1
|
Boulard Y, Bressanelli S. Recapitulating Trafficking of Nucleosides Into the Active Site of Polymerases of RNA Viruses: The Challenge and the Prize. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:705875. [PMID: 35047945 PMCID: PMC8757734 DOI: 10.3389/fmedt.2021.705875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Nucleoside analogs are very effective antiviral agents with currently over 25 compounds approved for the therapy of viral infections. Still, their successful use against RNA viruses is very recent, despite RNA viruses comprising some of the most damaging human pathogens (e.g., Coronaviruses, Influenza viruses, or Flaviviridae such as dengue, Zika and hepatitis C viruses). The breakthrough came in 2013–2014, when the nucleoside analog Sofosbuvir became one of the cornerstones of current curative treatments for hepatitis C virus (HCV). An analog designed on the same principles, Remdesivir, has been the first approved compound against SARS-CoV-2, the coronavirus that causes the current COVID-19 pandemic. Both of these nucleoside analogs target the RNA-dependent RNA polymerase (RdRp) (NS5B for HCV, nsp12 for SARS-CoV-2). RdRps of RNA viruses display a peculiar elaboration of the classical polymerase architecture that leads to their active site being caged. Thus, triphosphate nucleosides and their analogs must access this active site in several steps along a narrow and dynamic tunnel. This makes straightforward computational approaches such as docking unsuitable for getting atomic-level details of this process. Here we give an account of ribose-modified nucleoside analogs as inhibitors of viral RdRps and of why taking into account the dynamics of these polymerases is necessary to understand nucleotide selection by RdRps. As a case study we use a computational protocol we recently described to examine the approach of the NTP tunnel of HCV NS5B by cellular metabolites of Sofosbuvir. We find major differences with natural nucleotides even at this early stage of nucleotide entry.
Collapse
Affiliation(s)
- Yves Boulard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
2
|
Liu C, Shi W, Becker ST, Schatz DG, Liu B, Yang Y. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science 2021; 373:1142-1146. [PMID: 34315827 PMCID: PMC9836006 DOI: 10.1126/science.abi9310] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Coronavirus 3′-to-5′ exoribonuclease (ExoN), residing in the nonstructural protein (nsp) 10–nsp14 complex, boosts replication fidelity by proofreading RNA synthesis and is critical for the virus life cycle. ExoN also recognizes and excises nucleotide analog inhibitors incorporated into the nascent RNA, undermining the effectiveness of nucleotide analog–based antivirals. Here we present cryo–electron microscopy structures of both wild-type and mutant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp10-nsp14 in complex with an RNA substrate bearing a 3′-end mismatch at resolutions ranging from 2.5 to 3.9 angstroms. The structures reveal the molecular determinants of ExoN substrate specificity and offer insight into the molecular mechanisms of mismatch correction during coronavirus RNA synthesis. Our findings provide guidance for rational design of improved anticoronavirus therapies.
Collapse
Affiliation(s)
- Chang Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.,Corresponding author. (C.L.); (B.L.); (Y.Y.)
| | - Wei Shi
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Scott T. Becker
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - David G. Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.,Corresponding author. (C.L.); (B.L.); (Y.Y.)
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA.,Corresponding author. (C.L.); (B.L.); (Y.Y.)
| |
Collapse
|
3
|
Targeting SARS-CoV-2 Polymerase with New Nucleoside Analogues. Molecules 2021; 26:molecules26113461. [PMID: 34200204 PMCID: PMC8201013 DOI: 10.3390/molecules26113461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the fact that COVID-19 vaccines are already available on the market, there have not been any effective FDA-approved drugs to treat this disease. There are several already known drugs that through drug repositioning have shown an inhibitory activity against SARS-CoV-2 RNA-dependent RNA polymerase. These drugs are included in the family of nucleoside analogues. In our efforts, we synthesized a group of new nucleoside analogues, which are modified at the sugar moiety that is replaced by a quinazoline entity. Different nucleobase derivatives are used in order to increase the inhibition. Five new nucleoside analogues were evaluated with in vitro assays for targeting polymerase of SARS-CoV-2.
Collapse
|
4
|
Abstract
Coronaviruses (CoVs) are a major group of viruses known to be responsible for wide spectrum of diseases in multiple species. The CoVs affecting human population are referred to as human coronaviruses (HCoVs). They lead to multiple respiratory diseases, such as common cold, pneumonia, bronchitis, severe acute respiratory syndrome, and Middle East respiratory syndrome. CoVs are RNA viruses that require RNA-dependent RNA polymerases (RdRPs) for various steps in their life cycle. Action of RdRP is needed in several steps in the life cycle of CoVs and thus RdRPs constitute potential targets for drugs and other therapeutic interventions for the treatment of diseases caused by CoVs. The chapter therefore presents a detailed discussion on the structure and functions of CoV polymerases and the development of their potential inhibitors.
Collapse
|
5
|
Development and Validation of a Phenotypic High-Content Imaging Assay for Assessing the Antiviral Activity of Small-Molecule Inhibitors Targeting Zika Virus. Antimicrob Agents Chemother 2018; 62:AAC.00725-18. [PMID: 30061280 DOI: 10.1128/aac.00725-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) has been linked to the development of microcephaly in newborns, as well as Guillain-Barré syndrome. There are currently no drugs available to treat ZIKV infection, and accordingly, there is an unmet medical need for the discovery of new therapies. High-throughput drug screening efforts focusing on indirect readouts of cell viability are prone to a higher frequency of false positives in cases where the virus is viable in the cell but the cytopathic effect (CPE) is reduced or delayed. Here, we describe a fast and label-free phenotypic high-content imaging assay to detect cells affected by the virus-induced CPE using automated imaging and analysis. Protection from the CPE correlates with a decrease in viral antigen production, as observed by immunofluorescence. We trained our assay using a collection of nucleoside analogues with activity against ZIKV; the previously reported antiviral activities of 2'-C-methylribonucleosides and ribavirin against the Zika virus in Vero cells were confirmed using our developed method. To validate the ability of our assay to reveal new anti-ZIKV compounds, we profiled a novel library of 24 natural product derivatives and found compound 1 to be an inhibitor of the ZIKV-induced cytopathic effect; the activity of the compound was confirmed in human fetal neural stem cells (NSCs). The described technique can be easily leveraged as a primary screening assay for profiling of the activities of large compound libraries against ZIKV and can be expanded to other ZIKV strains and other cell lines displaying morphological changes upon ZIKV infection.
