1
|
Lai Y, Wang S, Ren T, Shi J, Qian Y, Wang S, Zhou M, Watanabe R, Li M, Ruan X, Wang X, Zhuang L, Ke Z, Yang N, Huang Y, Zhang H. TIGIT deficiency promotes autoreactive CD4 + T-cell responses through a metabolic‒epigenetic mechanism in autoimmune myositis. Nat Commun 2025; 16:4502. [PMID: 40374622 PMCID: PMC12081758 DOI: 10.1038/s41467-025-59786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/30/2025] [Indexed: 05/17/2025] Open
Abstract
Polymyositis (PM) is a systemic autoimmune disease characterized by muscular inflammatory infiltrates and degeneration. T-cell immunoreceptor with Ig and ITIM domains (TIGIT) contributes to immune tolerance by inhibiting T cell-mediated autoimmunity. Here, we show that a reduced expression of TIGIT in CD4+ T cells from patients with PM promotes these cells' differentiation into Th1 and Th17 cells, which could be rescued by TIGIT overexpression. Knockout of TIGIT enhances muscle inflammation in a mouse model of experimental autoimmune myositis. Mechanistically, we find that TIGIT deficiency enhances CD28-mediated PI3K/AKT/mTOR co-stimulatory pathway, which promotes glucose oxidation, citrate production, and increased cytosolic acetyl-CoA levels, ultimately inducing epigenetic reprogramming via histone acetylation. Importantly, pharmacological inhibition of histone acetylation suppresses the differentiation of Th1 and Th17 cells, alleviating muscle inflammation. Thus, our findings reveal a mechanism by which TIGIT directly affects the differentiation of Th1 and Th17 T cells through metabolic‒epigenetic reprogramming, with important implications for treating systemic autoimmune diseases.
Collapse
Affiliation(s)
- Yimei Lai
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuang Wang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Ren
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Shi
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yichao Qian
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuyi Wang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mianjing Zhou
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ryu Watanabe
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mengyuan Li
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinyuan Ruan
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Department of Pediatrics, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lili Zhuang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zunfu Ke
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Pathology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Molecular Diagnosis and Gene Test Centre, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuefang Huang
- Department of Pediatrics, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Tang Q, Cheng J, Zhu T, Zhou Z, Xia P. Methyl 3,4-dihydrobenzoate attenuates muscle fiber necroptosis and macrophage pyroptosis by regulating oxidative stress in inflammatory myopathies. Int Immunopharmacol 2025; 154:114608. [PMID: 40186902 DOI: 10.1016/j.intimp.2025.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/09/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Inflammatory cell infiltration and myofiber necrosis are pathological hallmarks of idiopathic inflammatory myopathies (IIM). Methyl 3,4-dihydroxybenzoate (MDHB) is a natural phenolic acid compound, renowned for its anti-inflammatory and antioxidant effects. In this study, we investigated its protective mechanisms targeting muscle fiber necrosis and macrophage pyroptosis by regulating oxidative stress in IIM. In the present study, we found that increased reactive oxygen species (ROS) level and decreased nuclear factor erythroid 2 related factor 2 (Nrf2) protein expression were shown on the muscle fibers of experimental autoimmune myositis (EAM). Receptor-interacting protein 1 (RIPK1) and receptor-interacting protein 3 (RIPK3) protein expression were elevated in EAM. In vitro, MDHB protected C2C12 cells and myotubes against H2O2-induced cell viability damage. MDHB decreased the levels of oxidative stress such as ROS, and mitochondrial superoxide (MitoSOX), and rescued mitochondrial membrane potential and ATP generation. MDHB inhibited necroptosis of the C2C12 cells and myotubes under H2O2 stimulation in a dose-dependent manner. Furthermore, MDHB suppressed lipopolysaccharide and nigericin-induced caspase-1 cleavage and interleukin (IL-1β) secretion, indicating suppression of macrophage pyroptosis in vitro. In vivo, treatment with MDHB suppressed EAM-induced muscle weakness and inflammation. MDHB decreased ROS accumulation, and increased Nrf2 and heme oxygenase-1 (HO-1) expression in EAM mice's muscles, thereby inhibiting necroptosis of inflamed muscle species and macrophage pyroptosis. In conclusion, we demonstrated that MDHB could be a novel therapy for IIM that alleviates inflammation, muscle fiber necroptosis, and macrophage pyroptosis by regulating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Qiwen Tang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, China
| | - Jiao Cheng
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou 310016, China
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, China
| | - Zhijie Zhou
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Ping Xia
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, China.
