: 10.1111/epi.17376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
The Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI) was held in Madrid, Spain on May 22-25, 2022 and was attended by 157 delegates from 26 countries representing basic and clinical science, regulatory agencies, and pharmaceutical industries. One day of the conference was dedicated to sessions presenting and discussing investigational compounds under development for the treatment of seizures and epilepsy. The current progress report summarizes recent findings and current knowledge for seven of these compounds in more advanced clinical development for which either novel preclinical or patient data are available. These compounds include bumetanide and its derivatives, darigabat, ganaxolone, lorcaserin, soticlestat, STK-001, and XEN1101. Of these, ganaxolone was approved by the US Food and Drug Administration in March 2022 for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder in patients 2 years of age and older.
Collapse
Affiliation(s)
- Meir Bialer
- Institute for Drug Research, Faculty of Medicine, School of Pharmacy, and David R. Bloom Center for Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway.,Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - René H Levy
- Department of Pharmaceutics and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Emilio Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
Ding T, Xu M, Li Y. An Overlooked Prebiotic: Beneficial Effect of Dietary Nucleotide Supplementation on Gut Microbiota and Metabolites in Senescence-Accelerated Mouse Prone-8 Mice. Front Nutr 2022; 9:820799. [PMID: 35399683 PMCID: PMC8988891 DOI: 10.3389/fnut.2022.820799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Nucleotides (NTs) are regulatory factors in many biological processes and play important roles in the growth, development, and metabolism of living organisms. We used senescence-accelerated mouse prone-8 (SAMP8) to investigate the effects of NTs on the gut microbiota and metabolites. And the promoting effect of NTs on the growth of a probiotic (Lactobacillus casei) was explored through in vitro experiments. The results showed that the sequencing depth of 16S rDNA covered all microbial species in the feces of SAMP8. Supplementation with exogenous NTs to the diet enhanced the diversity of the gut microbiota, reduced the abundance of bacteria with negative effects on the body (such as Verrucomicrobia, Ruminococcaceae, Akkermansia and Helicobacter), and increased the abundance of the microbiota, which had beneficial effects on the mice (such as Lactobacillus, Candidatus saccharimonas and Lachnospiraceae_NK4A136_group). Metabonomic analysis showed that NT deficiency in the diet significantly affected metabolites in the mouse feces. The metabolites in mice supplemented with NTs tended to be normal (SAMR1). The differentially expressed metabolites caused by NT addition are involved in various pathways in the body, including linoleic acid metabolism, vitamin B6 metabolism, and histidine metabolism. Correlation analysis revealed a significant correlation between the gut microbiota and differentially expressed metabolites caused by the addition of NTs. In vitro experiments showed that NTs significantly promoted the growth, secretion of biofilm and extracellular polymeric substance of L. casei. NTs also promoted the ability of the crude extract of L. casei to resist the secretion of Shigella biofilm. Thus, NTs can regulate the abundance of the gut microbiota and alter the metabolic expression of the intestinal microbiome.
Collapse
|
27
|
Sikstus S, Benkherouf AY, Soini SL, Uusi-Oukari M. The Influence of AA29504 on GABA A Receptor Ligand Binding Properties and Its Implications on Subtype Selectivity. Neurochem Res 2022; 47:667-678. [PMID: 34727270 PMCID: PMC8847198 DOI: 10.1007/s11064-021-03475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 10/26/2022]
Abstract
The unique pharmacological properties of δ-containing γ-aminobutyric acid type A receptors (δ-GABAARs) make them an attractive target for selective and persistent modulation of neuronal excitability. However, the availability of selective modulators targeting δ-GABAARs remains limited. AA29504 ([2-amino-4-(2,4,6-trimethylbenzylamino)-phenyl]-carbamic acid ethyl ester), an analog of K+ channel opener retigabine, acts as an agonist and a positive allosteric modulator (Ago-PAM) of δ-GABAARs. Based on electrophysiological studies using recombinant receptors, AA29504 was found to be a more potent and effective agonist in δ-GABAARs than in γ2-GABAARs. In comparison, AA29504 positively modulated the activity of recombinant δ-GABAARs more effectively than γ2-GABAARs, with no significant differences in potency. The impact of AA29504's efficacy- and potency-associated GABAAR subtype selectivity on radioligand binding properties remain unexplored. Using [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate ([3H]EBOB) binding assay, we found no difference in the modulatory potency of AA29504 on GABA- and THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol)-induced responses between native forebrain GABAARs of wild type and δ knock-out mice. In recombinant receptors expressed in HEK293 cells, AA29504 showed higher efficacy on δ- than γ2-GABAARs in the GABA-independent displacement of [3H]EBOB binding. Interestingly, AA29504 showed a concentration-dependent stimulation of [3H]muscimol binding to γ2-GABAARs, which was absent in δ-GABAARs. This was explained by AA29504 shifting the low-affinity γ2-GABAAR towards a higher affinity desensitized state, thereby rising new sites capable of binding GABAAR agonists with low nanomolar affinity. Hence, the potential of AA29504 to act as a desensitization-modifying allosteric modulator of γ2-GABAARs deserves further investigation for its promising influence on shaping efficacy, duration and plasticity of GABAAR synaptic responses.
Collapse
Affiliation(s)
- Sylvia Sikstus
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Ali Y Benkherouf
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Sanna L Soini
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.
| |
Collapse
|
28
|
Pong AW, Ross J, Tyrlikova I, Giermek AJ, Kohli MP, Khan YA, Salgado RD, Klein P. Epilepsy: expert opinion on emerging drugs in phase 2/3 clinical trials. Expert Opin Emerg Drugs 2022; 27:75-90. [PMID: 35341431 DOI: 10.1080/14728214.2022.2059464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite the existence of over 30 anti-seizure medications (ASM), including 20 over the last 30 years, a third of patients with epilepsy remain refractory to treatment, with no disease-modifying or preventive therapies until very recently. The development of new ASMs with new mechanisms of action is therefore critical. Recent clinical trials of new treatments have shifted focus from traditional common epilepsies to rare, genetic epilepsies with known mechanistic targets for treatment and disease-specific animal models. AREAS COVERED ASMs in phase 2a/b-3 clinical trials target cholesterol, serotonin, sigma-1 receptors, potassium channels and metabotropic glutamate receptors. Neuroinflammation, protein misfolding, abnormal thalamocortical firing, and molecular deficiencies are among the targeted pathways. Clinically, the current phase 2a/b-3 agents hold promise for variety of epilepsy conditions, from developmental epileptic encephalopathies (Dravet Syndrome, Lennox-Gastaut syndrome, CDKL5 and PCDH19, Rett's Syndrome), infantile spasms, tuberous sclerosis as well as focal and idiopathic generalized epilepsies and acute rescue therapy for cluster seizures. EXPERT OPINION New delivery mechanisms increase potency and site-specificity of existing drugs. Novel mechanisms of action involve cholesterol degradation, mitochondrial pathways, anti-inflammation, and neuro-regeneration. Earlier identification of genetic conditions through genetic testing will allow for earlier use of disease specific and disease-modifying therapies.