Collapse
|
6
|
Shen GH, Hong JH. Recent advances in the synthesis of cyclic 5′-nornucleoside phosphonate analogues. Carbohydr Res 2018; 463:47-106. [DOI: 10.1016/j.carres.2018.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
7
|
Biochemical Evaluation of the Inhibition Properties of Favipiravir and 2'-C-Methyl-Cytidine Triphosphates against Human and Mouse Norovirus RNA Polymerases. Antimicrob Agents Chemother 2015; 59:7504-16. [PMID: 26392512 DOI: 10.1128/aac.01391-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022] Open
Abstract
Norovirus (NoV) is a positive-sense single-stranded RNA virus that causes acute gastroenteritis and is responsible for 200,000 deaths per year worldwide. No effective vaccine or treatment is available. Recent studies have shown that the nucleoside analogs favipiravir (T-705) and 2'-C-methyl-cytidine (2CM-C) inhibit NoV replication in vitro and in animal models, but their precise mechanism of action is unknown. We evaluated the molecular interactions between nucleoside triphosphates and NoV RNA-dependent RNA polymerase (NoVpol), the enzyme responsible for replication and transcription of NoV genomic RNA. We found that T-705 ribonucleoside triphosphate (RTP) and 2CM-C triphosphate (2CM-CTP) equally inhibited human and mouse NoVpol activities at concentrations resulting in 50% of maximum inhibition (IC50s) in the low micromolar range. 2CM-CTP inhibited the viral polymerases by competing directly with natural CTP during primer elongation, whereas T-705 RTP competed mostly with ATP and GTP at the initiation and elongation steps. Incorporation of 2CM-CTP into viral RNA blocked subsequent RNA synthesis, whereas T-705 RTP did not cause immediate chain termination of NoVpol. 2CM-CTP and T-705 RTP displayed low levels of enzyme selectivity, as they were both recognized as substrates by human mitochondrial RNA polymerase. The level of discrimination by the human enzyme was increased with a novel analog of T-705 RTP containing a 2'-C-methyl substitution. Collectively, our data suggest that 2CM-C inhibits replication of NoV by acting as a classic chain terminator, while T-705 may inhibit the virus by multiple mechanisms of action. Understanding the precise mechanism of action of anti-NoV compounds could provide a rational basis for optimizing their inhibition potencies and selectivities.
Collapse
|
8
|
The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat Rev Microbiol 2013; 11:482-96. [PMID: 23748342 DOI: 10.1038/nrmicro3046] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of the first molecular clone of the hepatitis C virus (HCV) genome allowed the identification and biochemical characterization of two viral enzymes that are targets for antiviral therapy: the protease NS3-4A and the RNA-dependent RNA polymerase NS5B. With the advent of cell culture systems that can recapitulate either the intracellular steps of the viral replication cycle or the complete cycle, additional drug targets have been identified, most notably the phosphoprotein NS5A, but also host cell factors that promote viral replication, such as cyclophilin A. Here, we review insights into the structures of these proteins and the mechanisms by which they contribute to the HCV replication cycle, and discuss how these insights have facilitated the development of new, directly acting antiviral compounds that have started to enter the clinic.
Collapse
|
9
|
Cheek MA, Sharaf ML, Dobrikov MI, Shaw BR. Inhibition of hepatitis C viral RNA-dependent RNA polymerase by α-P-boranophosphate nucleotides: exploring a potential strategy for mechanism-based HCV drug design. Antiviral Res 2013; 98:144-52. [PMID: 23466667 PMCID: PMC3653414 DOI: 10.1016/j.antiviral.2013.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/02/2013] [Accepted: 02/21/2013] [Indexed: 12/31/2022]
Abstract
Improved treatments for chronic HCV infections remain a challenge, and new chemical strategies are needed to expand the current paradigm. The HCV RNA polymerase (RdR(P)) has been a target for antiviral development. For the first time we show that the boranophosphate (BP) modification increases the substrate efficiency of ATP analogs into HCV NS5BΔ55 RdRP-catalyzed RNA. Boranophosphate nucleotides contain a borane (BH₃) group substituted for a non-bridging phosphoryl oxygen of a normal phosphate group, resulting in a class of modified isoelectronic DNA and RNA mimics capable of modulating the reading and writing of genetic information. We determine that HCV NS5BΔ55, being a stereospecific enzyme, incorporates the Rp isomer of both ATPαB and the two boranophosphate analogs: 2'-O-methyladenosine 5'-(α-P-borano) triphosphate (2'-OMe ATPαB, 5a) and 3'-deoxyadenosine 5'-(α-P-borano) triphosphate (3'-dATPαB, 5b). The R(p) diastereomer of ATPαB (6), having no ribose modifications, was found to be a slightly better substrate than natural ATP, showing a 42% decrease in the apparent Michaelis-Menten constant (K(m)). The IC₅₀ of both 2'-O-Me and 3'-deoxy ATP was decreased with the boranophosphate modification up to 16-fold. This "borano effect" was further confirmed by determining the steady-state inhibitory constant (K(i)), showing a comparable potency shift (21-fold). These experiments also indicate that the boranophosphate analogs 5a and 5b inhibit HCV NS5B through a competitive mode of inhibition. This evidence, together with previous crystal structure data, further supports the idea that HCV NS5B (in a similar manner to HIV-1 RT) discriminates against the 3'-deoxy modification via lost interactions between the 3'-OH on the ribose and the active site residues, or lost intramolecular hydrogen bonding interactions between the 3'-OH and the pyrophosphate leaving group during phosphoryl transfer. To our knowledge, these data represent the first time a phosphate modified NTP has been studied as a substrate for HCV NS5B RdRP.
Collapse
Affiliation(s)
| | - Mariam L. Sharaf
- Box 90346, Department of Chemistry, Duke University, Durham NC 27708-0346
| | | | | |
Collapse
|
10
|
Progress in the development of anti-hepatitis C virus nucleoside and nucleotide prodrugs. Future Med Chem 2012; 4:625-50. [PMID: 22458682 DOI: 10.4155/fmc.12.10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The search for new anti-hepatitis C virus (HCV) therapeutics continues as the current treatment, consisting of PEGylated IFN-α and ribavirin, is of limited efficacy, nonspecific and can cause significant side effects. Modified nucleoside analogues with improved efficacy and selectivity, may become the backbone of the future standard of care for anti-HCV therapies. Several families of modified nucleoside are known to inhibit HCV RNA-dependent RNA polymerase, a vital enzyme for viral replication. Ongoing efforts are focused on improvement of potency, selectivity and delivery of antiviral nucleoside analogues, with several recent promising advances into clinical trials. This review summarizes the current progress in the development of new anti-HCV nucleoside and nucleotide prodrugs.