| |
Collapse
|
3
|
Gao Y, Kim K, Vitrac H, Salazar RL, Gould BD, Soedkamp D, Spivia W, Raedschelders K, Dinh AQ, Guzman AG, Tan L, Azinas S, Taylor DJR, Schiffer W, McNavish D, Burks HB, Gottlieb RA, Lorenzi PL, Hanson BM, Van Eyk JE, Taegtmeyer H, Karlstaedt A. Autophagic signaling promotes systems-wide remodeling in skeletal muscle upon oncometabolic stress by D2-HG. Mol Metab 2024; 86:101969. [PMID: 38908793 PMCID: PMC11278897 DOI: 10.1016/j.molmet.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
OBJECTIVES Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss. METHODS We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling. RESULTS D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. In vivo, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype in vivo. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle. CONCLUSIONS Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.
Collapse
Affiliation(s)
- Yaqi Gao
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kyoungmin Kim
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Heidi Vitrac
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Bruker Daltonics, Billerica, MA, USA
| | - Rebecca L Salazar
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Benjamin D Gould
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Daniel Soedkamp
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Weston Spivia
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Koen Raedschelders
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - An Q Dinh
- Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anna G Guzman
- Center for Stem Cell and Regeneration, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Stavros Azinas
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - David J R Taylor
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Walter Schiffer
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Daniel McNavish
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Helen B Burks
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Roberta A Gottlieb
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Blake M Hanson
- Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Heinrich Taegtmeyer
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
4
|
Pinder NE, Ligocki IY, Horton BM, Hoover JE. Valerenic acid reduces anxiety-like behavior in young adult, female (C57BL/6J) mice. Behav Brain Res 2024; 457:114717. [PMID: 37852540 DOI: 10.1016/j.bbr.2023.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Extracts from the plant Valeriana officinalis are marketed as an herbal remedy to treat anxiety and insomnia. Valerenic acid (VA) is a major chemical component of Valeriana extracts. To date, there is relatively little information about how VA affects behavior. The purpose of these experiments was to (1) test whether administration of VA induces measurable changes in anxiety-like, depression-like, or locomotor behaviors; (2) determine whether the effects of VA on behavior are dose-dependent; and (3) compare the effects of VA on behavior to those of diazepam, a commonly prescribed treatment for anxiety. Young adult, female mice (C57BL/6J; 3-4 months old; 12 mice/group) were given one of three dosages of VA (3 mg/kg, 6 mg/kg, or 12 mg/kg), diazepam (1 mg/kg), or a vehicle control solution (20% ethanol v/v) by intraperitoneal injection. Thirty minutes after injection, each mouse was tested in the elevated plus maze (EPM), open field test (OFT), and tail suspension test (TST), in that order. All tests were video recorded and analyzed for relevant behavioral parameters. The results demonstrated that VA treatment effectively reduced multiple anxiety-related behaviors measured in the EPM. In fact, at a dose of 12 mg/kg, the anxiolytic effect of VA was just as robust as that of diazepam. Furthermore, the effects of VA on behavior were specifically anxiolytic, as VA did not induce changes in locomotor activity in the OFT, or depression-related behavior as measured in the TST. Our results provide strong support for VA as a putative anxiolytic drug.
Collapse
Affiliation(s)
- Natalie E Pinder
- Department of Biology, Millersville University, P.O. Box 1002, Millersville, PA 17551, USA
| | - Isaac Y Ligocki
- Department of Biology, Millersville University, P.O. Box 1002, Millersville, PA 17551, USA
| | - Brent M Horton
- Department of Biology, Millersville University, P.O. Box 1002, Millersville, PA 17551, USA
| | - John E Hoover
- Department of Biology, Millersville University, P.O. Box 1002, Millersville, PA 17551, USA.