Collapse
Affiliation(s)
- Amanda W Pong
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Jonathan Ross
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Ivana Tyrlikova
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Alexander J Giermek
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Maya P Kohli
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Yousef A Khan
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Roger D Salgado
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| |
Collapse
|
29
|
Zhang X, Yu S, Liu Z, Long Y, Zhao J, Xu W, Zhang H, Zhang H. Development of a Kilogram-Scale Route for Clinical Sample Production of the Intravenous Anesthetic Cipepofol. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaowei Zhang
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Shuowen Yu
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Zhaojun Liu
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Yuanqiang Long
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Jinwei Zhao
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Wei Xu
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Haifeng Zhang
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| | - Haijun Zhang
- Sichuan Haisco Pharmaceutical Co. Ltd., 136 Baili Road, Wenjiang District, Chengdu 611130, China
| |
Collapse
|
30
|
Barki M, Xue H. GABRB2, a key player in neuropsychiatric disorders and beyond. Gene 2022; 809:146021. [PMID: 34673206 DOI: 10.1016/j.gene.2021.146021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
The GABA receptors represent the main inhibitory system in the central nervous system that ensure synaptogenesis, neurogenesis, and the regulation of neuronal plasticity and learning. GABAA receptors are pentameric in structure and belong to the Cys-loop superfamily. The GABRB2 gene, located on chromosome 5q34, encodes the β2 subunit that combines with the α and γ subunits to form the major subtype of GABAA receptors, which account for 43% of all GABAA receptors in the mammalian brain. Each subunit probably consists of an extracellular N-terminal domain, four membrane-spanning segments, a large intracellular loop between TM3 and TM4, and an extracellular C-terminal domain. Alternative splicing of the RNA transcript of the GABRB2 gene gives rise at least to four long and short isoforms with dissimilar electrophysiological properties. Furthermore, GABRB2 is imprinted and subjected to epigenetic regulation and positive selection. It has been associated with schizophrenia first in Han Chinese, and subsequently validated in other populations. Gabrb2 knockout mice also exhibited schizophrenia-like behavior and neuroinflammation that were ameliorated by the antipsychotic drug risperidone. GABRB2 was also associated with other neuropsychiatric disorders including bipolar disorder, epilepsy, autism spectrum disorder, Alzheimer's disease, frontotemporal dementia, substance dependence, depression, internet gaming disorder, and premenstrual dysphoric disorder. Recently, it has been postulated that GABRB2 might be a potential marker for different cancer types. As GABRB2 has a pivotal role in the central nervous system and is increasingly recognized to contribute to human diseases, further understanding of its structure and function may expedite the generation of new therapeutic approaches.
Collapse
Affiliation(s)
- Manel Barki
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hong Xue
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
31
|
Perez SM, McCoy AM, Prevot TD, Mian MY, Carreno FR, Frazer A, Cook JM, Sibille E, Lodge DJ. Hippocampal α5-GABA A Receptors Modulate Dopamine Neuron Activity in the Rat Ventral Tegmental Area. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:78-86. [PMID: 36712569 PMCID: PMC9874136 DOI: 10.1016/j.bpsgos.2021.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 02/01/2023] Open
Abstract
Background Aberrant dopamine neuron activity is attributable to hyperactivity in hippocampal subfields driving a pathological increase in dopamine neuron activity, which is positively correlated with psychosis in humans. Evidence indicates that hippocampal hyperactivity is due to loss of intrinsic GABAergic (gamma-aminobutyric acidergic) inhibition. We have previously demonstrated that hippocampal GABAergic neurotransmission can be modulated by targeting α5-GABAA receptors, which are preferentially expressed in hippocampal regions. Positive and negative allosteric modulators of α5-GABAA receptors (α5-PAMs and α5-NAMs) elicit effects on hippocampal-dependent behaviors. We posited that the selective manipulation of hippocampal inhibition, using α5-PAMs or α5-NAMs, would modulate dopamine activity in control rats. Further, α5-PAMs would reverse aberrant dopamine neuron activity in a rodent model with schizophrenia-related pathophysiologies (methylazoxymethanol acetate [MAM] model). Methods We performed in vivo extracellular recordings of ventral tegmental area dopamine neurons in anesthetized rats to compare the effects of two novel, selective α5-PAMs (GL-II-73, MP-III-022), a nonselective α-PAM (midazolam), and two selective α5-NAMs (L-655,708, TB 21007) in control and MAM-treated male Sprague Dawley rats (n = 5-9). Results Systemic or intracranial administration of selective α5-GABAA receptor modulators regulated dopamine activity. Specifically, both α5-NAMs increased dopamine neuron activity in control rats, whereas GL-II-73, MP-III-022, and L-655,708 attenuated aberrant dopamine neuron activity in MAM-treated rats, an effect mediated by the ventral hippocampus. Conclusions This study demonstrated that α5-GABAA receptor modulation can regulate dopamine neuron activity under control or abnormal activity, providing additional evidence that α5-PAMs and α5-NAMs may have therapeutic applications in psychosis and other psychiatric diseases where aberrant hippocampal activity is present.