Collapse
|
11
|
Abramov M, Renders M, Herdewijn P. Synthesis of 2'-N-formamido nucleosides and biological evaluation. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:1042-50. [PMID: 20183572 DOI: 10.1080/15257770903362164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The 2'-N-formamide derivatives of adenosine, cytidine, and 9-beta-d-arabinofuranosyladenine were synthesized and tested (as triphosphate) for their substrate capacities for the HCV NS5B polymerase.
Collapse
Affiliation(s)
- Mikhail Abramov
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | | | | |
Collapse
|
12
|
Liu LJ, Seo RS, Yoo SW, Choi J, Hong JH. Synthesis and Anti-HCV Activity of 3',5'-cyclic SATE Phosphonodiester Nucleoside as a Novel Prodrug. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.04.915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Conversion of VPg into VPgpUpUOH before and during poliovirus negative-strand RNA synthesis. J Virol 2009; 83:12660-70. [PMID: 19812161 DOI: 10.1128/jvi.01676-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are two protein primers involved in picornavirus RNA replication, VPg, the viral protein of the genome, and VPgpUpU(OH). A cis-acting replication element (CRE) within the open reading frame of poliovirus (PV) RNA allows the viral RNA-dependent RNA polymerase 3D(Pol) to catalyze the conversion of VPg into VPgpUpU(OH). In this study, we used preinitiation RNA replication complexes (PIRCs) to determine when CRE-dependent VPg uridylylation occurs relative to the sequential synthesis of negative- and positive-strand RNA. Guanidine HCl (2 mM), a reversible inhibitor of PV 2C(ATPase), prevented CRE-dependent VPgpUpU(OH) synthesis and the initiation of negative-strand RNA synthesis. VPgpUpU(OH) and nascent negative-strand RNA molecules were synthesized coincident in time following the removal of guanidine, consistent with PV RNA functioning simultaneously as a template for CRE-dependent VPgpUpU(OH) synthesis and negative-strand RNA synthesis. The amounts of [(32)P]UMP incorporated into VPgpUpU(OH) and negative-strand RNA products indicated that 100 to 400 VPgpUpU(OH) molecules were made coincident in time with each negative-strand RNA. 3'-dCTP inhibited the elongation of nascent negative-strand RNAs without affecting CRE-dependent VPg uridylylation. A 3' nontranslated region mutation which inhibited negative-strand RNA synthesis did not inhibit CRE-dependent VPg uridylylation. Together, the data implicate 2C(ATPase) in the mechanisms whereby PV RNA functions as a template for reiterative CRE-dependent VPg uridylylation before and during negative-strand RNA synthesis.
Collapse
|
14
|
Abstract
Over the past 20 years, nucleoside analogues have constituted an arsenal of choice in the fight against HIV, hepatitis B and C viruses, and herpesviruses. Classical antiviral nucleosides such as zidovudine act as obligate chain terminators. Once incorporated as monophosphates into the viral nucleic acid, they immediately block the progression of the polymerase as a result of their lack of a reactive 3'-hydroxyl (3'-OH) group. This review explores beyond the paradigm of obligate chain termination, from a structural and a mechanistic perspective, the strategy of inhibiting viral polymerases (RNA- and DNA-dependant) with nucleoside analogues containing a 3'-OH group. Depending on their mechanism of action, these molecules typically fall into the following three categories: (i) delayed chain terminators; (ii) pseudo-obligate chain terminators; or (iii) mutagenic nucleosides. Delayed chain terminators (i.e. penciclovir, cidofovir and entecavir) block the polymerase at an internal position within the viral nucleic acid, whereas R7128 and the 4'C substituted nucleosides do not permit subsequent incorporation events. Ribavirin, 5-hydroxydeoxycytidine and KP1461 are not chain terminators. Instead, they inhibit viral replication after mispairing with the template base, resulting in random mutations that are often lethal. Finally, brivudine, clevudine and other L-nucleosides have unique or yet to be defined mechanisms of inhibition.
Collapse
Affiliation(s)
- Jerome Deval
- Roche Palo Alto LLC, Palo Alto, California 94304, USA.
| |
Collapse
|
15
|
Iannazzo D, Piperno A, Romeo G, Romeo R, Chiacchio U, Rescifina A, Balestrieri E, Macchi B, Mastino A, Cortese R. 3-Amino-2(5H)furanones as inhibitors of subgenomic hepatitis C virus RNA replication. Bioorg Med Chem 2008; 16:9610-5. [PMID: 18835180 DOI: 10.1016/j.bmc.2008.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/27/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
|
16
|
Molecular mechanism of hepatitis C virus replicon variants with reduced susceptibility to a benzofuran inhibitor, HCV-796. Antimicrob Agents Chemother 2008; 52:3327-38. [PMID: 18559648 DOI: 10.1128/aac.00238-08] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
HCV-796 selectively inhibits hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. In hepatoma cells containing a genotype 1b HCV replicon, HCV-796 reduced HCV RNA levels by 3 to 4 log(10) HCV copies/mug total RNA (the concentration of the compound that inhibited 50% of the HCV RNA level was 9 nM). Cells bearing replicon variants with reduced susceptibility to HCV-796 were generated in the presence of HCV-796, followed by G418 selection. Sequence analysis of the NS5B gene derived from the replicon variants revealed several amino acid changes within 5 A of the drug-binding pocket. Specifically, mutations were observed at Leu314, Cys316, Ile363, Ser365, and Met414 of NS5B, which directly interact with HCV-796. The impacts of the amino acid substitutions on viral fitness and drug susceptibility were examined in recombinant replicons and NS5B enzymes with the single-amino-acid mutations. The replicon variants were 10- to 1,000-fold less efficient in forming colonies in cells than the wild-type replicon; the S365L variant failed to establish a stable cell line. Other variants (L314F, I363V, and M414V) had four- to ninefold-lower steady-state HCV RNA levels. Reduced binding affinity with HCV-796 was demonstrated in an enzyme harboring the C316Y mutation. The effects of these resistance mutations were structurally rationalized using X-ray crystallography data. While different levels of resistance to HCV-796 were observed in the replicon and enzyme variants, these variants retained their susceptibilities to pegylated interferon, ribavirin, and other HCV-specific inhibitors. The combined virological, biochemical, biophysical, and structural approaches revealed the mechanism of resistance in the variants selected by the potent polymerase inhibitor HCV-796.