| |
Collapse
|
5
|
Eltokhi A, Bertocchi I, Rozov A, Jensen V, Borchardt T, Taylor A, Proenca CC, Rawlins JNP, Bannerman DM, Sprengel R. Distinct effects of AMPAR subunit depletion on spatial memory. iScience 2023; 26:108116. [PMID: 37876813 PMCID: PMC10590979 DOI: 10.1016/j.isci.2023.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Pharmacological studies established a role for AMPARs in the mammalian forebrain in spatial memory performance. Here we generated global GluA1/3 double knockout mice (Gria1/3-/-) and conditional knockouts lacking GluA1 and GluA3 AMPAR subunits specifically from principal cells across the forebrain (Gria1/3ΔFb). In both models, loss of GluA1 and GluA3 resulted in reduced hippocampal GluA2 and increased levels of the NMDAR subunit GluN2A. Electrically-evoked AMPAR-mediated EPSPs were greatly diminished, and there was an absence of tetanus-induced LTP. Gria1/3-/- mice showed premature mortality. Gria1/3ΔFb mice were viable, and their memory performance could be analyzed. In the Morris water maze (MWM), Gria1/3ΔFb mice showed profound long-term memory deficits, in marked contrast to the normal MWM learning previously seen in single Gria1-/- and Gria3-/- knockout mice. Our results suggest a redundancy of function within the pool of available ionotropic glutamate receptors for long-term spatial memory performance.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacolog, University of Washington, Seattle, WA, USA
| | - Ilaria Bertocchi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute - Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Andrei Rozov
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhniy, 603022 Novgorod, Russia
- Federal Center of Brain Research and Neurotechnology, 117997 Moscow, Russia
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Thilo Borchardt
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Amy Taylor
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Catia C. Proenca
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Rolf Sprengel
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
6
|
Çalışkan G, Demiray YE, Stork O. Comparison of three common inbred mouse strains reveals substantial differences in hippocampal GABAergic interneuron populations and in vitro network oscillations. Eur J Neurosci 2023; 58:3383-3401. [PMID: 37550182 DOI: 10.1111/ejn.16112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
A major challenge in neuroscience is to pinpoint neurobiological correlates of specific cognitive and neuropsychiatric traits. At the mesoscopic level, promising candidates for establishing such connections are brain oscillations that can be robustly recorded as local field potentials with varying frequencies in the hippocampus in vivo and in vitro. Inbred mouse strains show natural variation in hippocampal synaptic plasticity (e.g. long-term potentiation), a cellular correlate of learning and memory. However, their diversity in expression of different types of hippocampal network oscillations has not been fully explored. Here, we investigated hippocampal network oscillations in three widely used inbred mouse strains: C57BL/6J (B6J), C57BL/6NCrl (B6N) and 129S2/SvPasCrl (129) with the aim to identify common oscillatory characteristics in inbred mouse strains that show aberrant emotional/cognitive behaviour (B6N and 129) and compare them to "control" B6J strain. First, we detected higher gamma oscillation power in the hippocampal CA3 of both B6N and 129 strains. Second, higher incidence of hippocampal sharp wave-ripple (SPW-R) transients was evident in these strains. Third, we observed prominent differences in the densities of distinct interneuron types and CA3 associative network activity, which are indispensable for sustainment of mesoscopic network oscillations. Together, these results add further evidence to profound physiological differences among inbred mouse strains commonly used in neuroscience research.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Yunus E Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying MentalHealth (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Jena-Magdeburg-Halle, Germany
| |
Collapse
|
7
|
Ronquillo J, Nguyen MT, Rothi L, Bui-Tu TD, Yang J, Halladay LR. Nature and nurture: comparing mouse behavior in classic versus revised anxiety-like and social behavioral assays in genetically or environmentally defined groups. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545212. [PMID: 37398211 PMCID: PMC10312802 DOI: 10.1101/2023.06.16.545212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Widely used rodent anxiety assays like the elevated plus maze (EPM) and the open field test (OFT) are often conflated with rodents' natural preference for dark over light environments or protected over open spaces. The EPM and OFT have been used for many decades, yet have also been criticized by generations of behavioral scientists. Several years ago, two revised anxiety assays were designed to improve upon the "classic" tests by excluding the possibility to avoid or escape aversive areas of each maze. The 3-D radial arm maze (3DR) and the 3-D open field test (3Doft) each consist of an open space connected to ambiguous paths toward uncertain escape. This introduces continual motivational conflict, thereby increasing external validity as an anxiety model. But despite this improvement, the revised assays have not caught on. One issue may be that studies to date have not directly compared classic and revised assays in the same animals. To remedy this, we contrasted behavior in a battery of assays (EPM, OFT, 3DR, 3Doft, and a sociability test) in mice defined either genetically by isogenic strain, or environmentally by postnatal experience. Findings indicate that the optimal assay to assess anxiety-like behavior may depend upon grouping variable (e.g. genetic versus environment). We argue that the 3DR may be the most ecologically valid of the anxiety assays tested, while the OFT and 3Doft provided the least useful information. Finally, exposure to multiple assays significantly affected sociability measures, raising concerns for designing and interpreting batteries of behavioral tests in mice.