Collapse
Affiliation(s)
- Stephanie M. Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas,Audie L. Murphy Memorial Veterans Hospital, South Texas Veterans Health Care System, San Antonio, Texas,Address correspondence to Stephanie M. Perez, Ph.D.
| | - Alexandra M. McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas,Audie L. Murphy Memorial Veterans Hospital, South Texas Veterans Health Care System, San Antonio, Texas
| | - Thomas D. Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas
| | - Alan Frazer
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas,Audie L. Murphy Memorial Veterans Hospital, South Texas Veterans Health Care System, San Antonio, Texas
| | - James M. Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J. Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas,Audie L. Murphy Memorial Veterans Hospital, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
32
|
Luquin E, Paternain B, Zugasti I, Santomá C, Mengual E. Stereological estimations and neurochemical characterization of neurons expressing GABAA and GABAB receptors in the rat pedunculopontine and laterodorsal tegmental nuclei. Brain Struct Funct 2022; 227:89-110. [PMID: 34510281 PMCID: PMC8741722 DOI: 10.1007/s00429-021-02375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
To better understand GABAergic transmission at two targets of basal ganglia downstream projections, the pedunculopontine (PPN) and laterodorsal (LDT) tegmental nuclei, the anatomical localization of GABAA and GABAB receptors was investigated in both nuclei. Specifically, the total number of neurons expressing the GABAA receptor γ2 subunit (GABAAR γ2) and the GABAB receptor R2 subunit (GABAB R2) in PPN and LDT was estimated using stereological methods, and the neurochemical phenotype of cells expressing each subunit was also determined. The mean number of non-cholinergic cells expressing GABAAR γ2 was 9850 ± 1856 in the PPN and 8285 ± 962 in the LDT, whereas those expressing GABAB R2 were 7310 ± 1970 and 9170 ± 1900 in the PPN and LDT, respectively. In addition, all cholinergic neurons in both nuclei co-expressed GABAAR γ2 and 95-98% of them co-expressed GABAB R2. Triple labeling using in situ hybridization revealed that 77% of GAD67 mRNA-positive cells in the PPT and 49% in the LDT expressed GABAAR γ2, while 90% (PPN) and 65% (LDT) of Vglut2 mRNA-positive cells also expressed GABAAR γ2. In contrast, a similar proportion (~2/3) of glutamatergic and GABAergic cells co-expressed GABAB R2 in both nuclei. The heterogeneous distribution of GABAAR and GABABR among non-cholinergic cells in PPN and LDT may give rise to physiological differences within each neurochemical subpopulation. In addition, the dissimilar proportion of GABAAR γ2-expressing glutamatergic and GABAergic neurons in the PPN and LDT may contribute to some of the functional differences found between the two nuclei.
Collapse
Affiliation(s)
- Esther Luquin
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Beatriz Paternain
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Inés Zugasti
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Santomá
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Elisa Mengual
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
33
|
Ozturk H, Yorulmaz N, Durgun M, Basoglu H. In silicoinvestigation of Alliin as potential activator for AMPA receptor. Biomed Phys Eng Express 2021; 8. [PMID: 34724652 DOI: 10.1088/2057-1976/ac351c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 11/12/2022]
Abstract
Natural products from plants, such as flavonoids, arouse immense interest in medicine because of the therapeutic and many other bioactive properties. The molecular docking is a very useful method to screen the molecules based on their free binding energies and give important structural suggestions about how molecules might activate or inhibit the target receptor by comparing reference molecules. Alliin and Allicin differ from many other flavonoids because of containing no benzene rings and having nitrogen and sulfur atoms in their structure. In this study Alliin and Allicin affinity on AMPA, NMDA and GABA-A receptors were evaluated in the central nervous system by using the molecular docking method. Both Alliin and Allicin indicated no inhibitory effects. However Alliin showed significant selectivity to human AMPA receptor (3RN8) as an excitatory. The binding energy of glutamate to 3RN8 was -6.61 kcal mol-1, while the binding energy of Allin was -8.08 kcal mol-1. Furthermore Alliin's affinity to the other AMPA and NMDA receptors is quite satisfactory compared to the reference molecule glutamate. In conclusion based on the molecular docking study, Alliin can be useful for synaptic plasticity studies whereas might be enhance seizure activity because of the increased permeability to cations. It also can be beneficial to improve learning and memory and can be used as a supportive product to the hypofunction of NMDA associated problems.
Collapse
Affiliation(s)
- Hilal Ozturk
- Karadeniz Technical University, Faculty of Medicine, Department of Biophysics, Trabzon-Turkey.,Istanbul University-Cerrahpasa , Faculty of Medicine, Department of Biophysics, Istanbul-Turkey
| | - Nuri Yorulmaz
- Harran University, Faculty of Science, Department of Physics, Sanliurfa-Turkey
| | - Mustafa Durgun
- Harran University, Faculty of Science, Department of Chemistry, Sanliurfa-Turkey
| | - Harun Basoglu
- Karadeniz Technical University, Faculty of Medicine, Department of Biophysics, Trabzon-Turkey
| |
Collapse
|
34
|
Sinha R, Grimes WN, Wallin J, Ebbinghaus BN, Luu K, Cherry T, Rieke F, Rudolph U, Wong RO, Hoon M. Transient expression of a GABA receptor subunit during early development is critical for inhibitory synapse maturation and function. Curr Biol 2021; 31:4314-4326.e5. [PMID: 34433078 DOI: 10.1016/j.cub.2021.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Developing neural circuits, including GABAergic circuits, switch receptor types. But the role of early GABA receptor expression for establishment of functional inhibitory circuits remains unclear. Tracking the development of GABAergic synapses across axon terminals of retinal bipolar cells (BCs), we uncovered a crucial role of early GABAA receptor expression for the formation and function of presynaptic inhibitory synapses. Specifically, early α3-subunit-containing GABAA (GABAAα3) receptors are a key developmental organizer. Before eye opening, GABAAα3 gives way to GABAAα1 at individual BC presynaptic inhibitory synapses. The developmental downregulation of GABAAα3 is independent of GABAAα1 expression. Importantly, lack of early GABAAα3 impairs clustering of GABAAα1 and formation of functional GABAA synapses across mature BC terminals. This impacts the sensitivity of visual responses transmitted through the circuit. Lack of early GABAAα3 also perturbs aggregation of LRRTM4, the organizing protein at GABAergic synapses of rod BC terminals, and their arrangement of output ribbon synapses.
