1
|
Grossen TL, Bunnam A, Cohen RE. Seasonal mRNA Expression of Circadian Clock Genes in the Lizard Brain. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:278-284. [PMID: 39660507 DOI: 10.1002/jez.2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Seasonally breeding animals undergo physiological and behavioral changes to time reproduction to occur during specific seasons. These changes are regulated by changing environmental conditions, which may be communicated to the brain using the central circadian clock. This clock consists of a daily oscillation in the expression of several core genes, including period (per), cryptochrome (cry), circadian locomotor output cycles kaput (clock), and basic helix-loop-helix ARNT-like protein 1 (bmal1). We began to examine seasonal regulation of four core circadian clock genes in a dissection of the reptile brain containing the hypothalamus-per1, cry1, bmal1 and clock. Our study focused on examining mRNA expression in the morning and compared levels between breeding and nonbreeding animals. We found that per1 and bmal1 mRNA expression was highest in the nonbreeding compared to breeding season in the anole hypothalamus. We also found that cry1 mRNA expression was higher in the female compared to the male anole hypothalamus. We found support for the idea that core circadian genes play a role in regulating changes between the seasons and/or sexes, although more work is needed to elucidate what processes might be differentially regulated. To our knowledge, this is the first examination of the expression of these four genes in the reptilian brain.
Collapse
Affiliation(s)
- Taylor L Grossen
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota, USA
| | - Alexus Bunnam
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota, USA
| |
Collapse
|
2
|
Thompson JC, Parkinson C. Interactions between neural representations of the social and spatial environment. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220522. [PMID: 39230453 PMCID: PMC11449203 DOI: 10.1098/rstb.2022.0522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 09/05/2024] Open
Abstract
Even in our highly interconnected modern world, geographic factors play an important role in human social connections. Similarly, social relationships influence how and where we travel, and how we think about our spatial world. Here, we review the growing body of neuroscience research that is revealing multiple interactions between social and spatial processes in both humans and non-human animals. We review research on the cognitive and neural representation of spatial and social information, and highlight recent findings suggesting that underlying mechanisms might be common to both. We discuss how spatial factors can influence social behaviour, and how social concepts modify representations of space. In so doing, this review elucidates not only how neural representations of social and spatial information interact but also similarities in how the brain represents and operates on analogous information about its social and spatial surroundings.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- James C. Thompson
- Department of Psychology, and Center for Adaptive Systems of Brain-Body Interactions, George Mason University, MS3F5 4400 University Drive, Fairfax, VA22030, USA
| | - Carolyn Parkinson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Jude MB, Strand CR. Sex and Season Affect Cortical Volumes in Free-Living Western Fence Lizards, Sceloporus occidentalis. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:160-170. [PMID: 36796337 DOI: 10.1159/000529692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
The hippocampus plays an important role in spatial navigation and spatial learning across a variety of vertebrate species. Sex and seasonal differences in space use and behavior are known to affect hippocampal volume. Similarly, territoriality and differences in home range size are known to affect the volume of the reptile hippocampal homologues, the medial and dorsal cortices (MC, DC). However, studies have almost exclusively investigated males and little is known about sex or seasonal differences in MC and/or DC volumes in lizards. Here, we are the first to simultaneously examine sex and seasonal differences in MC and DC volumes in a wild lizard population. In Sceloporus occidentalis, males display territorial behaviors that are more pronounced during the breeding season. Given this sex difference in behavioral ecology, we expected males to have larger MC and/or DC volumes than females and for this difference to be most pronounced during the breeding season when territorial behavior is increased. Male and female S. occidentalis were captured from the wild during the breeding season and the post-breeding season and were sacrificed within 2 days of capture. Brains were collected and processed for histology. Cresyl-violet-stained sections were used to quantify brain region volumes. In these lizards, breeding females had larger DC volumes than breeding males and nonbreeding females. There was no sex or seasonal difference in MC volumes. Differences in spatial navigation in these lizards may involve aspects of spatial memory related to breeding other than territoriality that affect plasticity of the DC. This study highlights the importance of investigating sex differences and including females in studies of spatial ecology and neuroplasticity.
Collapse
Affiliation(s)
- Morgan B Jude
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA,
- School of Medicine, University of California Davis Medical Center, Sacramento, California, USA,
| | - Christine R Strand
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| |
Collapse
|
4
|
Morandi-Raikova A, Mayer U. Active exploration of an environment drives the activation of the hippocampus-amygdala complex of domestic chicks. J Exp Biol 2022; 225:275962. [PMID: 35815434 DOI: 10.1242/jeb.244190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
In birds, like in mammals, the hippocampus critically mediates spatial navigation through the formation of a spatial map. This study investigates the impact of active exploration of an environment on the hippocampus of young domestic chicks. Chicks that were free to actively explore the environment exhibited a significantly higher neural activation (measured by c-Fos expression), compared to those that passively observed the same environment from a restricted area. The difference was limited to the anterior and the dorsolateral parts of the intermediate hippocampus. Furthermore, the nucleus taeniae of the amygdala showed a higher c-Fos expression in the active exploration group than the passive observation group. In both brain regions, brain activation correlated with the number of locations that chicks visited during the test. This suggest that the increase of c-Fos expression in the hippocampus is related to increased firing rates of spatially coding neurons. Furthermore, our study indicates a functional linkage of the hippocampus and nucleus taeniae of the amygdala in processing spatial information. Overall, with the present study, we confirm that, in birds like in mammals, hippocampus and amygdala functions are linked and likely related to spatial representations.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto (TN), Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto (TN), Italy
| |
Collapse
|
5
|
Bold and bright: shy and supple? The effect of habitat type on personality-cognition covariance in the Aegean wall lizard (Podarcis erhardii). Anim Cogn 2022; 25:745-767. [PMID: 35037121 DOI: 10.1007/s10071-021-01587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022]
Abstract
Animals exhibit considerable and consistent among-individual variation in cognitive abilities, even within a population. Recent studies have attempted to address this variation using insights from the field of animal personality. Generally, it is predicted that animals with "faster" personalities (bolder, explorative, and neophilic) should exhibit faster but less flexible learning. However, the empirical evidence for a link between cognitive style and personality is mixed. One possible reason for such conflicting results may be that personality-cognition covariance changes along ecological conditions, a hypothesis that has rarely been investigated so far. In this study, we tested the effect of habitat complexity on multiple aspects of animal personality and cognition, and how this influenced their relationship, in five populations of the Aegean wall lizard (Podarcis erhardii). Overall, lizards from both habitat types did not differ in average levels of personality or cognition, with the exception that lizards from more complex habitats performed better on a spatial learning task. Nevertheless, we found an intricate interplay between ecology, cognition, and personality, as behavioral associations were often habitat- but also year-dependent. In general, behavioral covariance was either independent of habitat, or found exclusively in the simple, open environments. Our results highlight that valuable insights may be gained by taking ecological variation into account while studying the link between personality and cognition.
Collapse
|
6
|
Rowell MK, Rymer TL. Memory enhances problem solving in the fawn-footed mosaic-tailed rat Melomys cervinipes. Anim Cogn 2021; 25:347-358. [PMID: 34453668 DOI: 10.1007/s10071-021-01556-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Problem solving is important for survival, allowing animals to access novel food resources or escape from predators. It was originally thought to rely on an animal's intelligence; however, studies examining the relationship between individual cognitive ability and problem solving performance show mixed results, and studies are often restricted to only one cognitive and one problem solving task. We investigated the relationship between general cognitive ability and problem solving across multiple tasks in the fawn-footed mosaic-tailed rat Melomys cervinipes. We measured general cognitive ability across different domains (memory in an odour learning association task, recognition in a novel object recognition task, size discrimination using different sized pieces of food, and learning across multiple presentations of a food-baited activity board). We also measured problem solving across different contexts (food-baited puzzle boxes in home cage, obstruction task, and food-baited activity board in a novel arena). Mosaic-tailed rats showed a general cognitive ability, with average problem solving latency, memory ability, and learning in the tile task being correlated. As such, individuals that were able to remember an association and learned to solve the tile task solved the problems faster than individuals that could not remember or learn. Our results suggest that problem solving in mosaic-tailed rats likely relies on some forms of simple cognition, particularly memory, but could also depend on other traits, such as an individual's persistence.