Collapse
Affiliation(s)
- Janet Ronquillo
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Michael T. Nguyen
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Linnea Rothi
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Trung-Dan Bui-Tu
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Jocelyn Yang
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Lindsay R. Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| |
Collapse
|
8
|
Zafar S, Luo Y, Zhang L, Li CH, Khan A, Khan MI, Shah K, Seo EK, Wang F, Khan S. Daidzein attenuated paclitaxel-induced neuropathic pain via the down-regulation of TRPV1/P2Y and up-regulation of Nrf2/HO-1 signaling. Inflammopharmacology 2023:10.1007/s10787-023-01225-w. [PMID: 37145202 DOI: 10.1007/s10787-023-01225-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Paclitaxel (PTX) is an anti-microtubule agent, used for the treatment of various types of cancers; however, it produces painful neuropathy which limits its use. Many neuroprotective agents have been introduced to mitigate PTX-induced neuropathic pain (PINP), but they pose many adverse effects. The purpose of this study was to evaluate the pharmacological characteristics of soy isoflavone, and daidzein (DZ) in attenuating PINP. At the beginning of the investigation, the effect of DZ was confirmed through behavioral analysis, as it reduced pain hypersensitivity. Moreover, changes in the histological parameters were reversed by DZ administration along with vascular permeability. PTX administration upregulated transient receptor potential vanilloid 1 (TRPV1) channels and purinergic receptors (P2Y), contributing to hyperalgesia; but administration of DZ downregulated the TRPV1 and P2Y, thus reducing hyperalgesia. DZ increased nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), playing a pivotal role in the activation of the antioxidant pathway. DZ also decreased neuronal apoptosis by decreasing caspase-3 and Bcl2-associated X-protein (Bax), while simultaneously, increasing Bcl-2. PTX administration produced severe DNA damage, which was mitigated by DZ. Similarly, DZ administration resulted in inhibition of neuroinflammation by increasing antioxidant enzymes and reducing oxidative stress markers. PTX caused increased in production of pro-inflammatory mediators such as the cytokines production, while DZ inhibited the pro-inflammatory mediators. Additionally, in silico pharmacokinetic and toxicodynamic study of DZ was also conducted. In summary, DZ demonstrated significant neuroprotective activity against PTX induced neuropathic pain.
Collapse
Affiliation(s)
- Sana Zafar
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yong Luo
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, People's Republic of China
| | - Chang Hu Li
- Division of Radiation Physics, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- DHQ Teaching Hospital Timergara, Lower Dir, Timergara, KPK, Pakistan
| | - Muhammad Ibrar Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kifayatullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Feng Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, People's Republic of China.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
9
|
Lai Y, Zhao S, Chen B, Huang Y, Guo C, Li M, Ye B, Wang S, Zhang H, Yang N. Iron controls T helper cell pathogenicity by promoting glucose metabolism in autoimmune myopathy. Clin Transl Med 2022; 12:e999. [PMID: 35917405 PMCID: PMC9345506 DOI: 10.1002/ctm2.999] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND T helper cells in patients with autoimmune disease of idiopathic inflammatory myopathies (IIM) are characterized with the proinflammatory phenotypes. The underlying mechanisms remain unknown. METHODS RNA sequencing was performed for differential expression genes. Gene expression in CD4+ T-cells was confirmed by quantitative real-time PCR. CD4+ T-cells from IIM patients or healthy controls were evaluated for metabolic activities by Seahorse assay. Glucose uptake, T-cell proliferation and differentiation were evaluated and measured by flow cytometry. Human CD4+ T-cells treated with iron chelators or Pfkfb4 siRNA were measured for glucose metabolism, proliferation and differentiation. Signalling pathway activation was evaluated by western blot and flow cytometry. Mouse model of experimental autoimmune myositis (EAM) were induced and treated with iron chelator or rapamycin. CD4+ T-cell differentiation and muscle inflammation in the EAM mice were evaluated. RESULTS RNA-sequencing analysis revealed that iron was involved with glucose metabolism and CD4+ T-cell differentiation. IIM patient-derived CD4+ T-cells showed enhanced glycolysis and mitochondrial respiration, which was inhibited by iron chelation. CD4+ T-cells from patients with IIM was proinflammatory and iron chelation suppressed the differentiation of interferon gamma (IFNγ)- and interleukin (IL)-17A-producing CD4+ T-cells, which resulted in an increased percentage of regulatory T (Treg) cells. Mechanistically, iron promoted glucose metabolism by an upregulation of PFKFB4 through AKT-mTOR signalling pathway. Notably, the knockdown of Pfkfb4 decreased glucose influx and thus suppressed the differentiation of IFNγ- and IL-17A-producing CD4+ T-cells. In vivo, iron chelation inhibited mTOR signalling pathway and reduced PFKFB4 expression in CD4+ T-cells, resulting in reduced proinflammatory IFNγ- and IL-17A-producing CD4+ T-cells and increased Foxp3+ Treg cells, leading to ameliorated muscle inflammation. CONCLUSIONS Iron directs CD4+ T-cells into a proinflammatory phenotype by enhancing glucose metabolism. Therapeutic targeting of iron metabolism should have the potential to normalize glucose metabolism in CD4+ T-cells and reverse their proinflammatory phenotype in IIM.