Collapse
Affiliation(s)
- Raunak Sinha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD, USA
| | - Julie Wallin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Briana N Ebbinghaus
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelsey Luu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Timothy Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington-Seattle and the Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
35
|
Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease. Semin Cell Dev Biol 2021; 116:146-159. [PMID: 33573856 PMCID: PMC8292162 DOI: 10.1016/j.semcdb.2021.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In this review, we focus on the potential role of the γ-aminobutyric acidergic (GABAergic) system in age-related episodic memory impairments in humans, with a particular focus on Alzheimer's disease (AD). Well-established animal models have shown that GABA plays a central role in regulating and synchronizing neuronal signaling in the hippocampus, a brain area critical for episodic memory that undergoes early and significant morphologic and functional changes in the course of AD. Neuroimaging research in humans has documented hyperactivity in the hippocampus and losses of resting state functional connectivity in the Default Mode Network, a network that itself prominently includes the hippocampus-presaging episodic memory decline in individuals at-risk for AD. Apolipoprotein ε4, the highest genetic risk factor for AD, is associated with GABAergic dysfunction in animal models, and episodic memory impairments in humans. In combination, these findings suggest that GABA may be the linchpin in a complex system of factors that eventually leads to the principal clinical hallmark of AD: episodic memory loss. Here, we will review the current state of literature supporting this hypothesis. First, we will focus on the molecular and cellular basis of the GABAergic system and its role in memory and cognition. Next, we report the evidence of GABA dysregulations in AD and normal aging, both in animal models and human studies. Finally, we outline a model of GABAergic dysfunction based on the results of functional neuroimaging studies in humans, which have shown hippocampal hyperactivity to episodic memory tasks concurrent with and even preceding AD diagnosis, along with factors that may modulate this association.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
36
|
Manna SSS. Possible influence of neurosteroids in the anxiolytic effects of alpha-casozepine. Med Hypotheses 2021; 155:110655. [PMID: 34392107 DOI: 10.1016/j.mehy.2021.110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/08/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Alpha-casozepine (α CZP), a tryptic hydrolysate of milk casein is a decapeptide shown to promote sleep and produce anxiolytic or anticonvulsant activity. Intriguingly, studies indicate structural similarities to benzodiazepine (BZD)-like molecules (e.g., diazepam), resulting in positive modulation of γ-aminobutyric acid A type (GABAA) receptors. However, some unexplained anomalous behaviour of α-CZP includes 1) 1000 times less affinity for BZD site on GABAA receptor in vitro conditions, whereas in vivo it showed 10-fold increased affinity when compared to diazepam; 2) anxiolytic effects were observed only in stressed conditions and 3) unlike diazepam, it failed to exhibit dependence or habituation. Interestingly, neurosteroids like allopregnanolone or its analogues that are synthesized de novo have both genomic and non-genomic actions. The rapid nongenomic neuronal inhibition of these compounds is mediated by GABAA receptors through autocrine and paracrine actions. Studies have shown that changes in the levels of neurosteroids during acute (rise) and chronic stress (decreased), consequently, altering the senetivity of GABAA receptor subunits. Neurosteroids even at low concentration (nanomolar range) potentiate the response of GABA indirectly, while at higher concentrations they directly activate the receptor-channel complex. Interestingly, coadministration of neurosteroids and BZPs has shown not only to prevent the development of tolerance of BZP and augmented recovery from BZP withdrawal anxiety and hyperactivity in mice. The combination also produced synergetic anxiolytic effects. Taken together, the evidence suggests possible implications of neurosteroids in the actions of CZP via BZD receptors. The present hypothesis brings out the possible role of neurosteroids and the various factors that might participate in CZP-induce anxiolytic effects.
Collapse
Affiliation(s)
- Shyamshree S S Manna
- Dr. B. C. Roy College of Pharmacy Allied Health Sciences, Dr Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, West Bengal, India.
| |
Collapse
|
37
|
The β 2 subunit E155 residue as a proton sensor at the binding site on GABA type A receptors. Eur J Pharmacol 2021; 906:174293. [PMID: 34214584 DOI: 10.1016/j.ejphar.2021.174293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
GABA type A receptor plays a key role in inhibitory signaling in the adult central nervous system. This receptor can be modulated by protons but the underlying molecular mechanisms have not been fully explored. To find possible pH-sensor residues, a comparative study for proton-activated GLIC channel and α1β2γ2 GABA receptor was performed and pK 's of respective residues were estimated by numerical algorithms which consider local interactions. β E155, located at the GABA binding site, showed pKa values close to physiological values and dependence on the receptor state and ligation, suggesting a role in modulation by pH. To validate this prediction, pH sensitivity of current responses to GABA was investigated using patch-clamp technique for WT and mutated (β2E155[C, S, Q, L]) GABA receptors. Cysteine mutation preserved pH sensitivity. However, for remaining mutants, the sensitivity to acidification (pH = 6.0) was reduced becoming not statistically significant. The effect of alkaline pH (8.0) was maintained for all mutants with exception for β2E155L for which it was nearly abolished. To further explore the impact of considered mutations, molecular docking was performed which indicated that pH modulation is probably affected by interplay between binding site residues, zwitterion GABA and protons. These data, altogether, indicate that mutation of β2E155 to hydrophobic residue (L) maximally impaired pH modulation while for polar substitutions the effect was smaller. In conclusion, our data provide evidence that a key binding site residue β2E155 plays an important role in proton sensitivity of GABA receptor.
Collapse
|
38
|
Purves-Tyson TD, Brown AM, Weissleder C, Rothmond DA, Shannon Weickert C. Reductions in midbrain GABAergic and dopamine neuron markers are linked in schizophrenia. Mol Brain 2021; 14:96. [PMID: 34174930 PMCID: PMC8235806 DOI: 10.1186/s13041-021-00805-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
Reductions in the GABAergic neurotransmitter system exist across multiple brain regions in schizophrenia and encompass both pre- and postsynaptic components. While reduced midbrain GABAergic inhibitory neurotransmission may contribute to the hyperdopaminergia thought to underpin psychosis in schizophrenia, molecular changes consistent with this have not been reported. We hypothesised that reduced GABA-related molecular markers would be found in the midbrain of people with schizophrenia and that these would correlate with dopaminergic molecular changes. We hypothesised that downregulation of inhibitory neuron markers would be exacerbated in schizophrenia cases with high levels of neuroinflammation. Eight GABAergic-related transcripts were measured with quantitative PCR, and glutamate decarboxylase (GAD) 65/67 and GABAA alpha 3 (α3) (GABRA3) protein were measured with immunoblotting, in post-mortem midbrain (28/28 and 28/26 control/schizophrenia cases for mRNA and protein, respectively), and analysed by both diagnosis and inflammatory subgroups (as previously defined by higher levels of four pro-inflammatory cytokine transcripts). We found reductions (21 – 44%) in mRNA encoding both presynaptic and postsynaptic proteins, vesicular GABA transporter (VGAT), GAD1, and parvalbumin (PV) mRNAs and four alpha subunits (α1, α2, α3, α5) of the GABAA receptor in people with schizophrenia compared to controls (p < 0.05). Gene expression of somatostatin (SST) was unchanged (p = 0.485). We confirmed the reduction in GAD at the protein level (34%, p < 0.05). When stratifying by inflammation, only GABRA3 mRNA exhibited more pronounced changes in high compared to low inflammatory subgroups in schizophrenia. GABRA3 protein was expressed by 98% of tyrosine hydroxylase-positive neurons and was 23% lower in schizophrenia, though this did not reach statistical significance (p > 0.05). Expression of transcripts for GABAA receptor alpha subunits 2 and 3 (GABRA2, GABRA3) were positively correlated with tyrosine hydroxylase (TH) and dopamine transporter (DAT) transcripts in schizophrenia cases (GABRA2; r > 0.630, GABRA3; r > 0.762, all p < 0.001) but not controls (GABRA2; r < − 0.200, GABRA3; r < 0.310, all p > 0.05). Taken together, our results support a profound disruption to inhibitory neurotransmission in the substantia nigra regardless of inflammatory status, which provides a potential mechanism for disinhibition of nigrostriatal dopamine neurotransmission.