Collapse
Affiliation(s)
- Misha K Rowell
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia. .,Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia.
| | - Tasmin L Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia.,Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
| |
Collapse
|
7
|
Strausfeld N, Sayre ME. Shore crabs reveal novel evolutionary attributes of the mushroom body. eLife 2021; 10:65167. [PMID: 33559601 PMCID: PMC7872517 DOI: 10.7554/elife.65167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Neural organization of mushroom bodies is largely consistent across insects, whereas the ancestral ground pattern diverges broadly across crustacean lineages resulting in successive loss of columns and the acquisition of domed centers retaining ancestral Hebbian-like networks and aminergic connections. We demonstrate here a major departure from this evolutionary trend in Brachyura, the most recent malacostracan lineage. In the shore crab Hemigrapsus nudus, instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it with their columns extending outwards to an expansive system of gyri on the brain’s surface. The organization amongst mushroom body neurons reaches extreme elaboration throughout its constituent neuropils. The calyces, columns, and especially the gyri show DC0 immunoreactivity, an indicator of extensive circuits involved in learning and memory.
Collapse
Affiliation(s)
| | - Marcel E Sayre
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.,Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Fokidis HB, Brock T. Hurricane Irma induces divergent behavioral and hormonal impacts on an urban and forest population of invasive Anolis lizards: evidence for an urban resilience hypothesis. JOURNAL OF URBAN ECOLOGY 2020. [DOI: 10.1093/jue/juaa031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Hurricanes can have both profound short-term effects on animal populations and serve as long-term drivers of evolutionary change. Animals inhabiting varying habitats may differ in their response to hurricane impacts. Increasing evidence suggests that animals from urban areas exhibit different behavioral and physiological traits compared to rural counterparts, including attenuated hormonal stress responses and a lowered propensity for flight behavior. A unique opportunity was presented when Hurricane Irma hit Florida on 10 September 2017 and interrupted a study of invasive brown anoles (Anolis sagrei) at an urban and a forest. Using data collected before and after Hurricane Irma, we documented that forest anoles exhibited a greater avoidance of people and more male territorial behavior for a longer period of time following the hurricane. Post-hurricane both populations increased corticosterone concentrations post-capture stress, but urban anoles recovered 2 weeks faster than forest conspecifics. A dexamethasone suppression experiment suggested that these population differences were the result of forest anoles having a less effective negative feedback regulating corticosterone secretion. In the brain, forest anoles had higher corticosterone concentrations within the amygdala and parts of the cortex associated with stress than urban lizards. One explanation may be Hurricane Irma brought flooding and debris that altered the landscape leading to behavioral instability, and urban lizards already exhibited ecological adjustments that permitted a more rapid recovery (i.e. the ‘urban resilience’ hypothesis). Testing if urban animals are more resilient to natural disasters can inform conservationists interested in understanding their role in facilitating invasive species expansion and what their increasing presence may indicate for animal populations.
Collapse
Affiliation(s)
- H Bobby Fokidis
- Department of Biology, Rollins College, 1000 Holt Avenue, Winter Park, FL 32789-4499, USA
| | - Taylor Brock
- Department of Biology, Rollins College, 1000 Holt Avenue, Winter Park, FL 32789-4499, USA
| |
Collapse
|
9
|
Pimentel HDC, Macêdo-Lima M, Viola GG, Melleu FF, Dos Santos TS, Franco HS, da Silva RDS, Lino-de-Oliveira C, Marino-Neto J, Dos Santos JR, Marchioro M. Telencephalic distributions of doublecortin and glial fibrillary acidic protein suggest novel migratory pathways in adult lizards. J Chem Neuroanat 2020; 112:101901. [PMID: 33271217 DOI: 10.1016/j.jchemneu.2020.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 11/30/2022]
Abstract
Adult neurogenesis has been reported in all major vertebrate taxa. However, neurogenic rates and the number of neurogenic foci vary greatly, and are higher in ancestral taxa. Our study aimed to evaluate the distribution of doublecortin (DCX) and glial fibrillary acidic protein (GFAP) in telencephalic areas of the adult tropical lizard Tropidurus hispidus. We describe evidence for four main neurogenic foci, which coincide anatomically with the ventricular sulci described by the literature. Based on neuronal morphology, we infer four migratory patterns/pathways. In the cortex, patterns of GFAP and DCX staining support radial migrations from ventricular zones into cortical areas and dorsoventricular ridge. Cells radiating from the sulcus septomedialis (SM) seemed to migrate to the medial cortex and dorsal cortex. From the sulcus lateralis (SL), they seemed to be bound for the lateral cortex, central amygdala and nucleus sphericus. We describe a DCX-positive stream originating in the caudal sulcus ventralis and seemingly bound for the olfactory bulb, resembling a rostral migratory stream. We provide evidence for a previously undescribed tangential dorso-septo-caudal migratory stream, with neuroblasts supported by DCX-positive fibers. Finally, we provide evidence for a commissural migration stream seemingly bound for the contralateral nucleus sphericus. Therefore, in addition to two previously known migratory streams, this study provides anatomical evidence in support for two novel migratory routes in amniotes.
Collapse
Affiliation(s)
- Hugo de C Pimentel
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Matheus Macêdo-Lima
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA, USA
| | - Giordano G Viola
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Fernando F Melleu
- Department of Physiological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Tiago S Dos Santos
- Department of Physiological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Heitor S Franco
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Rodolfo Dos S da Silva
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | | | - José Marino-Neto
- Department of Physiological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - José R Dos Santos
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Murilo Marchioro
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil.
| |
Collapse
|
10
|
Morandi-Raikova A, Mayer U. Selective activation of the right hippocampus during navigation by spatial cues in domestic chicks (Gallus gallus). Neurobiol Learn Mem 2020; 177:107344. [PMID: 33242588 DOI: 10.1016/j.nlm.2020.107344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022]
Abstract
In different vertebrate species, hippocampus plays a crucial role for spatial orientation. However, even though cognitive lateralization is widespread in the animal kingdom, the lateralization of this hippocampal function has been poorly studied. The aim of the present study was to investigate the lateralization of hippocampal activation in domestic chicks, during spatial navigation in relation to free-standing objects. Two groups of chicks were trained to find food in one of the feeders located in a large circular arena. Chicks of one group solved the task using the relational spatial information provided by free-standing objects present in the arena, while the other group used the local appearance of the baited feeder as a beacon. The immediate early gene product c-Fos was employed to map neural activation of hippocampus and medial striatum of both hemispheres. Chicks that used spatial cues for navigation showed higher activation of the right hippocampus compared to chicks that oriented by local features and compared to the left hippocampus. Such differences between the two groups were not present in the left hippocampus or in the medial striatum. Relational spatial information seems thus to be selectively processed by the right hippocampus in domestic chicks. The results are discussed in light of existing evidence of hippocampal lateralization of spatial processing in chicks, with particular attention to the contrasting evidence found in pigeons.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068 Rovereto (TN), Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068 Rovereto (TN), Italy.