Collapse
Affiliation(s)
- Yimei Lai
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Siyuan Zhao
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Binfeng Chen
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yuefang Huang
- Department of PediatricsThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Chaohuan Guo
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mengyuan Li
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Baokui Ye
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shuyi Wang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hui Zhang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Niansheng Yang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Zhang H, He F, Zhou L, Shi M, Li F, Jia H. Activation of TLR4 induces inflammatory muscle injury via mTOR and NF-κB pathways in experimental autoimmune myositis mice. Biochem Biophys Res Commun 2022; 603:29-34. [PMID: 35276460 DOI: 10.1016/j.bbrc.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/02/2022]
Abstract
Idiopathic inflammatory myopathy (IIM) is an autoimmune disease that invades skeletal muscle; however, the etiology of IIM is still poorly understood. Toll-like receptor (TLR) 4 has been widely reported to take part in the autoimmune inflammation of IIMs. The mammalian target of rapamycin, mTOR, is a key central substance which mediates immune responses and metabolic changes, and also has been confirmed to be involved in the pathogenesis of IIMs. However, the interconnectedness between TLR4 and mTOR in IIM inflammation has not been fully elucidated. We hypothesized that TLR4 may play an important role in IIM inflammatory muscle injury by regulating mTOR. Mice were divided into four groups: a normal control group, IIM animal model (experimental autoimmune myositis, EAM) group, TAK242 intervention group and rapamycin (RAPA) intervention group. The results of EAM mice showed that TLR4, mTOR, nuclear factor-kappa B (NF-κB) and inflammatory factors interleukin-17A (IL-17A) and interferon γ (IFN-γ) mRNA levels were significantly upregulated. These factors were positively correlated with the degree of muscle inflammatory injury. When EAM mice were given the antagonist TAK242 to inhibit the TLR4 pathway, the results demonstrated that both mTOR and NF-κB were downregulated in the muscle of the mice. Muscle staining showed that the inflammatory injury was alleviated and the EAM mouse muscle strength was improved. Then, RAPA was used to inhibit the mTOR pathway, and the inflammatory factors IL-17A and IFN-γ were downregulated in EAM mouse muscle and serum. Consistently, muscle inflammatory injury was significantly reduced, and muscle strength was significantly improved. Our results suggest that TLR4 may regulate inflammatory muscle injury in EAM by activating the mTOR and NF-κB pathways, which provides both an experimental complement for the pathological mechanism of IIM and an encouraging target for the selection of effective treatments.
Collapse
Affiliation(s)
- Hongya Zhang
- Air Force Medical University, Xi'an, China; Department of Neurology, Shenzhen University General Hospital, Shenzhen, China
| | - Fangyuan He
- Department of Neurology, Xi'an Children's Hospital, Xi'an, China
| | - Linfu Zhou
- Department of Neurology, Northwestern University School of Medicine, Xi'an, China
| | - Ming Shi
- Air Force Medical University, Xi'an, China
| | - Fangming Li
- Department of Neurology, Shenzhen University General Hospital, Shenzhen, China.