Collapse
|
17
|
Glenn JS. Molecular virology of the hepatitis C virus: implication for novel therapies. Infect Dis Clin North Am 2008; 20:81-98. [PMID: 16527650 DOI: 10.1016/j.idc.2006.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With the advent of second-generation agents that for the first time specifically target individual HCV proteins, HCV-specific therapy has arrived. The study of HCV molecular virology has helped make this possible and is helping us to identify additional new antiviral targets that will be targeted by third-generation drugs. Key to these efforts is the development of high-efficiency HCV replicons. The future effective pharmacologic control of HCV will likely consist of a cocktail of simultaneously administered virus-specific agents with independent targets. This should minimize the emergence of resistance against any single agent. The way we treat HCV should change dramatically over the next few years.
Collapse
Affiliation(s)
- Jeffrey S Glenn
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine and Palo Alto Veterans Administration Medical Center, CCSR Building, Room 3115, 269 Campus Drive, Palo Alto, CA 94305-5187, USA.
| |
Collapse
|
18
|
Klumpp K, Kalayanov G, Ma H, Le Pogam S, Leveque V, Jiang WR, Inocencio N, De Witte A, Rajyaguru S, Tai E, Chanda S, Irwin MR, Sund C, Winqist A, Maltseva T, Eriksson S, Usova E, Smith M, Alker A, Najera I, Cammack N, Martin JA, Johansson NG, Smith DB. 2'-deoxy-4'-azido nucleoside analogs are highly potent inhibitors of hepatitis C virus replication despite the lack of 2'-alpha-hydroxyl groups. J Biol Chem 2007; 283:2167-75. [PMID: 18003608 DOI: 10.1074/jbc.m708929200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2'-alpha-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of alpha-hydroxy moieties. 2'-deoxy-2'-beta-fluoro-4'-azidocytidine (RO-0622) and 2'-deoxy-2'-beta-hydroxy-4'-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC(50) = 171 +/- 12 nM and 24 +/- 3 nM for RO-9187 and RO-0622, respectively; CC(50) >1 mM for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4'-azidocytidine) or 2'-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC(50) values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2'-alpha-deoxy-4'-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.
Collapse
Affiliation(s)
- Klaus Klumpp
- Roche Palo Alto LLC, Palo Alto, California 94304, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ślusarczyk M, De Borggraeve WM, Toppet S, Hoornaert GJ. Synthesis of Methylene-Bridged Analogues of Biologically Active Pteridine Derivatives. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Deval J, Powdrill MH, D'Abramo CM, Cellai L, Götte M. Pyrophosphorolytic excision of nonobligate chain terminators by hepatitis C virus NS5B polymerase. Antimicrob Agents Chemother 2007; 51:2920-8. [PMID: 17502402 PMCID: PMC1932539 DOI: 10.1128/aac.00186-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonobligate chain terminators, such as 2'-C-methylated nucleotides, block RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of hepatitis C virus (HCV). Previous studies with related viral polymerases have shown that classical chain terminators lacking the 3'-hydroxyl group can be excised in the presence of pyrophosphate (PP(i)), which is detrimental to the inhibitory activity of these compounds. Here we demonstrate that the HCV RdRp enzyme is capable of removing both obligate and clinically relevant nonobligate chain terminators. Pyrimidines are more efficiently excised than are purines. The presence of the next complementary templated nucleotide literally blocks the excision of obligate chain terminators through the formation of a dead-end complex (DEC). However, 2'-C-methylated CMP is still cleaved efficiently under these conditions. These findings show that a 2'-methylated primer terminus impedes nucleotide binding. The S282T mutation, associated with resistance to 2'-C-methylated nucleotides, does not affect the excision patterns. Thus, the decreased susceptibility to 2'-C-methylated nucleotides appears to be based solely on improved discrimination between the inhibitor and its natural counterpart. In conclusion, our data suggest that the phosphorolytic excision of nonobligate, pyrimidine-based chain terminators can diminish their potency. The templated nucleotide does not appear to provide protection from excision through DEC formation.
Collapse
Affiliation(s)
- Jérôme Deval
- Department of Microbiology & Immunology, McGill University, Duff Medical Building, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
21
|
Yan S, Appleby T, Larson G, Wu JZ, Hamatake RK, Hong Z, Yao N. Thiazolone-acylsulfonamides as novel HCV NS5B polymerase allosteric inhibitors: Convergence of structure-based drug design and X-ray crystallographic study. Bioorg Med Chem Lett 2007; 17:1991-5. [PMID: 17276060 DOI: 10.1016/j.bmcl.2007.01.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 01/04/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
A novel series of thiazolone-acylsulfonamides were designed as HCV NS5B polymerase allosteric inhibitors. The structure based drug designs (SBDD) were guided by docking results that revealed the potential to explore an additional pocket in the allosteric site. In particular, the designed molecules contain moieties of previously described thiazolone and a newly designed acylsulfonamide linker that is in turn connected with a substituted aromatic ring. The selected compounds were synthesized and demonstrated low muM activity. The X-ray complex structure was determined at a 2.2A resolution and converged with the SBDD principle.
Collapse
Affiliation(s)
- Shunqi Yan
- Valeant Pharmaceutical Research & Development, 3300 Hyland Ave., Costa Mesa, CA 92626, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Stuyver LJ, McBrayer TR, Tharnish PM, Clark J, Hollecker L, Lostia S, Nachman T, Grier J, Bennett MA, Xie MY, Schinazi RF, Morrey JD, Julander JL, Furman PA, Otto MJ. Inhibition of hepatitis C replicon RNA synthesis by beta-D-2'-deoxy-2'-fluoro-2'-C-methylcytidine: a specific inhibitor of hepatitis C virus replication. Antivir Chem Chemother 2006; 17:79-87. [PMID: 17042329 DOI: 10.1177/095632020601700203] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) is a cytidine analogue with potent and selective anti-hepatitis C virus (HCV) activity in the subgenomic HCV replicon assay, 90% effective concentration (EC90)=4.6 +/- 2.0 microM. The spectrum of activity and cytotoxicity profile of PSI-6130 was evaluated against a diverse panel of viruses and cell types, and against two additional HCV-1b replicons. The S282T mutation, which confers resistance to 2'-C-methyl adenosine and other 2'-methylated nucleosides, showed only a 6.5-fold increase in EC90. When assayed for activity against bovine diarrhoea virus (BVDV), which is typically used as a surrogate assay to identify compounds active against HCV, PSI-6130 showed no anti-BVDV activity. Weak antiviral activity was noted against other flaviviruses, including West Nile virus, Dengue type 2, and yellow fever virus. These results indicate that PSI-6130 is a specific inhibitor of HCV. PSI-6130 showed little or no cytotoxicity against various cell types, including human peripheral blood mononuclear and human bone marrow progenitor cells. No mitochondrial toxicity was observed with PSI-6130. The reduced activity against the RdRp S282T mutant suggests that PSI-6130 is an inhibitor of replicon RNA synthesis. Finally, the no-effect dose for mice treated intraperitoneally with PSI-6130 for six consecutive days was > or =100 mg/kg per day.