| |
Collapse
|
11
|
Szabo B, Noble DWA, Whiting MJ. Learning in non-avian reptiles 40 years on: advances and promising new directions. Biol Rev Camb Philos Soc 2020; 96:331-356. [PMID: 33073470 DOI: 10.1111/brv.12658] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023]
Abstract
Recently, there has been a surge in cognition research using non-avian reptile systems. As a diverse group of animals, non-avian reptiles [turtles, the tuatara, crocodylians, and squamates (lizards, snakes and amphisbaenids)] are good model systems for answering questions related to cognitive ecology, from the role of the environment on the brain, behaviour and learning, to how social and life-history factors correlate with learning ability. Furthermore, given their variable social structure and degree of sociality, studies on reptiles have shown that group living is not a pre-condition for social learning. Past research has demonstrated that non-avian reptiles are capable of more than just instinctive reactions and basic cognition. Despite their ability to provide answers to fundamental questions in cognitive ecology, and a growing literature, there have been no recent systematic syntheses of research in this group. Here, we systematically, and comprehensively review studies on reptile learning. We identify 92 new studies investigating learning in reptiles not included in previous reviews on this topic - affording a unique opportunity to provide a more in-depth synthesis of existing work, its taxonomic distribution, the types of cognitive domains tested and methodologies that have been used. Our review therefore provides a major update on our current state of knowledge and ties the collective evidence together under nine umbrella research areas: (i) habituation of behaviour, (ii) animal training through conditioning, (iii) avoiding aversive stimuli, (iv) spatial learning and memory, (v) learning during foraging, (vi) quality and quantity discrimination, (vii) responding to change, (viii) solving novel problems, and (ix) social learning. Importantly, we identify knowledge gaps and propose themes which offer important future research opportunities including how cognitive ability might influence fitness and survival, testing cognition in ecologically relevant situations, comparing cognition in invasive and non-invasive populations of species, and social learning. To move the field forward, it will be immensely important to build upon the descriptive approach of testing whether a species can learn a task with experimental studies elucidating causal reasons for cognitive variation within and among species. With the appropriate methodology, this young but rapidly growing field of research should advance greatly in the coming years providing significant opportunities for addressing general questions in cognitive ecology and beyond.
Collapse
Affiliation(s)
- Birgit Szabo
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.,Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, Bern, 3032, Switzerland
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
12
|
Rapid learning of a spatial memory task in a lacertid lizard (Podarcis liolepis). Behav Processes 2019; 169:103963. [PMID: 31545992 DOI: 10.1016/j.beproc.2019.103963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 07/19/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022]
Abstract
Mammals and birds are capable of navigating to a goal using learned map-like representations of space (i.e. place learning), but research assessing this navigational strategy in reptiles has produced inconclusive results, in part due to the use of procedures that do not take account of the peculiarities of reptilian behavior and physiology. Here I present a procedure suitable for testing spatial cognition that exploits a naturally evolved, ethologically relevant ability common to many lizards (i.e. refuge seeking behavior). The procedure requires lizards to learn the location of an open refuge inside a rectangular arena containing artificial refuges in every corner, using distal extramaze visual cues and with no local cues marking the location of the open refuge. The procedure probes the lizards' place learning ability and effectively rules out the use of egocentric and response-based strategies. The described procedure was successfully used to demonstrate place learning in a lacertid lizard (Podarcis liolepis). Over the course of two weeks of training both the latency to entering the open refuge and the number of corners visited in each trial decreased gradually, indicating that learning had taken place in over 60% of the lizards tested. These results confirm that, under certain circumstances, lizards are capable of navigating to a goal using a place learning strategy.
Collapse
|
13
|
Brady RJ, Basile BM, Hampton RR. Hippocampal damage attenuates habituation to videos in monkeys. Hippocampus 2019; 29:1121-1126. [PMID: 31509291 DOI: 10.1002/hipo.23155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 11/05/2022]
Abstract
Monkeys with selective damage to the hippocampus are often unimpaired in matching-to-sample tests but are reportedly impaired in visual paired comparison. While both tests assess recognition of previously seen images, delayed matching-to-sample may engage active memory maintenance whereas visual paired comparison may not. Passive memory tests that are not rewarded with food and that do not require extensive training may provide more sensitive measures of hippocampal function. To test this hypothesis, we assessed memory in monkeys with hippocampal damage and matched controls by providing them the opportunity to repeatedly view small sets of videos. Monkeys pressed a button to play each video. The same 10 videos were used for six consecutive days, after which 10 new videos were introduced in each of seven cycles of testing. Our measure of memory was the extent to which monkeys habituated with repeated presentations, watching fewer videos per session over time. Monkeys with hippocampal lesions habituated more slowly than did control monkeys, indicating poorer memory for previous viewings. Both groups dishabituated each time new videos were introduced. These results, like those from preferential viewing, suggest that the hippocampus may be especially important for memory of incidentally encoded events.
Collapse
Affiliation(s)
- Ryan J Brady
- Department of Psychology, Emory University, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| | - Benjamin M Basile
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland
| | - Robert R Hampton
- Department of Psychology, Emory University, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| |
Collapse
|
14
|
Sex-dependent discrimination learning in lizards: A meta-analysis. Behav Processes 2019; 164:10-16. [DOI: 10.1016/j.beproc.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
15
|
Roth TC, Krochmal AR, LaDage LD. Reptilian Cognition: A More Complex Picture via Integration of Neurological Mechanisms, Behavioral Constraints, and Evolutionary Context. Bioessays 2019; 41:e1900033. [PMID: 31210380 DOI: 10.1002/bies.201900033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Unlike birds and mammals, reptiles are commonly thought to possess only the most rudimentary means of interacting with their environments, reflexively responding to sensory information to the near exclusion of higher cognitive function. However, reptilian brains, though structurally somewhat different from those of mammals and birds, use many of the same cellular and molecular processes to support complex behaviors in homologous brain regions. Here, the neurological mechanisms supporting reptilian cognition are reviewed, focusing specifically on spatial cognition and the hippocampus. These processes are compared to those seen in mammals and birds within an ecologically and evolutionarily relevant context. By viewing reptilian cognition through an integrative framework, a more robust understanding of reptile cognition is gleaned. Doing so yields a broader view of the evolutionarily conserved molecular and cellular mechanisms that underlie cognitive function and a better understanding of the factors that led to the evolution of complex cognition.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Psychology, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA, 17603, USA
| | - Aaron R Krochmal
- Department of Biology, Washington College, 300 Washington Avenue, Chestertown, MD, 21620, USA
| | - Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State University Altoona, Altoona, PA, 16601, USA
| |
Collapse
|
16
|
Allemand R, Boistel R, Daghfous G, Blanchet Z, Cornette R, Bardet N, Vincent P, Houssaye A. Comparative morphology of snake (Squamata) endocasts: evidence of phylogenetic and ecological signals. J Anat 2017; 231:849-868. [PMID: 28960295 DOI: 10.1111/joa.12692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
Brain endocasts obtained from computed tomography (CT) are now widely used in the field of comparative neuroanatomy. They provide an overview of the morphology of the brain and associated tissues located in the cranial cavity. Through anatomical comparisons between species, insights on the senses, the behavior, and the lifestyle can be gained. Although there are many studies dealing with mammal and bird endocasts, those performed on the brain endocasts of squamates are comparatively rare, thus limiting our understanding of their morphological variability and interpretations. Here, we provide the first comparative study of snake brain endocasts in order to bring new information about the morphology of these structures. Additionally, we test if the snake brain endocast encompasses a phylogenetic and/or an ecological signal. For this purpose, the digital endocasts of 45 snake specimens, including a wide diversity in terms of phylogeny and ecology, were digitized using CT, and compared both qualitatively and quantitatively. Snake endocasts exhibit a great variability. The different methods performed from descriptive characters, linear measurements and the outline curves provided complementary information. All these methods have shown that the shape of the snake brain endocast contains, as in mammals and birds, a phylogenetic signal but also an ecological one. Although phylogenetically related taxa share several similarities between each other, the brain endocast morphology reflects some notable ecological trends: e.g. (i) fossorial species possess both reduced optic tectum and pituitary gland; (ii) both fossorial and marine species have cerebral hemispheres poorly developed laterally; (iii) cerebral hemispheres and optic tectum are more developed in arboreal and terrestrial species.