Collapse
Affiliation(s)
- Tertia D Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, 139 Barker Street, Margarete Ainsworth Building, Level 5, Randwick, NSW, 2031, Australia. .,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Amelia M Brown
- Schizophrenia Research Laboratory, Neuroscience Research Australia, 139 Barker Street, Margarete Ainsworth Building, Level 5, Randwick, NSW, 2031, Australia
| | - Christin Weissleder
- Schizophrenia Research Laboratory, Neuroscience Research Australia, 139 Barker Street, Margarete Ainsworth Building, Level 5, Randwick, NSW, 2031, Australia
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, 139 Barker Street, Margarete Ainsworth Building, Level 5, Randwick, NSW, 2031, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, 139 Barker Street, Margarete Ainsworth Building, Level 5, Randwick, NSW, 2031, Australia. .,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia. .,Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
39
|
Lewter LA, Golani LK, Cook JM, Li JX. Blockade of α1 subtype GABAA receptors attenuates the development of tolerance to the antinociceptive effects of midazolam in rats. Behav Pharmacol 2021; 32:345-350. [PMID: 33290344 PMCID: PMC8119291 DOI: 10.1097/fbp.0000000000000614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Benzodiazepines bind to and act on α1-3 and α5-containing GABAA receptors. Previous studies suggest that different GABAA receptor α-subtypes mediate the various behavioral effects of benzodiazepines, which raises the possibility of combining benzodiazepines with subtype-selective GABAA receptor antagonists to improve the therapeutic profiles of benzodiazepines. This study examined the GABAA receptor subtype mediation of the tolerance to midazolam-induced antinociception in rats. Midazolam (3.2 mg/kg) significantly reduced the locomotion in rats which was prevented by the selective α1-preferring GABAA receptor antagonist β-carboline-3-carboxylate-t-butyl ester (βCCt) (3.2 mg/kg). Midazolam increased the paw withdrawal threshold as tested by the von Frey filament assay in the complete Freund's adjuvant-induced inflammatory pain model in rats, and this effect was not altered by βCCt or another α1-preferring GABAA receptor antagonist 3-propoxy-β-carboline hydrochloride (3PBC). Repeated treatment with midazolam in combination with vehicle, βCCt or 3PBC (twice daily) for 7 days led to a progressive increase of the ED50 values in the midazolam- and vehicle-treated rats, but not in other rats, suggesting the development of tolerance to midazolam but not to the combination of midazolam with α1-preferring GABAA receptor antagonists. These results suggest the essential role of the α1-subtype of GABAA receptors in mediating the development of tolerance to midazolam-induced antinociceptive effects and raise the possibility of increasing therapeutic profiles of benzodiazepines by selectively blocking specific α-subtypes of GABAA receptors.
Collapse
Affiliation(s)
- Lakeisha A. Lewter
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Lalit K Golani
- Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - James M. Cook
- Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
40
|
Lee TJ, Zanello AF, Morrison TR, Ricci LA, Melloni RH. Valproate selectively suppresses adolescent anabolic/androgenic steroid-induced aggressive behavior: implications for a role of hypothalamic γ-aminobutyric acid neural signaling. Behav Pharmacol 2021; 32:295-307. [PMID: 33595952 DOI: 10.1097/fbp.0000000000000616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pubertal male Syrian hamsters (Mesocricetus auratus) treated with anabolic/androgenic steroids (AASs) during adolescence (P27-P56) display a highly intense aggressive phenotype that shares many behavioral similarities with pathological aggression in youth. Anticonvulsant drugs like valproate that enhance the activity of the γ-aminobutyric acid (GABA) neural system in the brain have recently gained acceptance as a primary treatment for pathological aggression. This study examined whether valproate would selectively suppress adolescent AAS-induced aggressive behavior and whether GABA neural signaling through GABAA subtype receptors in the latero-anterior hypothalamus (LAH; an area of convergence for developmental and neuroplastic changes that underlie aggression in hamsters) modulate the aggression-suppressing effect of this anticonvulsant medication. Valproate (1.0-10.0 mg/kg, intraperitoneal) selectively suppressed the aggressive phenotype in a dose-dependent fashion, with the effective anti-aggressive effects beginning at 5 mg/kg, intraperitoneally. Microinfusion of the GABAA receptor antagonist bicuculline (7.0-700 ng) into the LAH reversed valproate's suppression of AAS-induced aggression in a dose-dependent fashion. At the 70 ng dose of bicuculline, animals expressed the highly aggressive baseline phenotype normally observed in AAS-treated animals. These studies provide preclinical evidence that the anticonvulsant valproate selectively suppresses adolescent, AAS-induced aggression and that this suppression is modulated, in part, by GABA neural signaling within the LAH.