Collapse
|
23
|
Murakami E, Bao H, Ramesh M, McBrayer TR, Whitaker T, Micolochick Steuer HM, Schinazi RF, Stuyver LJ, Obikhod A, Otto MJ, Furman PA. Mechanism of activation of beta-D-2'-deoxy-2'-fluoro-2'-c-methylcytidine and inhibition of hepatitis C virus NS5B RNA polymerase. Antimicrob Agents Chemother 2006; 51:503-9. [PMID: 17101674 PMCID: PMC1797721 DOI: 10.1128/aac.00400-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta-D-2'-deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) is a potent specific inhibitor of hepatitis C virus (HCV) RNA synthesis in Huh-7 replicon cells. To inhibit the HCV NS5B RNA polymerase, PSI-6130 must be phosphorylated to the 5'-triphosphate form. The phosphorylation of PSI-6130 and inhibition of HCV NS5B were investigated. The phosphorylation of PSI-6130 by recombinant human 2'-deoxycytidine kinase (dCK) and uridine-cytidine kinase 1 (UCK-1) was measured by using a coupled spectrophotometric reaction. PSI-6130 was shown to be a substrate for purified dCK, with a Km of 81 microM and a kcat of 0.007 s-1, but was not a substrate for UCK-1. PSI-6130 monophosphate (PSI-6130-MP) was efficiently phosphorylated to the diphosphate and subsequently to the triphosphate by recombinant human UMP-CMP kinase and nucleoside diphosphate kinase, respectively. The inhibition of wild-type and mutated (S282T) HCV NS5B RNA polymerases was studied. The steady-state inhibition constant (Ki) for PSI-6130 triphosphate (PSI-6130-TP) with the wild-type enzyme was 4.3 microM. Similar results were obtained with 2'-C-methyladenosine triphosphate (Ki=1.5 microM) and 2'-C-methylcytidine triphosphate (Ki=1.6 microM). NS5B with the S282T mutation, which is known to confer resistance to 2'-C-methyladenosine, was inhibited by PSI-6130-TP as efficiently as the wild type. Incorporation of PSI-6130-MP into RNA catalyzed by purified NS5B RNA polymerase resulted in chain termination.
Collapse
Affiliation(s)
- Eisuke Murakami
- Pharmasset, Inc., 303A College Road East, Princeton, NJ 08640, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yan S, Appleby T, Gunic E, Shim JH, Tasu T, Kim H, Rong F, Chen H, Hamatake R, Wu JZ, Hong Z, Yao N. Isothiazoles as active-site inhibitors of HCV NS5B polymerase. Bioorg Med Chem Lett 2006; 17:28-33. [PMID: 17049853 DOI: 10.1016/j.bmcl.2006.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 10/01/2006] [Accepted: 10/03/2006] [Indexed: 11/26/2022]
Abstract
Isothiazole analogs were discovered as a novel class of active-site inhibitors of HCV NS5B polymerase. The best compound has an IC(50) of 200 nM and EC(50) of 100 nM, which is a significant improvement over the starting inhibitor (1). The X-ray complex structure of 1 with HCV NS5B was obtained at a resolution of 2.2A, revealing that the inhibitor is covalently linked with Cys 366 of the 'primer-grip'. Furthermore, it makes considerable contacts with the C-terminus, beta-loop, and more importantly, to the active-site of the enzyme. The uniqueness of this binding mode offers a new insight for the rational design of novel inhibitors for HCV NS5B polymerase.
Collapse
Affiliation(s)
- Shunqi Yan
- Valeant Pharmaceutical Research and Development, 3300 Hyland Ave., Costa Mesa, CA 92626, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Varaprasad CVNS, Ramasamy KS, Girardet JL, Gunic E, Lai V, Zhong W, An H, Hong Z. Synthesis of pyrrolo[2,3-d]pyrimidine nucleoside derivatives as potential anti-HCV agents. Bioorg Chem 2006; 35:25-34. [PMID: 16945403 DOI: 10.1016/j.bioorg.2006.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/18/2006] [Accepted: 07/21/2006] [Indexed: 01/24/2023]
Abstract
Several Toyocamycin (4) analogues were examined for their ability to inhibit HCV RNA in a replicon assay. Among the compounds examined 4-methylthio (18) and 5-carboxamide oxime derivatives (23 and 27) of Toyocamycin were found to have good activity and selectivity.
Collapse
Affiliation(s)
- Chamakura V N S Varaprasad
- Drug Discovery, Valeant Pharmaceuticals Research and Development, 3300 Hyland Avenue, Costa Mesa, CA 92626, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Howe AYM, Cheng H, Thompson I, Chunduru SK, Herrmann S, O'Connell J, Agarwal A, Chopra R, Del Vecchio AM. Molecular mechanism of a thumb domain hepatitis C virus nonnucleoside RNA-dependent RNA polymerase inhibitor. Antimicrob Agents Chemother 2006; 50:4103-13. [PMID: 16940072 PMCID: PMC1693979 DOI: 10.1128/aac.00365-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A new pyranoindole class of small-molecule inhibitors was studied to understand viral resistance and elucidate the mechanism of inhibition in hepatitis C virus (HCV) replication. HCV replicon variants less susceptible to inhibition by the pyranoindoles were selected in Huh-7 hepatoma cells. Variant replicons contained clusters of mutations in the NS5B polymerase gene corresponding to the drug-binding pocket on the surface of the thumb domain identified by X-ray crystallography. An additional cluster of mutations present in part of a unique beta-hairpin loop was also identified. The mutations were characterized by using recombinant replicon variants engineered with the corresponding amino acid substitutions. A single mutation (L419M or M423V), located at the pyranoindole-binding site, resulted in an 8- to 10-fold more resistant replicon, while a combination mutant (T19P, M71V, A338V, M423V, A442T) showed a 17-fold increase in drug resistance. The results of a competition experiment with purified NS5B enzyme with GTP showed that the inhibitory activity of the pyranoindole inhibitor was not affected by GTP at concentrations up to 250 microM. Following de novo initiation, the presence of a pyranoindole inhibitor resulted in the accumulation of a five-nucleotide oligomer, with a concomitant decrease in higher-molecular-weight products. The results of these studies have confirmed that pyranoindoles target the NS5B polymerase through interactions at the thumb domain. This inhibition is independent of GTP concentrations and is likely mediated by an allosteric blockade introduced by the inhibitor during the transition to RNA elongation after the formation of an initiation complex.