Collapse
Affiliation(s)
- Rémi Allemand
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P - UMR 7207 - CNRS, MNHN, UPMC, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France.,Département Adaptations du Vivant, UMR 7179 - CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Renaud Boistel
- IPHEP-UMR CNRS 6046, UFR SFA, Université de Poitiers, Poitiers, France
| | - Gheylen Daghfous
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Zoé Blanchet
- Département Adaptations du Vivant, UMR 7179 - CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Nathalie Bardet
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P - UMR 7207 - CNRS, MNHN, UPMC, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Peggy Vincent
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P - UMR 7207 - CNRS, MNHN, UPMC, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Alexandra Houssaye
- Département Adaptations du Vivant, UMR 7179 - CNRS/Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
17
|
Neuroanatomical Changes Related to a Changing Environment in Lesser Earless Lizards. J HERPETOL 2017. [DOI: 10.1670/16-056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Murray EA, Wise SP, Graham KS. Representational specializations of the hippocampus in phylogenetic perspective. Neurosci Lett 2017; 680:4-12. [PMID: 28473258 PMCID: PMC5665731 DOI: 10.1016/j.neulet.2017.04.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 11/28/2022]
Abstract
In a major evolutionary transition that occurred more than 520 million years ago, the earliest vertebrates adapted to a life of mobile, predatory foraging guided by distance receptors concentrated on their heads. Vision and olfaction served as the principal sensory systems for guiding their search for nutrients and safe haven. Among their neural innovations, these animals had a telencephalon that included a homologue of the hippocampus. Experiments on goldfish, turtles, lizards, rodents, macaque monkeys and humans have provided insight into the initial adaptive advantages provided by the hippocampus homologue. These findings indicate that it housed specialized map-like representations of odors and sights encountered at various locations in an animal's home range, including the order and timing in which they should be encountered during a journey. Once these representations emerged in early vertebrates, they also enabled a variety of behaviors beyond navigation. In modern rodents and primates, for example, the specialized representations of the hippocampus enable the learning and performance of tasks involving serial order, timing, recency, relations, sequences of events and behavioral contexts. During primate evolution, certain aspects of these representations gained particular prominence, in part due to the advent of foveal vision in haplorhines. As anthropoid primates-the ancestors of monkeys, apes and humans-changed from small animals that foraged locally into large ones with an extensive home range, they made foraging choices at a distance based on visual scenes. Experimental evidence shows that the hippocampus of monkeys specializes in memories that reflect the representation of such scenes, rather than spatial processing in a general sense. Furthermore, and contrary to the idea that the hippocampus functions in memory to the exclusion of perception, brain imaging studies and lesion effects in humans show that its specialized representations support both the perception and memory of scenes and sequences.
Collapse
Affiliation(s)
- Elisabeth A Murray
- Laboratory of Neuropsychology, NIMH, Building 49, Suite 1B80, 49 Convent Drive, Bethesda, MD 20892-4415, USA.
| | - Steven P Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Potomac, MD 20854, USA
| | - Kim S Graham
- Cognitive Neuroscience, School of Psychology, Cardiff University, CUBRIC Building, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
19
|
Macedo-Lima M, Freire MAM, de Carvalho Pimentel H, Rodrigues Ferreira Lins LC, Amador de Lucena Medeiros KA, Viola GG, dos Santos JR, Marchioro M. Characterization of NADPH Diaphorase- and Doublecortin-Positive Neurons in the Lizard Hippocampal Formation. BRAIN, BEHAVIOR AND EVOLUTION 2017; 88:222-234. [DOI: 10.1159/000453105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/06/2016] [Indexed: 11/19/2022]
Abstract
The lizard cortex has remarkable similarities with the mammalian hippocampus. Both regions process memories, have similar cytoarchitectural properties, and are important neurogenic foci in adults. Lizards show striking levels of widespread neurogenesis in adulthood and can regenerate entire cortical areas after injury. Nitric oxide (NO) is an important regulatory factor of mammalian neurogenesis and hippocampal function. However, little is known about its role in nonmammalian neurogenesis. Here, we analyzed the distribution, morphology, and dendritic complexity (Neurolucida reconstructions) of NO-producing neurons through NADPH diaphorase (NADPHd) activity, and how they compare with the distribution of doublecortin-positive (DCX+) neurons in the hippocampal formation of the neotropical lizard Tropidurus hispidus. NADPHd-positive (NADPHd+) neurons in the dorsomedial cortex (DMC; putatively homologous to mammalian CA3) were more numerous and complex than the ones in the medial cortex (MC; putatively homologous to the dentate gyrus). We found that NADPHd+ DMC neurons send long projections into the MC. Interestingly, in the MC, NADPHd+ neurons existed in 2 patterns: small somata with low intensity of staining in the outer layer and large somata with high intensity of staining in the deep layer, a pattern similar to the mammalian cortex. Additionally, NADPHd+ neurons were absent in the granular cell layer of the MC. In contrast, DCX+ neurons were scarce in the DMC but highly numerous in the MC, particularly in the granular cell layer. We hypothesize that NO-producing neurons in the DMC provide important input to proliferating/migrating neurons in the highly neurogenic MC.
Collapse
|
20
|
LaDage LD, Cobb Irvin TE, Gould VA. Assessing Spatial Learning and Memory in Small Squamate Reptiles. J Vis Exp 2017. [PMID: 28117775 DOI: 10.3791/55103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Clinical research has leveraged a variety of paradigms to assess cognitive decline, commonly targeting spatial learning and memory abilities. However, interest in the cognitive processes of nonmodel species, typically within an ecological context, has also become an emerging field of study. In particular, interest in the cognitive processes in reptiles is growing although experimental studies on reptilian cognition are sparse. The few reptilian studies that have experimentally tested for spatial learning and memory have used rodent paradigms modified for use in reptiles. However, ecologically important aspects of the physiology and behavior of this taxonomic group must be taken into account when testing for spatially based cognition. Here, we describe modifications of the dry land Barnes maze and associated testing protocol that can improve performance when probing for spatial learning and memory ability in small squamate reptiles. The described paradigm and procedures were successfully used with male side-blotched lizards (Uta stansburiana), demonstrating that spatial learning and memory can be assessed in this taxonomic group with an ecologically relevant apparatus and protocol.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State Altoona;
| | | | - Victoria A Gould
- Division of Mathematics and Natural Sciences, Penn State Altoona
| |
Collapse
|
21
|
The effects of incubation temperature on the development of the cortical forebrain in a lizard. Anim Cogn 2016; 20:117-125. [DOI: 10.1007/s10071-016-0993-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 02/05/2023]
|
22
|
Aboitiz F, Montiel JF. Olfaction, navigation, and the origin of isocortex. Front Neurosci 2015; 9:402. [PMID: 26578863 PMCID: PMC4621927 DOI: 10.3389/fnins.2015.00402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022] Open
Abstract
There are remarkable similarities between the brains of mammals and birds in terms of microcircuit architecture, despite obvious differences in gross morphology and development. While in reptiles and birds the most expanding component (the dorsal ventricular ridge) displays an overall nuclear shape and derives from the lateral and ventral pallium, in mammals a dorsal pallial, six-layered isocortex shows the most remarkable elaboration. Regardless of discussions about possible homologies between mammalian and avian brains, a main question remains in explaining the emergence of the mammalian isocortex, because it represents a unique phenotype across amniotes. In this article, we propose that the origin of the isocortex was driven by behavioral adaptations involving olfactory driven goal-directed and navigating behaviors. These adaptations were linked with increasing sensory development, which provided selective pressure for the expansion of the dorsal pallium. The latter appeared as an interface in olfactory-hippocampal networks, contributing somatosensory information for navigating behavior. Sensory input from other modalities like vision and audition were subsequently recruited into this expanding region, contributing to multimodal associative networks.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Juan F. Montiel
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad Diego PortalesSantiago, Chile
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
23
|
Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A. Brain size and limits to adult neurogenesis. J Comp Neurol 2015; 524:646-64. [PMID: 26417888 DOI: 10.1002/cne.23896] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 12/31/2022]
Abstract
The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates that the wall of the lateral ventricle is highly regionalized, with progenitor cells giving rise to different types of neurons depending on their location. In species with larger brains, young neurons born in these spatially specified domains become dramatically separated from potential final destinations. Here we hypothesize that the increase in size and topographical complexity (e.g., intervening white matter tracts) in larger brains may severely limit the long-term contribution of new neurons born close to, or in, the ventricular wall. We compare the process of adult neuronal birth, migration, and integration across species with different brain sizes, and discuss how early regional specification of progenitor cells may interact with brain size and affect where and when new neurons are added.