Collapse
Affiliation(s)
- Terrence J Lee
- Program in Behavioral Neuroscience, Department of Psychology, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
41
|
Li X, Wang H, Yang X, Wang X, Zhao L, Zou L, Yang Q, Hou Z, Tan J, Zhang H, Nie J, Jiao B. GABRP sustains the stemness of triple-negative breast cancer cells through EGFR signaling. Cancer Lett 2021; 514:90-102. [PMID: 34023418 DOI: 10.1016/j.canlet.2021.04.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/17/2021] [Indexed: 12/25/2022]
Abstract
Effective treatment regimens for triple-negative breast cancer (TNBC) are relatively scarce due to a lack of specific therapeutic targets. Epidermal growth factor receptor (EGFR) signaling is highly active in TNBC and is associated with poor prognosis. Most EGFR antagonists, which significantly improve outcome in lung and colon cancer, have shown limited clinical effects in breast cancer. However, limiting EGFR expression in TNBC is a potential strategy for improving the clinical efficacy of EGFR antagonists. Here, we found that the gamma-aminobutyric acid type A receptor π subunit (GABRP), as a membrane protein enriched in TNBC stem cells, interacted with EGFR and significantly sustained its expression, resulting in stemness maintenance and chemotherapy resistance. Silencing GABRP induced down-regulation of EGFR signaling, which hindered cell stemness and enhanced sensitivity to chemotherapies, including paclitaxel, doxorubicin, and cisplatin. We also identified that retigabine, an FDA-approved drug for adjunctive treatment of seizures, increased the sensitivity of EGFR to gefitinib in gefitinib-resistant cells. Our findings show that GABRP can sustain the stemness of TNBC via modulating EGFR expression, suggesting that GABRP may be a potential therapeutic target that can address EGFR inhibitor resistance in TNBC.
Collapse
Affiliation(s)
- Xiyin Li
- Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China; Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Hairui Wang
- Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China; Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China; Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China
| | - Xiaoqi Wang
- Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Lina Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Li Zou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Zongliu Hou
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China
| | - Jing Tan
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China
| | - Honglei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China; Center for scientific research, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Jianyun Nie
- Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China; Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China.
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China.
| |
Collapse
|
42
|
Takamura Y, Kakuta H. In Vivo Receptor Visualization and Evaluation of Receptor Occupancy with Positron Emission Tomography. J Med Chem 2021; 64:5226-5251. [PMID: 33905258 DOI: 10.1021/acs.jmedchem.0c01714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Positron emission tomography (PET) is useful for noninvasive in vivo visualization of disease-related receptors, for evaluation of receptor occupancy to determine an appropriate drug dosage, and for proof-of-concept of drug candidates in translational research. For these purposes, the specificity of the PET tracer for the target receptor is critical. Here, we review work in this area, focusing on the chemical structures of reported PET tracers, their Ki/Kd values, and the physical properties relevant to target receptor selectivity. Among these physical properties, such as cLogP, cLogD, molecular weight, topological polar surface area, number of hydrogen bond donors, and pKa, we focus especially on LogD and LogP as important physical properties that can be easily compared across a range of studies. We discuss the success of PET tracers in evaluating receptor occupancy and consider likely future developments in the field.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
43
|
Sawant A, Ebbinghaus BN, Bleckert A, Gamlin C, Yu WQ, Berson D, Rudolph U, Sinha R, Hoon M. Organization and emergence of a mixed GABA-glycine retinal circuit that provides inhibition to mouse ON-sustained alpha retinal ganglion cells. Cell Rep 2021; 34:108858. [PMID: 33730586 PMCID: PMC8030271 DOI: 10.1016/j.celrep.2021.108858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 12/04/2022] Open
Abstract
In the retina, amacrine interneurons inhibit retinal ganglion cell (RGC) dendrites to shape retinal output. Amacrine cells typically use either GABA or glycine to exert synaptic inhibition. Here, we combined transgenic tools with immunohistochemistry, electrophysiology, and 3D electron microscopy to determine the composition and organization of inhibitory synapses across the dendritic arbor of a well-characterized RGC type in the mouse retina: the ON-sustained alpha RGC. We find mixed GABA-glycine receptor synapses across this RGC type, unveiling the existence of "mixed" inhibitory synapses in the retinal circuit. Presynaptic amacrine boutons with dual release sites are apposed to ON-sustained alpha RGC postsynapses. We further reveal the sequence of postsynaptic assembly for these mixed synapses: GABA receptors precede glycine receptors, and a lack of early GABA receptor expression impedes the recruitment of glycine receptors. Together our findings uncover the organization and developmental profile of an additional motif of inhibition in the mammalian retina.
Collapse
Affiliation(s)
- Abhilash Sawant
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Briana N Ebbinghaus
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam Bleckert
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Clare Gamlin
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - David Berson
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Raunak Sinha
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
44
|
Hernandez CC, Tian X, Hu N, Shen W, Catron MA, Yang Y, Chen J, Jiang Y, Zhang Y, Macdonald RL. Dravet syndrome-associated mutations in GABRA1, GABRB2 and GABRG2 define the genetic landscape of defects of GABA A receptors. Brain Commun 2021; 3:fcab033. [PMID: 34095830 PMCID: PMC8176149 DOI: 10.1093/braincomms/fcab033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Dravet syndrome is a rare, catastrophic epileptic encephalopathy that begins in the first year of life, usually with febrile or afebrile hemiclonic or generalized tonic-clonic seizures followed by status epilepticus. De novo variants in genes that mediate synaptic transmission such as SCN1A and PCDH19 are often associated with Dravet syndrome. Recently, GABAA receptor subunit genes (GABRs) encoding α1 (GABRA1), β3 (GABRB3) and γ2 (GABRG2), but not β2 (GABRB2) or β1 (GABRB1), subunits are frequently associated with Dravet syndrome or Dravet syndrome-like phenotype. We performed next generation sequencing on 870 patients with Dravet syndrome and identified nine variants in three different GABRs. Interestingly, the variants were all in genes encoding the most common GABAA receptor, the α1β2γ2 receptor. Mutations in GABRA1 (c.644T>C, p. L215P; c.640C>T, p. R214C; c.859G>A; V287I; c.641G>A, p. R214H) and GABRG2 (c.269C>G, p. T90R; c.1025C>T, p. P342L) presented as de novo cases, while in GABRB2 two variants were de novo (c.992T>C, p. F331S; c.542A>T, p. Y181F) and one was autosomal dominant and inherited from the maternal side (c.990_992del, p.330_331del). We characterized the effects of these GABR variants on GABAA receptor biogenesis and channel function. We found that defects in receptor gating were the common deficiency of GABRA1 and GABRB2 Dravet syndrome variants, while mainly trafficking defects were found with the GABRG2 (c.269C>G, p. T90R) variant. It seems that variants in α1 and β2 subunits are less tolerated than in γ2 subunits, since variant α1 and β2 subunits express well but were functionally deficient. This suggests that all of these GABR variants are all targeting GABR genes that encode the assembled α1β2γ2 receptor, and regardless of which of the three subunits are mutated, variants in genes coding for α1, β2 and γ2 receptor subunits make them candidate causative genes in the pathogenesis of Dravet syndrome.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48198, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - XiaoJuan Tian
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Mackenzie A Catron
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37240, USA
| | - Ying Yang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Jiaoyang Chen
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Yuwu Jiang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Yuehua Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
45
|
Bhagat K, Singh JV, Pagare PP, Kumar N, Sharma A, Kaur G, Kinarivala N, Gandu S, Singh H, Sharma S, Bedi PMS. Rational approaches for the design of various GABA modulators and their clinical progression. Mol Divers 2021; 25:551-601. [PMID: 32170466 PMCID: PMC8422677 DOI: 10.1007/s11030-020-10068-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
GABA (γ-amino butyric acid) is an important inhibitory neurotransmitter in the central nervous system. Attenuation of GABAergic neurotransmission plays an important role in the etiology of several neurological disorders including epilepsy, Alzheimer's disease, Huntington's chorea, migraine, Parkinson's disease, neuropathic pain, and depression. Increase in the GABAergic activity may be achieved through direct agonism at the GABAA receptors, inhibition of enzymatic breakdown of GABA, or by inhibition of the GABA transport proteins (GATs). These functionalities make GABA receptor modulators and GATs attractive drug targets in brain disorders associated with decreased GABA activity. There have been several reports of development of GABA modulators (GABA receptors, GABA transporters, and GABAergic enzyme inhibitors) in the past decade. Therefore, the focus of the present review is to provide an overview on various design strategies and synthetic approaches toward developing GABA modulators. Furthermore, mechanistic insights, structure-activity relationships, and molecular modeling inputs for the biologically active derivatives have also been discussed. Summary of the advances made over the past few years in the clinical translation and development of GABA receptor modulators is also provided. This compilation will be of great interest to the researchers working in the field of neuroscience. From the light of detailed literature, it can be concluded that numerous molecules have displayed significant results and their promising potential, clearly placing them ahead as potential future drug candidates.