Collapse
MESH Headings
- Amino Acid Substitution
- Binding Sites
- Binding, Competitive
- Cell Line, Tumor
- Crystallography, X-Ray
- Drug Resistance, Viral/genetics
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Genes, Viral
- Genetic Engineering
- Genetic Variation
- Guanosine Triphosphate/metabolism
- Hepacivirus/drug effects
- Hepacivirus/enzymology
- Hepacivirus/genetics
- Humans
- Models, Molecular
- Mutation
- Protein Binding
- Protein Structure, Tertiary
- RNA, Viral/genetics
- RNA-Dependent RNA Polymerase/antagonists & inhibitors
- Recombination, Genetic
- Replicon/genetics
- Selection, Genetic
- Viral Nonstructural Proteins/antagonists & inhibitors
- Viral Nonstructural Proteins/genetics
- Virus Replication
Collapse
Affiliation(s)
- Anita Y M Howe
- Infectious Diseases, Wyeth Research, 500 Arcola Road, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Escuret V, Aucagne V, Joubert N, Durantel D, Rapp KL, Schinazi RF, Zoulim F, Agrofoglio LA. Synthesis of 5-haloethynyl- and 5-(1,2-dihalo)vinyluracil nucleosides: antiviral activity and cellular toxicity. Bioorg Med Chem 2005; 13:6015-24. [PMID: 16023859 DOI: 10.1016/j.bmc.2005.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 06/06/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
In this article, we report the synthesis of hitherto unknown 5-haloethynyl and 5-(1,2-dihalo)vinyluracil nucleosides in the 2'-deoxy, 3'-deoxy- and ribosyl series, and we discuss their in vitro anti-HIV and anti-HCV activities and cellular toxicitites. As a result, on the basis of their selectivity index (SI) obtained with the HCV replicon system, but also on their cytotoxicity on peripheral blood mononuclear, CEM and VERO cell lines, the best compounds were the 5-bromoethynyluridine (SI = 3.2) and the 5-(1-chloro-2-iodo)vinyluridine (SI > 2.8).
Collapse
Affiliation(s)
- Vanessa Escuret
- Institut de Chimie Organique et Analytique, ICOA UMR 6005, UFR Sciences, BP 6759, 45067 Orléans Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ding Y, Girardet JL, Smith KL, Larson G, Prigaro B, Wu JZ, Yao N. Parallel synthesis of 5-cyano-6-aryl-2-thiouracil derivatives as inhibitors for hepatitis C viral NS5B RNA-dependent RNA polymerase. Bioorg Chem 2005; 34:26-38. [PMID: 16360193 DOI: 10.1016/j.bioorg.2005.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/20/2005] [Accepted: 10/01/2005] [Indexed: 11/28/2022]
Abstract
From random screening of our compound libraries, we identified a hit compound with an IC50 of 27 microM against hepatitis C viral NS5B RNA-dependent RNA polymerase. By using a parallel synthetic strategy, a series of its derivatives were synthesized. From their anti-HCV activity screening, compounds with single digital 3.8 micromolar activity were obtained.
Collapse
Affiliation(s)
- Yili Ding
- Valeant Pharmaceuticals International, 3300 Hyland Avenue Costa Mesa, CA 92626, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Klumpp K, Lévêque V, Le Pogam S, Ma H, Jiang WR, Kang H, Granycome C, Singer M, Laxton C, Hang JQ, Sarma K, Smith DB, Heindl D, Hobbs CJ, Merrett JH, Symons J, Cammack N, Martin JA, Devos R, Nájera I. The novel nucleoside analog R1479 (4'-azidocytidine) is a potent inhibitor of NS5B-dependent RNA synthesis and hepatitis C virus replication in cell culture. J Biol Chem 2005; 281:3793-9. [PMID: 16316989 DOI: 10.1074/jbc.m510195200] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatitis C virus (HCV) polymerase activity is essential for HCV replication. Targeted screening of nucleoside analogs identified R1479 (4'-azidocytidine) as a specific inhibitor of HCV replication in the HCV subgenomic replicon system (IC(50) = 1.28 microM) with similar potency compared with 2'-C-methylcytidine (IC(50) = 1.13 microM). R1479 showed no effect on cell viability or proliferation of HCV replicon or Huh-7 cells at concentrations up to 2 mM. HCV replicon RNA could be fully cleared from replicon cells after prolonged incubation with R1479. The corresponding 5'-triphosphate derivative (R1479-TP) is a potent inhibitor of native HCV replicase isolated from replicon cells and of recombinant HCV polymerase (NS5B)-mediated RNA synthesis activity. R1479-TP inhibited RNA synthesis as a CTP-competitive inhibitor with a K(i) of 40 nM. On an HCV RNA-derived template substrate (complementary internal ribosome entry site), R1479-TP showed similar potency of NS5B inhibition compared with 3'-dCTP. R1479-TP was incorporated into nascent RNA by HCV polymerase and reduced further elongation with similar efficiency compared with 3'-dCTP under the reaction conditions. The S282T point mutation in the coding sequence of NS5B confers resistance to inhibition by 2'-C-MeATP and other 2'-methyl-nucleotides. In contrast, the S282T mutation did not confer cross-resistance to R1479.
Collapse
|
30
|
Abstract
The study of hepatitis C virus (HCV) molecular virology is helping to shape the future of our anti-HCV strategies by identifying new antiviral targets. With the advent of agents that specifically target individual HCV proteins, HCV-specific therapy has arrived. Key to these efforts is the development of high-efficiency HCV replicons. The future effective pharmacologic control of HCV will likely consist of a cocktail of simultaneously administered virus-specific agents with independent targets. This should minimize the emergence of resistance against any single agent. The way we treat HCV should change dramatically over the next few years.