Collapse
Affiliation(s)
- Mercedes F Paredes
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
| | - Shawn F Sorrells
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA.,University of California, San Francisco, CA, 94143, USA
| | - Jose M Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, 46980 Valencia, Spain
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
24
|
Striedter GF. Evolution of the hippocampus in reptiles and birds. J Comp Neurol 2015; 524:496-517. [DOI: 10.1002/cne.23803] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Georg F. Striedter
- Department of Neurobiology & Behavior and Center for the Neurobiology of Learning and Memory; University of California; Irvine Irvine California 92697-4550
| |
Collapse
|
25
|
Roth TC, Krochmal AR. The role of age-specific learning and experience for turtles navigating a changing landscape. Curr Biol 2015; 25:333-337. [PMID: 25578905 DOI: 10.1016/j.cub.2014.11.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/31/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
The severity of the environment often influences animal cognition [1-6], as does the rate of change within that environment [7-10]. Rapid alteration of habitat places limitations on basic resources such as energy, water, nesting sites, and refugia [8, 10]. How animals respond to these situations provides insight into the mechanisms of cognition and the role of behavior in adaptation [11-13]. We tested the hypothesis that learning plays a role in the navigation of the painted turtle (Chrysemys picta) within a model of environmental change. We radiotracked experienced and naive turtles at different developmental stages from two different populations as they sought out new habitats when their pond was destroyed. Our data suggest that the ability of turtles to navigate is facilitated in part by experience during a critical period. Resident adults repeatedly used specific routes with exceptional precision, while translocated adults failed to find water. Naive juveniles (1-3 years old) from both populations used the same paths taken by resident adults; the ability to follow paths was lost by age 4. We also used laboratory behavioral assays to examine the possible cues facilitating this precise navigation. Turtles responded to manipulation of the local ultraviolet environment, but not the olfactory environment. This is the first evidence to suggest that learning during a critical period may be important for how animals respond to changing environments. Our work emphasizes the need for the examination of learning in navigation and the breadth of critical learning periods across vertebrates.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Psychology, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17603 USA.
| | - Aaron R Krochmal
- Department of Biology, Washington College, 300 Washington Avenue, Chestertown, MD 21620 USA.
| |
Collapse
|
26
|
Broglio C, Martín-Monzón I, Ocaña FM, Gómez A, Durán E, Salas C, Rodríguez F. Hippocampal Pallium and Map-Like Memories through Vertebrate Evolution. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbbs.2015.53011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Powell BJ, Leal M. Brain Organization and Habitat Complexity in Anolis Lizards. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:8-18. [DOI: 10.1159/000362197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022]
|
28
|
Murray EA, Wise SP. Why is there a special issue on perirhinal cortex in a journal called hippocampus? The perirhinal cortex in historical perspective. Hippocampus 2013; 22:1941-51. [PMID: 22987673 DOI: 10.1002/hipo.22055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite its small size, the perirhinal cortex (PRh) plays a central role in understanding the cerebral cortex, vision, and memory; it figures in discussions of cognitive capacities as diverse as object perception, semantic knowledge, feelings of familiarity, and conscious recollection. Two conceptual constructs have encompassed PRh. The current orthodoxy incorporates PRh within the medial temporal lobe (MTL) as a memory area; an alternative considers PRh to be a sensory area with a role in both perception and memory. A historical perspective provides insight into both these ideas. PRh came to be included in the MTL because of two accidents of history. In evolutionary history, the hippocampus migrated from its ancestral situation as medial cortex into the temporal lobe; in the history of neuropsychology, a "memory system" that originally consisted of the amygdala and hippocampus came to include PRh. These two histories explain why a part of the sensory neocortex, PRh, entered into the conceptual construct called the MTL. They also explain why some experimental results seem to exclude a perceptual function for this sensory area, while others embrace perception. The exclusion of perceptual functions results from a history of categorizing tasks as perceptual or mnemonic, often on inadequate grounds. By exploring the role of PRh in encoding, representing, and retrieving stimulus information, it can be understood as a part of the sensory neocortex, one that has the same relationship with the hippocampus as do other parts of the neocortex that evolved at about the same time.
Collapse
|
29
|
Shao H, Fan L, Xu XJ, Xu WQ, Liu BF, Wang JL, Liu NF, Zhao ST. Characterization of adult neurogenesis in lizardPhrynocephalus vlangalii(Agamidae: Reptilia). ACTA ACUST UNITED AC 2012. [DOI: 10.1080/11250003.2012.719933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Ladage LD, Roth TC, Cerjanic AM, Sinervo B, Pravosudov VV. Spatial memory: are lizards really deficient? Biol Lett 2012; 8:939-41. [PMID: 22933038 DOI: 10.1098/rsbl.2012.0527] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In many animals, behaviours such as territoriality, mate guarding, navigation and food acquisition rely heavily on spatial memory abilities; this has been demonstrated in diverse taxa, from invertebrates to mammals. However, spatial memory ability in squamate reptiles has been seen as possible, at best, or non-existent, at worst. Of the few previous studies testing for spatial memory in squamates, some have found no evidence of spatial memory while two studies have found evidence of spatial memory in snakes, but have been criticized based on methodological issues. We used the Barnes maze, a common paradigm to test spatial memory abilities in mammals, to test for spatial memory abilities in the side-blotched lizard (Uta stansburiana). We found the existence of spatial memory in this species using this spatial task. Thus, our study supports the existence of spatial memory in this squamate reptile species and seeks to parsimoniously align this species with the diverse taxa that demonstrate spatial memory ability.