| | - Hongge Jia
- Department of Neurology, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
| |
Collapse
|
11
|
Hussien YA, Mansour DF, Nada SA, Abd El-Rahman SS, Abdelsalam RM, Attia AS, El-Tanbouly DM. Linagliptin attenuates thioacetamide-induced hepatic encephalopathy in rats: Modulation of C/EBP-β and CX3CL1/Fractalkine, neuro-inflammation, oxidative stress and behavioral defects. Life Sci 2022; 295:120378. [DOI: 10.1016/j.lfs.2022.120378] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
|
12
|
Tungtur SK, Wilkins HM, Rogers RS, Badawi Y, Sage JM, Agbas A, Jawdat O, Barohn RJ, Swerdlow RH, Nishimune H. Oxaloacetate treatment preserves motor function in SOD1 G93A mice and normalizes select neuroinflammation-related parameters in the spinal cord. Sci Rep 2021; 11:11051. [PMID: 34040085 PMCID: PMC8155202 DOI: 10.1038/s41598-021-90438-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/07/2021] [Indexed: 01/27/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) remains a devastating motor neuron disease with limited treatment options. Oxaloacetate treatment has a neuroprotective effect in rodent models of seizure and neurodegeneration. Therefore, we treated the ALS model superoxide dismutase 1 (SOD1) G93A mice with oxaloacetate and evaluated their neuromuscular function and lifespan. Treatment with oxaloacetate beginning in the presymptomatic stage significantly improved neuromuscular strength measured during the symptomatic stage in the injected mice compared to the non-treated group. Oxaloacetate treatment starting in the symptomatic stage significantly delayed limb paralysis compared with the non-treated group. For lifespan analysis, oxaloacetate treatment did not show a statistically significant positive effect, but the treatment did not shorten the lifespan. Mechanistically, SOD1G93A mice showed increased levels of tumor necrosis factor-α (TNFα) and peroxisome proliferative activated receptor gamma coactivator 1α (PGC-1α) mRNAs in the spinal cord. However, oxaloacetate treatment reverted these abnormal levels to that of wild-type mice. Similarly, the altered expression level of total NF-κB protein returned to that of wild-type mice with oxaloacetate treatment. These results suggest that the beneficial effects of oxaloacetate treatment in SOD1G93A mice may reflect the effects on neuroinflammation or bioenergetic stress.
Collapse
Affiliation(s)
- Sudheer K Tungtur
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
- Cardiovascular Division, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Heather M Wilkins
- Department of Neurology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Robert S Rogers
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
- Department of Curriculum and Integrative Learning, Kansas City University, Joplin, MO, 64804, USA
| | - Yomna Badawi
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jessica M Sage
- Department of Basic Sciences, Kansas City University, Kansas City, MO, 64106, USA
| | - Abdulbaki Agbas
- Department of Basic Sciences, Kansas City University, Kansas City, MO, 64106, USA
| | - Omar Jawdat
- Department of Neurology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Richard J Barohn
- Department of Neurology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
- Department of Neurology, University Missouri-Columbia, Columbia, MO, 65212, USA
| | - Russell H Swerdlow
- Department of Neurology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA.
- Tokyo Metropolitan Institute of Gerontology, Neurobiology of Aging, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
13
|
Arshaad MI, Siwek ME, Henseler C, Daubner J, Ehninger D, Hescheler J, Sachinidis A, Broich K, Papazoglou A, Weiergräber M. Enhanced hippocampal type II theta activity AND altered theta architecture in mice lacking the Ca v3.2 T-type voltage-gated calcium channel. Sci Rep 2021; 11:1099. [PMID: 33441788 PMCID: PMC7806756 DOI: 10.1038/s41598-020-79763-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
T-type Ca2+ channels are assumed to contribute to hippocampal theta oscillations. We used implantable video-EEG radiotelemetry and qPCR to unravel the role of Cav3.2 Ca2+ channels in hippocampal theta genesis. Frequency analysis of spontaneous long-term recordings in controls and Cav3.2-/- mice revealed robust increase in relative power in the theta (4-8 Hz) and theta-alpha (4-12 Hz) ranges, which was most prominent during the inactive stages of the dark cycles. Urethane injection experiments also showed enhanced type II theta activity and altered theta architecture following Cav3.2 ablation. Next, gene candidates from hippocampal transcriptome analysis of control and Cav3.2-/- mice were evaluated using qPCR. Dynein light chain Tctex-Type 1 (Dynlt1b) was significantly reduced in Cav3.2-/- mice. Furthermore, a significant reduction of GABA A receptor δ subunits and GABA B1 receptor subunits was observed in the septohippocampal GABAergic system. Our results demonstrate that ablation of Cav3.2 significantly alters type II theta activity and theta architecture. Transcriptional changes in synaptic transporter proteins and GABA receptors might be functionally linked to the electrophysiological phenotype.