Collapse
Affiliation(s)
- Jeffrey S Glenn
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine and Palo Alto Veterans Administration Medical Center, CCSR Building, Room 3115, 269 Campus Drive, Palo Alto, CA 94305-5187, USA.
| |
Collapse
|
31
|
Tomassini JE, Getty K, Stahlhut MW, Shim S, Bhat B, Eldrup AB, Prakash TP, Carroll SS, Flores O, MacCoss M, McMasters DR, Migliaccio G, Olsen DB. Inhibitory effect of 2'-substituted nucleosides on hepatitis C virus replication correlates with metabolic properties in replicon cells. Antimicrob Agents Chemother 2005; 49:2050-8. [PMID: 15855531 PMCID: PMC1087620 DOI: 10.1128/aac.49.5.2050-2058.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleosides have been widely used in the treatment of viral diseases, but relatively few have been identified as inhibitors of hepatitis C virus (HCV). The modified ribonucleosides, 2'-C-methyl-adenosine and 2'-O-methyl-cytidine, are potent inhibitors of HCV replication which specifically target the NS5B polymerase. Herein, a more extensive characterization of the effect of these compounds upon HCV replication in subgenomic replicons is reported. A highly selective antireplicative effect induced by the nucleosides in replicon-containing cell lines was maintained during an exponential growth period with potencies which paralleled the reduction of both positive- and negative-strand RNA replication. Moreover, the inhibitory effect closely correlated with the intrinsic metabolic properties of differing replicon clonal lines. Interestingly, while 2'-C-methyl-adenosine elicited similar inhibitory potencies in different cell lines, 2'-O-methyl-cytidine was found to be inactive in one replicon cell line tested, although the corresponding triphosphates comparably inhibited the in vitro activity of replication complexes isolated from these cells and the activity of NS5B polymerase using synthetic templates. The lack of antireplicative effect, attributed to poor intracellular conversion of the 2'-O-methyl-cytidine nucleoside to the active 5'-triphosphate, was reversed using a monophosphate prodrug. Thus, although replicon cells are useful for evaluating the effect of inhibitors upon HCV replication, these findings have important implications for their use in the identification and characterization of nucleosides and other chemotherapeutic agents requiring cellular metabolism.
Collapse
Affiliation(s)
- Joanne E Tomassini
- Department of Research, Merck and Co., WP26-265, West Point, PA 19486, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ma H, Leveque V, De Witte A, Li W, Hendricks T, Clausen SM, Cammack N, Klumpp K. Inhibition of native hepatitis C virus replicase by nucleotide and non-nucleoside inhibitors. Virology 2005; 332:8-15. [PMID: 15661135 DOI: 10.1016/j.virol.2004.11.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/07/2004] [Accepted: 11/18/2004] [Indexed: 11/23/2022]
Abstract
A number of nucleotide and non-nucleoside inhibitors of HCV polymerase are currently under investigation as potential antiviral agents to treat HCV-infected patients. HCV polymerase is part of a replicase complex including the polymerase subunit NS5B together with other viral and host proteins and viral RNA. The RNA synthesis activity of the native replicase complex was inhibited by 3'-deoxy-CTP, a chain-terminating nucleotide analog, but not inhibited by non-nucleoside NS5B polymerase inhibitors of three different structural classes. The HCV replicase was also resistant to heparin, a broad-spectrum, RNA-competitive polymerase inhibitor. Prebinding of the recombinant NS5B protein with a RNA template rendered the polymerase largely resistant to the inhibition by heparin and the non-nucleoside inhibitors, but did not affect the inhibitory potency of 3'-deoxy-CTP. Therefore, the HCV replicase showed a similar pattern of inhibitor sensitivity as compared to RNA-bound NS5B. These results suggest that the native HCV replicase complex represents a stable and productive polymerase-RNA complex. The allosteric non-nucleoside NS5B polymerase inhibitors are inactive against established HCV replicase but may function antagonistically with the formation of a productive enzyme-template complex.
Collapse
Affiliation(s)
- Han Ma
- Roche Palo Alto LLC, 3431 Hillview Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Direct SNAr amination of fluorinated imidazo[4,5-c]pyridine nucleosides: efficient syntheses of 3-fluoro-3-deazaadenosine analogs. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.03.190] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Koh YH, Shim JH, Wu JZ, Zhong W, Hong Z, Girardet JL. Design, synthesis, and antiviral activity of adenosine 5'-phosphonate analogues as chain terminators against hepatitis C virus. J Med Chem 2005; 48:2867-75. [PMID: 15828825 DOI: 10.1021/jm049029u] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of adenosine 5'-phosphonate analogues were designed to mimic naturally occurring adenosine monophosphate. These compounds (1-5) were synthesized and evaluated in a cellular hepatitis C virus (HCV) replication assay. To improve cellular permeability and enhance the anti-HCV activity of these phosphonates, a bis(S-acyl-2-thioethyl) prodrug for compound 5 was prepared, and its cellular activity was determined. To elucidate the mechanism of action of these novel adenosine phosphonates, their diphosphate derivatives (1a-5a) were synthesized. Further nucleotide incorporation assays by HCV NS5B RNA-dependent RNA polymerase revealed that 2a and 3a can serve as chain terminators, whereas compounds 1a, 4a, and 5a are competitive inhibitors with ATP. Additional steady-state kinetic analysis determined the incorporation efficiency of 2a and 3a as well as the inhibition constants for 1a, 4a, and 5a. The structure-activity relationships among these compounds were analyzed, and the implication for nucleoside phosphonate drug design was discussed.
Collapse
Affiliation(s)
- Yung-hyo Koh
- Drug Discovery, R&D, Valeant Pharmaceuticals International, 3300 Hyland Avenue, Costa Mesa, California 92626, USA
| | | | | | | | | | | |
Collapse
|
35
|
Ding Y, Girardet JL, Smith KL, Larson G, Prigaro B, Lai VCH, Zhong W, Wu JZ. Parallel synthesis of pteridine derivatives as potent inhibitors for hepatitis C virus NS5B RNA-dependent RNA polymerase. Bioorg Med Chem Lett 2005; 15:675-8. [PMID: 15664835 DOI: 10.1016/j.bmcl.2004.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 11/08/2004] [Accepted: 11/12/2004] [Indexed: 12/13/2022]
Abstract
From compound library screening using an HCV NS5B RNA-dependent RNA polymerase enzymatic assay, we identified a pteridine hit compound with an IC(50) of 15 microM. Our SAR studies were focused on the different groups at the 6- and 7-positions, substitutions at the 4-position, and replacement of N(1) or N(3) with carbon in the pteridine ring. We found that NH or OH at 4-position is critical for the inhibitory activity. Furthermore, a hydrophobic substituent at the 4-position may help compounds permeate through the cell membrane.