Collapse
Affiliation(s)
- L D Ladage
- Department of Biology, University of Nevada, mail stop 314, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | | | | | | | | |
Collapse
|
31
|
Powell BJ, Leal M. Brain Evolution across the Puerto Rican Anole Radiation. BRAIN, BEHAVIOR AND EVOLUTION 2012; 80:170-80. [DOI: 10.1159/000341161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 06/19/2012] [Indexed: 11/19/2022]
|
32
|
O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 2012; 519:3599-639. [PMID: 21800319 DOI: 10.1002/cne.22735] [Citation(s) in RCA: 726] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All animals evaluate the salience of external stimuli and integrate them with internal physiological information into adaptive behavior. Natural and sexual selection impinge on these processes, yet our understanding of behavioral decision-making mechanisms and their evolution is still very limited. Insights from mammals indicate that two neural circuits are of crucial importance in this context: the social behavior network and the mesolimbic reward system. Here we review evidence from neurochemical, tract-tracing, developmental, and functional lesion/stimulation studies that delineates homology relationships for most of the nodes of these two circuits across the five major vertebrate lineages: mammals, birds, reptiles, amphibians, and teleost fish. We provide for the first time a comprehensive comparative analysis of the two neural circuits and conclude that they were already present in early vertebrates. We also propose that these circuits form a larger social decision-making (SDM) network that regulates adaptive behavior. Our synthesis thus provides an important foundation for understanding the evolution of the neural mechanisms underlying reward processing and behavioral regulation.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
33
|
Barker JM, Boonstra R, Wojtowicz JM. From pattern to purpose: how comparative studies contribute to understanding the function of adult neurogenesis. Eur J Neurosci 2012; 34:963-77. [PMID: 21929628 DOI: 10.1111/j.1460-9568.2011.07823.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The study of adult neurogenesis has had an explosion of fruitful growth. Yet numerous uncertainties and challenges persist. Our review begins with a survey of species that show evidence of adult neurogenesis. We then discuss how neurogenesis varies across brain regions and point out that regional specializations can indicate functional adaptations. Lifespan and aging are key life-history traits. Whereas 'adult neurogenesis' is the common term in the literature, it does not reflect the reality of neurogenesis being primarily a 'juvenile' phenomenon. We discuss the sharp decline with age as a universal trait of neurogenesis with inevitable functional consequences. Finally, the main body of the review focuses on the function of neurogenesis in birds and mammals. Selected examples illustrate how our understanding of avian and mammalian neurogenesis can complement each other. It is clear that although the two phyla have some common features, the function of adult neurogenesis may not be similar between them and filling the gaps will help us understand neurogenesis as an evolutionarily conserved trait to meet particular ecological pressures.
Collapse
Affiliation(s)
- Jennifer M Barker
- GIGA Neurosciences, University of Liège, 1 avenue de l'Hôpital, B-4000 Liège, Belgium.
| | | | | |
Collapse
|
34
|
Holding ML, Frazier JA, Taylor EN, Strand CR. Experimentally Altered Navigational Demands Induce Changes in the Cortical Forebrain of Free-Ranging Northern Pacific Rattlesnakes(Crotalus o. oreganus). BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:144-54. [DOI: 10.1159/000335034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022]
|
35
|
Ling TJ, Summers CH, Renner KJ, Watt MJ. Opponent recognition and social status differentiate rapid neuroendocrine responses to social challenge. Physiol Behav 2010; 99:571-8. [PMID: 20138068 PMCID: PMC2840053 DOI: 10.1016/j.physbeh.2010.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 10/13/2009] [Accepted: 01/21/2010] [Indexed: 11/24/2022]
Abstract
Individual social status discriminates rapid neuroendocrine responses to non-social stress in male Anolis carolinensis, but whether such status-influenced reactions are retained in response to subsequent social stress is unknown. Dominant and subordinate males modify their behavioral responses to social challenge according to familiarity of the opponent, suggesting that accompanying neuroendocrine responses may differ according to opponent recognition despite social rank. We examined endocrine and neurochemical correlates of prior social status and opponent recognition during the opening stages of social challenge. Male pairs interacted and established dominant/subordinate status, followed by 3 days separation. Subsequently, subjects were paired with either the same opponent or an unfamiliar male according to rank (dominant with subordinate). After 90 s of social exposure, subjects were caught and brains and plasma collected for measurement of circulating corticosterone and limbic monoamines. Controls included pairs experiencing just one 90 s encounter plus a group of non-interacting subjects. Opponent recognition differentiated status-influenced responses, such that dominant lizards paired with familiar subordinate opponents had increased hippocampal dopamine and epinephrine, but showed increased plasma corticosterone and ventral tegmental area (VTA) norepinephrine when challenged with an unfamiliar opponent. Subordinate lizards encountering familiar opponents also had increased corticosterone, along with decreased hippocampal dopamine and increased VTA epinephrine, but showed no changes in response to an unfamiliar opponent. Such plasticity in status-influenced rapid neuroendocrine responses according to opponent recognition may be necessary for facilitating production of behavioral responses adaptive for particular social contexts, such as encountering a novel versus familiar opponent.
Collapse
Affiliation(s)
- Travis J. Ling
- Department of Biology, University of South Dakota, 414 East Clark St, Vermillion, SD 57069 USA
| | - Cliff H. Summers
- Department of Biology, University of South Dakota, 414 East Clark St, Vermillion, SD 57069 USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| | - Kenneth J. Renner
- Department of Biology, University of South Dakota, 414 East Clark St, Vermillion, SD 57069 USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| | - Michael J. Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| |
Collapse
|
36
|
LADAGE LARAD, RIGGS BECKYJ, SINERVO BARRY, PRAVOSUDOV VLADIMIRV. Dorsal cortex volume in male side-blotched lizards (Uta stansburiana) is associated with different space use strategies. Anim Behav 2009; 78:91-96. [PMID: 20161271 PMCID: PMC2701711 DOI: 10.1016/j.anbehav.2009.03.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spatial abilities have been associated with many ecologically-relevant behaviors such as territoriality, mate choice, navigation and acquisition of food resources. Differential demands on spatial abilities in birds and mammals have been shown to affect the hippocampus, the region of the brain responsible for spatial processing. In some bird and mammal species, higher demands on spatial abilities are associated with larger hippocampal volumes. The medial and dorsal cortices are the putative reptilian homologues of the mammalian hippocampus, yet few studies have examined the relationship between these brain areas and differential spatial use strategies in reptiles. Further, many studies in birds and mammals compare hippocampal attributes between species that utilize space differently, potentially confounding species-specific effects with effects due to differential behaviors in spatial use. Here, we investigated the relationship between spatial use strategies and medial and dorsal cortical volumes in males of the side-blotched lizard (Uta stansburiana). In this species, males occur in three different morphs, each morph using different spatial niches: large territory holders, small territory holders and non-territory holders with home ranges smaller than the territories of small territory holders. We found that large territory holders had larger dorsal cortical volumes relative to the remainder of the telencephalon compared with non-territorial males, and small territory holders were intermediate. These results suggest that some aspect of holding a large territory may place demands on spatial abilities, which is reflected in a brain region thought partially responsible for spatial processing.
Collapse
Affiliation(s)
| | | | - BARRY SINERVO
- University of California- Santa Cruz Department of Ecology & Evolutionary Biology
| | | |
Collapse
|
37
|
Wilkinson A, Coward S, Hall G. Visual and response-based navigation in the tortoise (Geochelone carbonaria). Anim Cogn 2009; 12:779-87. [DOI: 10.1007/s10071-009-0237-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 11/27/2022]
|
38
|
|
39
|
Korzan WJ, Höglund E, Watt MJ, Forster GL, Øverli Ø, Lukkes JL, Summers CH. Memory of opponents is more potent than visual sign stimuli after social hierarchy has been established. Behav Brain Res 2007; 183:31-42. [PMID: 17602761 PMCID: PMC3889489 DOI: 10.1016/j.bbr.2007.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/27/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
During agonistic interactions between male Anolis carolinensis, perception of a visual sign stimulus (darkened eyespots) not only inhibits aggression and promotes initial attainment of dominant social status, but also evokes distinct neuroendocrine responses in each opponent. This study was designed to examine the effect of eyespot manipulation on behavior and social rank during a second interaction between opponents that had previously established a natural dyadic social hierarchy. Prior to a second interaction, eyespots of familiar size-matched combatants were manipulated to reverse information conveyed by this visual signal. Eyespots on the previously dominant male were masked with green paint to indicate low aggression and social status. Previously subordinate males had their eyespots permanently marked with black paint to convey high aggression and status. Opponents were then re-paired for a second 10 min interaction following either 1 or 3 days of separation. Aggression was generally decreased and social status between pairs remained reasonably consistent. Unlike rapidly activated monoaminergic activity that occurs following the initial pairing, most brain areas sampled were not affected when animals were re-introduced, regardless of visual signal reversal or length of separation between interactions. However in males with "normal" eyespot color, dominant males had reduced serotonergic activity in CA(3) and raphé, while subordinate males exhibited elevated CA(3) dopaminergic activity. Reversing eyespot color also reversed serotonergic activity in raphé and dopaminergic activity in CA(3) after 3 days of separation. The results suggest that males remember previous opponents, and respond appropriately to their previous social rank in spite of eyespot color.