Collapse
Affiliation(s)
- Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Magdalena Elisabeth Siwek
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Dan Ehninger
- Molecular and Cellular Cognition, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, University of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| |
Collapse
|
14
|
Khan A, Khan A, Khalid S, Shal B, Kang E, Lee H, Laumet G, Seo EK, Khan S. 7β-(3-Ethyl- cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro- Z Notonipetranone Attenuates Neuropathic Pain by Suppressing Oxidative Stress, Inflammatory and Pro-Apoptotic Protein Expressions. Molecules 2021; 26:E181. [PMID: 33401491 PMCID: PMC7795484 DOI: 10.3390/molecules26010181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid obtained from a natural source has proved to be effective in minimizing various side effects associated with opioids and nonsteroidal anti-inflammatory drugs. The current study focused on investigating the effects of ECN on neuropathic pain induced by partial sciatic nerve ligation (PSNL) by mainly focusing on oxidative stress, inflammatory and apoptotic proteins expression in mice. ECN (1 and 10 mg/kg, i.p.), was administered once daily for 11 days, starting from the third day after surgery. ECN post-treatment was found to reduce hyperalgesia and allodynia in a dose-dependent manner. ECN remarkably reversed the histopathological abnormalities associated with oxidative stress, apoptosis and inflammation. Furthermore, ECN prevented the suppression of antioxidants (glutathione, glutathione-S-transferase, catalase, superoxide dismutase, NF-E2-related factor-2 (Nrf2), hemeoxygenase-1 and NAD(P)H: quinone oxidoreductase) by PSNL. Moreover, pro-inflammatory cytokines (tumor necrotic factor-alpha, interleukin 1 beta, interleukin 6, cyclooxygenase-2 and inducible nitric oxide synthase) expression was reduced by ECN administration. Treatment with ECN was successful in reducing the caspase-3 level consistent with the observed modulation of pro-apoptotic proteins. Additionally, ECN showed a protective effect on the lipid content of myelin sheath as evident from FTIR spectroscopy which showed the shift of lipid component bands to higher values. Thus, the anti-neuropathic potential of ECN might be due to the inhibition of oxidative stress, inflammatory mediators and pro-apoptotic proteins.
Collapse
Affiliation(s)
- Amna Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Adnan Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Sidra Khalid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Eunwoo Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Hwaryeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| |
Collapse
|
15
|
Munguia L, Ramirez-Sanchez I, Meaney E, Villarreal F, Ceballos G, Najera N. Flavonoids from dark chocolate and (-)-epicatechin ameliorate high-fat diet-induced decreases in mobility and muscle damage in aging mice. FOOD BIOSCI 2020; 37. [PMID: 32953444 DOI: 10.1016/j.fbio.2020.100710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Age-related muscle decline, when associated with obesity, leads to adverse outcomes with increased risks for falling, loss of independence, disability and risk of premature mortality. The aim of this study was to assess the potential beneficial effects of flavonoids in improving the age-/high-fat-diet-induced decrease in physical activity/capacity related to the onset of skeletal muscle decline. The effects of the administration of a cocoa beverage enriched with flavanols or pure (-)-epicatechin for 5 wk in a model of physical activity decline induced by the ingestion of a high-fat diet (60% fat) in middle-age mice were evaluated. The results showed that both products, the cocoa beverage enriched with flavanols and pure (-)-epicatechin, improved physical performance evaluated with the hang-wire, inverted-screen, and weight-lifting tests and dynamometry compared with the performance of the controls. The beverage and (-)-epicatechin increased the follistatin/myostatin ratio and increased the expression of myocyte enhancer factor 2A (MEF2A), suggesting an effect on molecular modulators of growth differentiation. Furthermore, the beverage and (-)-epicatechin decreased the expression of O-type fork-head transcription factor (FOXO1A) and muscle ring finger 1 (MURF1) markers of the skeletal muscle ubiquitin-proteasome degradation pathway.