Collapse
Affiliation(s)
- Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Jatinder V Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Gurinder Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Srinivasa Gandu
- Department of Cell Biology and Neuroscience, Cell and Development Biology Graduate Program, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, 10065, USA.
| | - Preet Mohinder S Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
| |
Collapse
|
46
|
Gurrell R, Whitlock M, Wei H, Shen Z, Ogden A. Safety, Tolerability, and Pharmacokinetics of Multiple Repeated Oral Doses of the α2/3/5-Subtype Selective GABA A -Positive Allosteric Modulator PF-06372865 in Healthy Volunteers. Clin Pharmacol Drug Dev 2021; 10:756-764. [PMID: 33465277 PMCID: PMC8359322 DOI: 10.1002/cpdd.912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/21/2020] [Indexed: 01/26/2023]
Abstract
Multiple‐dose pharmacokinetics (PK) and safety were investigated in this phase 1 study of PF‐06372865, a positive allosteric modulator of α2/3/5 subunit‐containing γ‐aminobutyric acid A receptors (NCT03351751). In 2 cohorts (7‐8 PF‐06372865 and 2 placebo in each cohort), healthy adult subjects received twice‐daily oral doses of PF‐06372865 for 21 days, which included titration in the first 7 days, followed by a maintenance dose of 25 mg twice daily (Cohort 1) and 42.5 mg twice daily (Cohort 2) for 14 days. Serial PK samples were collected on days 1 and 21. Nineteen subjects were assigned to study treatments; 18 completed the study. Approximate dose‐proportional increases in maximum plasma concentratin and area under the plasma concentration–time curve over the dosing interval were observed. PF‐06372865 was rapidly absorbed with a median time to maximum concentration of 1 to 2 hours following both single‐ and multiple‐dose administration. Mean terminal elimination half‐life on day 21 was approximately 11 hours in both cohorts. All adverse events were mild; the most frequently reported was dizziness. After titration, there were no reports of somnolence. There were no clinically significant safety findings, including a lack of withdrawal symptoms on discontinuation of treatment. These results demonstrate that PF‐06372865 is safe and well tolerated at doses estimated to achieve high receptor occupancy (>80%), a profile differentiated from nonselective benzodiazepines.
Collapse
Affiliation(s)
| | | | - Hua Wei
- Pfizer Inc., Shanghai, China
| | | | | |
Collapse
|
47
|
Marques TR, Ashok AH, Angelescu I, Borgan F, Myers J, Lingford-Hughes A, Nutt DJ, Veronese M, Turkheimer FE, Howes OD. GABA-A receptor differences in schizophrenia: a positron emission tomography study using [ 11C]Ro154513. Mol Psychiatry 2021; 26:2616-2625. [PMID: 32296127 PMCID: PMC8440185 DOI: 10.1038/s41380-020-0711-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 01/28/2023]
Abstract
A loss of GABA signaling is a prevailing hypothesis for the pathogenesis of schizophrenia. Preclinical studies indicate that blockade of the α5 subtype of the GABA receptor (α5-GABAARs) leads to behavioral phenotypes associated with schizophrenia, and postmortem evidence indicates lower hippocampal α5-GABAARs protein and mRNA levels in schizophrenia. However, it is unclear if α5-GABAARs are altered in vivo or related to symptoms. We investigated α5-GABAARs availability in antipsychotic-free schizophrenia patients and antipsychotic-medicated schizophrenia patients using [11C]Ro15-4513 PET imaging in a cross-sectional, case-control study design. Thirty-one schizophrenia patients (n = 10 antipsychotic free) and twenty-nine matched healthy controls underwent a [11C]Ro15-4513 PET scan and MRI. The α5 subtype GABA-A receptor availability was indexed using [11C]Ro15-4513 PET imaging. Dynamic PET data were analyzed using the two-tissue compartment model with an arterial plasma input function and total volume of distribution (VT) as the outcome measure. Symptom severity was assessed using the PANSS scale. There was significantly lower [11C]Ro15-4513 VT in the hippocampus of antipsychotic-free patients, but not in medicated patients (p = 0.64), relative to healthy controls (p < 0.05; effect size = 1.4). There was also a significant positive correlation between [11C]Ro15-4513 VT and total PANSS score in antipsychotic-free patients (r = 0.72; p = 0.044). The results suggest that antipsychotic-free patients with schizophrenia have lower α5-GABAARs levels in the hippocampus, consistent with the hypothesis that GABA hypofunction underlies the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK. .,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Abhishekh H. Ashok
- grid.14105.310000000122478951Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK ,grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Ilinca Angelescu
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Faith Borgan
- grid.14105.310000000122478951Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK ,grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jim Myers
- grid.7445.20000 0001 2113 8111Faculty of Medicine, Imperial College London, London, UK
| | - Anne Lingford-Hughes
- grid.7445.20000 0001 2113 8111Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - David J. Nutt
- grid.7445.20000 0001 2113 8111Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - Mattia Veronese
- grid.13097.3c0000 0001 2322 6764Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Federico E. Turkheimer
- grid.13097.3c0000 0001 2322 6764Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Oliver D. Howes
- grid.14105.310000000122478951Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK ,grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
48
|
Abstract
Chronic alcohol consumption results in alcohol use disorder (AUD). Interestingly, however, sudden alcohol withdrawal (AW) after chronic alcohol exposure also leads to a devastating series of symptoms, referred to as alcohol withdrawal syndromes. One key feature of AW syndromes is to produce phenotypes that are opposite to AUD. For example, while the brain is characterized by a hypoactive state in the presence of alcohol, AW induces a hyperactive state, which is manifested as seizure expression. In this review, we discuss the idea that hippocampal neurogenesis and neural circuits play a key role in neuroadaptation and establishment of allostatic states in response to alcohol exposure and AW. The intrinsic properties of dentate granule cells (DGCs), and their contribution to the formation of a potent feedback inhibitory loop, endow the dentate gyrus with a "gate" function, which can limit the entry of excessive excitatory signals from the cortex into the hippocampus. We discuss the possibility that alcohol exposure and withdrawal disrupts structural development and circuitry integration of hippocampal newborn neurons, and that this altered neurogenesis impairs the gate function of the hippocampus. Failure of this gate function is expected to alter the ratio of excitatory to inhibitory (E/I) signals in the hippocampus and to induce seizure expression during AW. Recent functional studies have shown that specific activation and inhibition of hippocampal newborn DGCs are both necessary and sufficient for the expression of AW-associated seizures, further supporting the concept that neurogenesis-induced neuroadaptation is a critical target to understand and treat AUD and AW-associated seizures.