Collapse
Affiliation(s)
- Wayne J. Korzan
- Biological Sciences, Stanford University, Stanford, CA 94305
| | - Erik Höglund
- Danish Institute for Fisheries Research, Department of Marine Ecology and Aquaculture, North Sea Center, Postbox 101, DK-9850 Hirtshals, Denmark
| | - Michael J. Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Gina L. Forster
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - Jodi L. Lukkes
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Cliff H. Summers
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
- Department of Biology, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
40
|
Roth ED, Lutterschmidt WI, Wilson DA. Relative Medial and Dorsal Cortex Volume in Relation to Sex Differences in Spatial Ecology of a Snake Population. BRAIN, BEHAVIOR AND EVOLUTION 2006; 67:103-10. [PMID: 16244468 DOI: 10.1159/000089183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 08/03/2005] [Indexed: 11/19/2022]
Abstract
In non-avian reptiles the medial and dorsal cortices are putative homologues of the hippocampal formation in mammals and birds. Studies on mammals and birds commonly report neuro-ecological correlations between hippocampal volume and aspects of spatial ecology. We examined the relationship between putative homologous cortical volumes and spatial use in a population of the squamate reptile, Agkistrodon piscivorus, that exhibits sex differences in spatial use. Do male A. piscivorus that inhabit larger home ranges than females also have larger putative hippocampal volumes? Male and female brains were sectioned and digitized to quantify regional cortical volumes. Although sex differences in dorsal cortex volume were not observed, males had a significantly larger medial cortex relative to telencephalon volume. Similar to studies on mammals and birds, relative hippocampal or medial cortex volume was positively correlated with patterns of spatial use. We demonstrate volumetric sex differences within a reptilian putative hippocampal homologue.
Collapse
Affiliation(s)
- Eric D Roth
- Department of Zoology, University of Oklahoma, Norman, OK, USA.
| | | | | |
Collapse
|
41
|
Meyer WN, Keifer J, Korzan WJ, Summers CH. Social stress and corticosterone regionally upregulate limbic N-methyl-d-aspartatereceptor (NR) subunit type NR2A and NR2B in the lizard anolis carolinensis. Neuroscience 2004; 128:675-84. [PMID: 15464276 DOI: 10.1016/j.neuroscience.2004.06.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2004] [Indexed: 11/29/2022]
Abstract
Social aggression in the lizard Anolis carolinensis produces dominant and subordinate relationships while elevating corticosterone levels and monoaminergic transmitter activity in hippocampus (medial and mediodorsal cortex). Adaptive social behavior for dominant and subordinate male A. carolinensis is learned during aggressive interaction and therefore was hypothesized to involve hippocampus and regulation of N-methyl-d-aspartate (NMDA) receptors. To test the effects of social stress and corticosterone on NMDA receptor subunits (NR), male lizards were either paired or given two injections of corticosterone 1 day apart. Paired males were allowed to form dominant-subordinate relationships and were killed 1 day later. Groups included isolated controls, dominant males, subordinate males and males injected with corticosterone. Brains were processed for glutamate receptor subunit immunohistochemistry and fluorescence was analyzed by image analysis for NR(2A) and NR(2B) in the small and large cell divisions of the medial and mediodorsal cortex. In the small granule cell division there were no significant differences in NR(2A) or NR(2B) immunoreactivity among all groups. In contrast, there was a significant upregulation of NR(2A) and NR(2B) subunits in the large pyramidal cell division in all three experimental groups as compared with controls. The results revealed significantly increased NR(2A) and NR(2B) subunits in behaving animals, whereas animals simply injected with corticosterone showed less of an effect, although they were significantly increased over control. Upregulation of NR(2) subunits occurs during stressful social interactions and is likely to be regulated in part by glucocorticoids. The data also suggest that learning social roles during stressful aggressive interactions may involve NMDA receptor-mediated mechanisms.
Collapse
Affiliation(s)
- W N Meyer
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA
| | | | | | | |
Collapse
|
42
|
Hampton RR, Hampstead BM, Murray EA. Selective hippocampal damage in rhesus monkeys impairs spatial memory in an open-field test. Hippocampus 2004; 14:808-18. [PMID: 15382251 DOI: 10.1002/hipo.10217] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hippocampus is critical for remembering locations in a wide variety of species, including humans. However, recent findings from monkeys following selective hippocampal lesions have been equivocal. To approximate more closely the situations in which rodents and birds are tested, we used a spatial memory task in which rhesus monkeys (Macaca mulatta) moved about freely in a large room, on a tether. We used MRI-guided stereotaxic surgery to produce selective hippocampal lesions in five monkeys, and retained five unoperated control monkeys. In the study phase of each trial of the matching-to-location task, monkeys found food in one site in an array of identical foraging sites. During the test, which occurred after a delay, monkeys could return to the site where the food had been found during study to obtain more food. In Experiment 1, normal monkeys showed a small significant tendency to return directly to a site where they had previously found food that day. Operated monkeys showed no such matching tendency. In Experiment 2, further training produced reliable matching-to-location performance in both groups at short delays, but monkeys with selective hippocampal lesions rapidly forgot the location of the food. In Experiment 3, we tested whether monkeys used a "cognitive map" to encode the location of the hidden food, by requiring them to relocate the food from a starting location different from that used during study. As a group, monkeys were more accurate than expected by chance, indicating that they did encode the rewarded location with respect to allocentric landmarks; however, both groups of monkeys were significantly worse at relocating the food when required to approach from a different location. In Experiment 4, probe trials using symmetrical test arrays found no evidence for egocentric coding of the rewarded location.
Collapse
Affiliation(s)
- Robert R Hampton
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-4415, USA.
| | | | | |
Collapse
|
43
|
López JC, Vargas JP, Gómez Y, Salas C. Spatial and non-spatial learning in turtles: the role of medial cortex. Behav Brain Res 2003; 143:109-20. [PMID: 12900038 DOI: 10.1016/s0166-4328(03)00030-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In mammals and birds, hippocampal processing is crucial for allocentric spatial learning. In these vertebrate groups, lesions to the hippocampal formation produce selective impairments in spatial tasks that require the encoding of relationships among environmental features, but not in tasks that require the approach to a single cue or simple non-spatial discriminations. In reptiles, a great deal of anatomical evidence indicates that the medial cortex (MC) could be homologous to the hippocampus of mammals and birds; however, few studies have examined the functional role of this structure in relation to learning and memory processes. The aim of this work was to study how the MC lesions affect spatial strategies. Results of Experiment 1 showed that the MC lesion impaired the performance in animals pre-operatively trained in a place task, and although these animals were able to learn the same task after surgery, probe test revealed that learning strategies used by MC lesioned turtles were different to that observed in sham animals. Experiment 2 showed that the MC lesion did not impair the retention of the pre-operatively learned task when a single intramaze visual cue identified the goal. These results suggest that the reptilian MC and hippocampus of mammals and birds function in quite similar ways, not only in relation to those spatial functions that are impaired, but also in relation to those learning processes that are not affected.