Collapse
Affiliation(s)
- Yili Ding
- Valeant Pharmaceuticals International, 3300 Hyland Avenue Costa Mesa, CA 92626, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dutartre H, Boretto J, Guillemot JC, Canard B. A relaxed discrimination of 2'-O-methyl-GTP relative to GTP between de novo and Elongative RNA synthesis by the hepatitis C RNA-dependent RNA polymerase NS5B. J Biol Chem 2004; 280:6359-68. [PMID: 15561709 DOI: 10.1074/jbc.m410191200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Several nucleotide analogues have been described as inhibitors of NS5B, the essential viral RNA-dependent RNA polymerase of hepatitis C virus. However, their precise mode of action remains poorly defined at the molecular level, much like the different steps of de novo initiation of viral RNA synthesis. Here, we show that before elongation, de novo RNA synthesis is made of at least two distinct kinetic phases, the creation of the first phosphodiester bond being the most efficient nucleotide incorporation event. We have studied 2'-O-methyl-GTP as an inhibitor of NS5B-directed RNA synthesis. As a nucleotide competitor of GTP in RNA synthesis, 2'-O-methyl-GTP is able to act as a chain terminator and inhibit RNA synthesis. Relative to GTP, we find that this analogue is strongly discriminated against at the initiation step ( approximately 150-fold) compared with approximately 2-fold at the elongation step. Interestingly, discrimination of the 2'-O-methyl-GTP at initiation is suppressed in a variant NS5B deleted in a subdomain critical for initiation (the "flap," encompassing amino acids 443-454), but not in P495L NS5B, which shows a selective alteration of transition from initiation to elongation. Our results demonstrate that the conformational change occurring between initiation and elongation is dependent on the allosteric GTP-binding site and relaxes nucleotide selectivity. RNA elongation may represent the most probable target of 2'-modified nucleotide analogues, because it is more permissive to inhibition than initiation.
Collapse
Affiliation(s)
- Hélène Dutartre
- CNRS and Universités d'Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Ecole Supérieure d'Ingénieurs de Luminy-Case 925, 163 Avenue de Luminy, 13288 Marseille cedex 9, France
| | | | | | | |
Collapse
|
37
|
D'Abramo CM, Cellai L, Götte M. Excision of incorporated nucleotide analogue chain-terminators can diminish their inhibitory effects on viral RNA-dependent RNA polymerases. J Mol Biol 2004; 337:1-14. [PMID: 15001348 DOI: 10.1016/j.jmb.2004.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 01/05/2004] [Accepted: 01/14/2004] [Indexed: 11/22/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is amongst the best-characterized members of the Flaviviridae, that includes the hepatitis C virus (HCV). The virally encoded RNA-dependent RNA polymerase (RdRp) plays a crucial role during replication and therefore represents an important target for the development of antiviral drugs. Here we studied biochemical mechanisms associated with the inhibition of BVDV RNA synthesis by 2'-hydroxyl, 3'-deoxynucleoside triphosphates (3'-dNTPs). All four nucleotide analogues are effectively incorporated and act as chain-terminators. However, relatively low, physiologically relevant concentrations of pyrophosphate (PPi) are sufficient to drive the reaction backwards, which results in primer unblocking and rescue of RNA synthesis. Metal ion requirements for nucleotide incorporation and pyrophosphorolysis are similar; the efficiency of both reactions is higher with Mn2+ as compared to Mg2+. Complexes containing chain-terminated primer strands are stable in the presence of heparin, which increases the probability that pyrophosphorolysis occurs before the enzyme can dissociate from its nucleic acid substrate. In contrast to the reverse transcriptase of the human immunodeficiency virus type-1 (HIV-1 RT), the BVDV RdRp may not recruit NTP pools as PPi donors. Conversely, we found that the efficiency of primer unblocking is severely compromised in the presence of increasing concentrations of the NTP that is complementary to the next template position. These data suggest that the incoming NTP can access its designated binding site, which, in turn, prevents the catalytically competent complexation of PPi. The results of this study provide novel insights into mechanisms involved in pyrophosphorolysis associated with viral RdRps, and suggest that the excision reaction is likely to be an important parameter that can affect susceptibility to nucleotide analogue inhibitors directed against viral RdRps.
Collapse
Affiliation(s)
- Claudia M D'Abramo
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montréal, Que., Canada
| | | | | |
Collapse
|
38
|
Xu X, Liu Y, Weiss S, Arnold E, Sarafianos SG, Ding J. Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res 2004; 31:7117-30. [PMID: 14654687 PMCID: PMC291860 DOI: 10.1093/nar/gkg916] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The causative agent of severe acute respiratory syndrome (SARS) is a previously unidentified coronavirus, SARS-CoV. The RNA-dependent RNA polymerase (RdRp) of SARS-CoV plays a pivotal role in viral replication and is a potential target for anti-SARS therapy. There is a lack of structural or biochemical data on any coronavirus polymerase. To provide insights into the structure and function of SARS-CoV RdRp, we have located its conserved motifs that are shared by all RdRps, and built a three-dimensional model of the catalytic domain. The structural model permits us to discuss the potential functional roles of the conserved motifs and residues in replication and their potential interactions with inhibitors of related enzymes. We predict important structural attributes of potential anti-SARS-CoV RdRp nucleotide analog inhibitors: hydrogen-bonding capability for the 2′ and 3′ groups of the sugar ring and C3′ endo sugar puckering, and the absence of a hydrophobic binding pocket for non-nucleoside analog inhibitors similar to those observed in hepatitis C virus RdRp and human immunodeficiency virus type 1 reverse transcriptase. We propose that the clinically observed resistance of SARS to ribavirin is probably due to perturbation of the conserved motif A that controls rNTP binding and fidelity of polymerization. Our results suggest that designing anti-SARS therapies can benefit from successful experiences in design of other antiviral drugs. This work should also provide guidance for future biochemical experiments.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|