Collapse
Affiliation(s)
- Sreetama Basu
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Hoonkyo Suh
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
49
|
Syed P, Durisic N, Harvey RJ, Sah P, Lynch JW. Effects of GABA A Receptor α3 Subunit Epilepsy Mutations on Inhibitory Synaptic Signaling. Front Mol Neurosci 2020; 13:602559. [PMID: 33328885 PMCID: PMC7714833 DOI: 10.3389/fnmol.2020.602559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Missense mutations T166M, Q242L, T336M, and Y474C in the GABAA receptor (GABAAR) α3 subunit gene are associated with epileptic seizures, dysmorphic features, intellectual disability, and developmental delay. When incorporated into GABAARs expressed in oocytes, all mutations are known to reduce GABA-evoked whole-cell currents. However, their impact on the properties of inhibitory synaptic currents (IPSCs) is unknown, largely because it is difficult to establish, much less control, the stoichiometry of GABAAR expressed in native neuronal synapses. To circumvent this problem, we employed a HEK293 cell-neuron co-culture expression system that permits the recording of IPSCs mediated by a pure population of GABAARs with a defined stoichiometry. We first demonstrated that IPSCs mediated by α3-containing GABAARs (α3β3γ2) decay significantly slower than those mediated by α1-containing isoforms (α1β2γ2 or α1β3γ2). GABAAR α3 mutations did not affect IPSC peak amplitudes or 10-90% rise times, but three of the mutations affected IPSC decay. T336M significantly accelerated the IPSC decay rate whereas T166M and Y474C had the opposite effect. The acceleration of IPSC decay kinetics caused by the T366M mutation was returned to wild-type-like values by the anti-epileptic medication, midazolam. Quantification experiments in HEK293 cells revealed a significant reduction in cell-surface expression for all mutants, in agreement with previous oocyte data. Taken together, our results show that impaired surface expression and altered IPSC decay rates could both be significant factors underlying the pathologies associated with these mutations.
Collapse
Affiliation(s)
- Parnayan Syed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Department of Biology, Joint Center for Neuroscience and Neural Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Peris-Yague A, Kiemes A, Cash D, Cotel MC, Singh N, Vernon AC, Modinos G. Region-specific and dose-specific effects of chronic haloperidol exposure on [ 3H]-flumazenil and [ 3H]-Ro15-4513 GABA A receptor binding sites in the rat brain. Eur Neuropsychopharmacol 2020; 41:106-117. [PMID: 33153853 PMCID: PMC7731940 DOI: 10.1016/j.euroneuro.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/02/2020] [Accepted: 10/16/2020] [Indexed: 11/02/2022]
Abstract
Postmortem studies suggest that schizophrenia is associated with abnormal expression of specific GABAA receptor (GABAAR) α subunits, including α5GABAAR. Positron emission tomography (PET) measures of GABAAR availability in schizophrenia, however, have not revealed consistent alterations in vivo. Animal studies using the GABAAR agonist [3H]-muscimol provide evidence that antipsychotic drugs influence GABAAR availability, in a region-specific manner, suggesting a potential confounding effect of these drugs. No such data, however, are available for more recently developed subunit-selective GABAAR radioligands. To address this, we combined a rat model of clinically relevant antipsychotic drug exposure with quantitative receptor autoradiography. Haloperidol (0.5 and 2 mg/kg/day) or drug vehicle were administered continuously to adult male Sprague-Dawley rats via osmotic mini-pumps for 28 days. Quantitative receptor autoradiography was then performed postmortem using the GABAAR subunit-selective radioligand [3H]-Ro15-4513 and the non-subunit selective radioligand [3H]-flumazenil. Chronic haloperidol exposure increased [3H]-Ro15-4513 binding in the CA1 sub-field of the rat dorsal hippocampus (p<0.01; q<0.01; d=+1.3), which was not dose-dependent. [3H]-flumazenil binding also increased in most rat brain regions (p<0.05; main effect of treatment), irrespective of the haloperidol dose. These data confirm previous findings that chronic haloperidol exposure influences the specific binding of non-subtype selective GABAAR radioligands and is the first to demonstrate a potential effect of haloperidol on the binding of a α1/5GABAAR-selective radioligand. Although caution should be exerted when extrapolating results from animals to patients, our data support a view that exposure to antipsychotics may be a confounding factor in PET studies of GABAAR in the context of schizophrenia.
Collapse
Affiliation(s)
- Alba Peris-Yague
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Amanda Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespingy Park, London SE5 8AF, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Marie-Caroline Cotel
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, United Kingdom
| | - Nisha Singh
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| | - Gemma Modinos
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespingy Park, London SE5 8AF, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|