Collapse
Affiliation(s)
- J C López
- Laboratorio de Psicobiología, Universidad de Sevilla, Campus Santiago Ramón y Cajal, c/Camilo José Cela, s/n, 41018-, Sevilla, Spain.
| | | | | | | |
Collapse
|
44
|
López JC, Gómez Y, Vargas JP, Salas C. Spatial reversal learning deficit after medial cortex lesion in turtles. Neurosci Lett 2003; 341:197-200. [PMID: 12697282 DOI: 10.1016/s0304-3940(03)00186-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many comparative pieces of research support the hypothesis that the medial cortex region of the reptilian forebrain could be homologous to hippocampal formation. Besides, there is some evidence involving this structure in complex spatial learning in a similar manner to hippocampus of mammals and birds. In this experiment we examined effects of medial cortex lesion in reversal learning. Turtles were trained in a spatial and a non-spatial maze procedure and the reversal of these tasks. Data revealed that sham and medial cortex lesioned turtles of both procedures performed well on the initial learning (acquisition). However, during the reversal phase, only the turtles with medial cortex lesion showed impaired performance in the spatial procedure. These results suggest that turtles possess different spatial learning and memory systems in close parallel to those described in other vertebrates, and that medial cortex plays a crucial role in complex place learning.
Collapse
Affiliation(s)
- J C López
- Laboratorio de Psicobiología, Universidad de Sevilla, Campus Santiago Ramón y Cajal, c/Camilo José Cela, s/n, Spain.
| | | | | | | |
Collapse
|
45
|
Brasted PJ, Bussey TJ, Murray EA, Wise SP. Role of the hippocampal system in associative learning beyond the spatial domain. Brain 2003; 126:1202-23. [PMID: 12690059 DOI: 10.1093/brain/awg103] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expert opinion remains divided on the issue of whether the hippocampal system functions exclusively in spatial information processing, e.g. in navigation or in understanding spatial relations, or whether it plays a more general role in higher brain function. Previous work on monkeys and rats has tended to support the former view, whereas observations in the clinic point to the latter, including functions as diverse as declarative knowledge, episodic memory, word learning, and understanding relations among objects. One influential theory posits a general role for the hippocampal system in associative learning, with emphasis on associations learned rapidly and recently. The results presented here are consistent with this theory, along with previous clinical and theoretical studies indicating that the hippocampal system is necessary for associative learning even if no component of the association relies on spatial information. In the study reported here, rhesus monkeys learned a series of conditional stimulus-response associations involving complex visual stimuli presented on a video monitor. Each stimulus instructed one of three responses: tapping the stimulus with the hand, steady hand contact with the stimulus for a brief period of time, or steady contact for a longer time. Fornix transection impaired the learning of these associations, even though both the stimuli and the responses were nonspatially differentiated, and this deficit persisted for at least 2 years. This finding indicates that the hippocampal system plays an important role in associative learning regardless of the relevance of spatial information to any aspect of the association. Fornix-transected monkeys were impaired in learning new stimulus-response associations even when the stimuli were highly familiar. Thus, the deficit was one of associating each stimulus with a response, as opposed to problems in distinguishing the stimuli from each other. In contrast to these effects, fornix transection did not impair performance when familiar stimuli instructed a response according to an already-learned association, which shows that the deficit was one of learning new associations rather than one of retention or retrieval of previously learned ones. Taken together, these results show that fornix transection causes a long-lasting impairment in associative learning outside of the spatial domain, in a manner consistent with theories of hippocampal-system function that stress a general role in the rapid acquisition of associative knowledge.
Collapse
Affiliation(s)
- P J Brasted
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892-4401, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
In the parallel map theory, the hippocampus encodes space with 2 mapping systems. The bearing map is constructed primarily in the dentate gyrus from directional cues such as stimulus gradients. The sketch map is constructed within the hippocampus proper from positional cues. The integrated map emerges when data from the bearing and sketch maps are combined. Because the component maps work in parallel, the impairment of one can reveal residual learning by the other. Such parallel function may explain paradoxes of spatial learning, such as learning after partial hippocampal lesions, taxonomic and sex differences in spatial learning, and the function of hippocampal neurogenesis. By integrating evidence from physiology to phylogeny, the parallel map theory offers a unified explanation for hippocampal function.
Collapse
Affiliation(s)
- Lucia F Jacobs
- Department of Psychology, University of California, Berkeley 94720-1650, USA.
| | | |
Collapse
|
47
|
Day LB, Ismail N, Wilczynski W. Use of Position and Feature Cues in Discrimination Learning by the Whiptail Lizard (Cnemidophorus inornatus). J Comp Psychol 2003; 117:440-8. [PMID: 14717646 DOI: 10.1037/0735-7036.117.4.440] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Animals use a variety of cue types to locate and discriminate objects. The ease with which particular cue types are learned varies across species and context. An enormous literature contains comparisons of spatial cue use to use of other cue types, but few experiments examine the ease with which various nonspatial cues are learned. In addition, few studies have examined cue use in reptiles. Thus, the authors compared whiptail lizards' (Cnemidophorus inornatus) ability to learn and reverse a discrimination using either position (left or right) or visual feature cues. Lizards learned and reversed the task using position cues faster and with greater accuracy than using feature cues.
Collapse
Affiliation(s)
- Lainy Baird Day
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
48
|
Aboitiz F, Montiel J, López J. Critical steps in the early evolution of the isocortex: insights from developmental biology. Braz J Med Biol Res 2002; 35:1455-72. [PMID: 12436188 DOI: 10.1590/s0100-879x2002001200006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article proposes a comprehensive view of the origin of the mammalian brain. We discuss i) from which region in the brain of a reptilian-like ancestor did the isocortex originate, and ii) the origin of the multilayered structure of the isocortex from a simple-layered structure like that observed in the cortex of present-day reptiles. Regarding question i there have been two alternative hypotheses, one suggesting that most or all the isocortex originated from the dorsal pallium, and the other suggesting that part of the isocortex originated from a ventral pallial component. The latter implies that a massive tangential migration of cells from the ventral pallium to the dorsal pallium takes place in isocortical development, something that has not been shown. Question ii refers to the origin of the six-layered isocortex from a primitive three-layered cortex. It is argued that the superficial isocortical layers can be considered to be an evolutionary acquisition of the mammalian brain, since no equivalent structures can be found in the reptilian brain. Furthermore, a characteristic of the isocortex is that it develops according to an inside-out neurogenetic gradient, in which late-produced cells migrate past layers of early-produced cells. It is proposed that the inside-out neurogenetic gradient was partly achieved by the activation of a signaling pathway associated with the Cdk5 kinase and its activator p35, while an extracellular protein called reelin (secreted in the marginal zone during development) may have prevented migrating cells from penetrating into the developing marginal zone (future layer I).
Collapse
Affiliation(s)
- F Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
49
|
Aboitiz F, Montiel J, Morales D, Concha M. Evolutionary divergence of the reptilian and the mammalian brains: considerations on connectivity and development. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 39:141-53. [PMID: 12423764 DOI: 10.1016/s0165-0173(02)00180-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The isocortex is a distinctive feature of the mammalian brain, with no clear counterpart in other amniotes. There have been long controversies regarding possible homologues of this structure in reptiles and birds. The brains of the latter are characterized by the presence of a structure termed dorsal ventricular ridge (DVR), which receives ascending auditory and visual projections, and has been postulated to be homologous to parts of the mammalian isocortex (i.e., the auditory and the extrastriate visual cortices). Dissenting views, now supported by molecular evidence, claim that the DVR originates from a region termed ventral pallium, while the isocortex may arise mostly from the dorsal pallium (in mammals, the ventral pallium relates to the claustroamygdaloid complex). Although it is possible that in mammals the embryonic ventral pallium contributes cells to the developing isocortex, there is no evidence yet supporting this alternative. The possibility is raised that the expansion of the cerebral cortex in the origin of mammals was product of a generalized dorsalizing influence in pallial development, at the expense of growth in ventral pallial regions. Importantly, the evidence suggests that organization of sensory projections is significantly different between mammals and sauropsids. In reptiles and birds, some sensory pathways project to the ventral pallium and others project to the dorsal pallium, while in mammals sensory projections end mainly in the dorsal pallium. We suggest a scenario for the origin of the mammalian isocortex which relies on the development of associative circuits between the olfactory, the dorsal and the hippocampal cortices in the earliest mammals.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Programa de Morfología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|