Collapse
Affiliation(s)
- Levy Munguia
- Escuela Superior de Medicina, Instituto Politecnico Nacional, 11340, Mexico City, Mexico
| | - Israel Ramirez-Sanchez
- Escuela Superior de Medicina, Instituto Politecnico Nacional, 11340, Mexico City, Mexico
| | - Eduardo Meaney
- Escuela Superior de Medicina, Instituto Politecnico Nacional, 11340, Mexico City, Mexico
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, CA, 92617, USA
| | - Guillermo Ceballos
- Escuela Superior de Medicina, Instituto Politecnico Nacional, 11340, Mexico City, Mexico
| | - Nayelli Najera
- Escuela Superior de Medicina, Instituto Politecnico Nacional, 11340, Mexico City, Mexico
| |
Collapse
|
16
|
Kang J, Feng D, Yang F, Tian X, Han W, Jia H. Comparison of rapamycin and methylprednisolone for treating inflammatory muscle disease in a murine model of experimental autoimmune myositis. Exp Ther Med 2020; 20:219-226. [PMID: 32536994 PMCID: PMC7291653 DOI: 10.3892/etm.2020.8716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/09/2019] [Indexed: 01/03/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune inflammatory muscle diseases. Rapamycin has been shown to ameliorate inflammation and improve muscle function in a mouse model of experimental autoimmune myositis (EAM). In the present study, the therapeutic effect of rapamycin was compared with methylprednisolone (MP) on EAM. Mice were injected with myosin for 10 days to induce EAM and were subsequently treated with rapamycin (1.5 mg/kg), MP (40 mg/kg) or placebo (DMSO) for 14 days. The rapamycin-treated group exhibited significantly decreased severe inflammation and improved muscle strength compared with the MP-treated group. The plasma transforming growth factor-β (TGF-β) concentration in the rapamycin-treated group was significantly higher compared with the placebo group. However, both treatment groups exhibited significantly lower plasma interleukin-10 levels compared with the placebo group. Moreover, splenic regulatory T cell frequency in both the rapamycin- and MP-treated animals was significantly lower than that in the animals of the placebo group. Rapamycin showed better immune suppressive effects than MP in this model of EAM, and these effects were likely to be mediated by the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Juan Kang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China
| | - Dongyun Feng
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China
| | - Feng Yang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaojia Tian
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China
| | - Wenjuan Han
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China
| | - Hongge Jia
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China.,Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518034, P.R. China
| |
Collapse
|
17
|
Shal B, Khan A, Naveed M, Ali H, Seo EK, Choi H, Khan S. Neuroprotective effect of 25-Methoxyhispidol A against CCl 4-induced behavioral alterations by targeting VEGF/BDNF and caspase-3 in mice. Life Sci 2020; 253:117684. [PMID: 32315728 DOI: 10.1016/j.lfs.2020.117684] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Brain oxidative stress and neuroinflammation have been implicated in various psychiatric disorders. The current study investigated the effect and mechanism of 25-Methoxyhispidol A (25-MHA) against CCl4-induced anxiety and depression. Mice were challenged with CCl4 (1 ml/kg; i.p.) after 30 min of 25-MHA (1, 5 and 10 mg/kg; i.p.) administration. Pretreatment with 25-MHA (10 mg/kg) significantly attenuated the anxiety and depression-like behavior in testing models. The oxidative stress induced by CCl4 was significantly attenuated by pretreatment with 25-MHA. The immunohistochemical (IHC) analysis showed a reduction in kelch-like ECH-associated protein 1 (Keap1) and improvement in expression of nuclear factor erythroid-2-related factor (Nrf-2) and heme oxygenase (HO)-1. In addition, 25-MHA significantly attenuated the CCl4-mediated depletion of antioxidant enzymes in hippocampus (HC) and prefrontal cortex (PFC) region and reduced the expression of toll-like receptor (TLR)-4 and nuclear factor kappa B (NF-κB), along with a decreased production of pro-inflammatory cytokines in HC and PFC region. Pretreatment with 25-MHA also showed an improved expression of neurotrophic factors i.e., brain derived growth factor (BDNF) and vascular endothelial growth factor (VEGF). Furthermore, 25-MHA inhibited malondialdehyde (MDA) and ammonia level in plasma, liver, HC and PFC regions of mice brain. 25-MHA also exhibited anti-apoptotic effect evident from the reduced expression of caspase-3 and decreased hippocampal DNA damage in comet assay. Furthermore, decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and corticosterone level, along with prevention of CCl4-induced alterations in thickness of dentate gyrus and intact hepatic cells morphology, represented by hippocampal and liver histopathology, indicated the neuroprotective effect of 25-MHA.
Collapse
Affiliation(s)
- Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Naveed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongbuk 38541, South Korea
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
18
|
Sliepen SHJ, Diaz-Delcastillo M, Korioth J, Olsen RB, Appel CK, Christoph T, Heegaard AM, Rutten K. Cancer-induced Bone Pain Impairs Burrowing Behaviour in Mouse and Rat. In Vivo 2019; 33:1125-1132. [PMID: 31280201 DOI: 10.21873/invivo.11582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer-induced bone pain remains a serious public health concern, with a need for translational behavioural tests in order to assess nociception in preclinical models of this condition. Burrowing is an innate, ethologically relevant rodent behaviour that has been proven sensitive to chronic pain conditions. Herein, we studied for the first time whether burrowing performance is altered in preclinical models of cancer-induced bone pain. MATERIALS AND METHODS Mice and rats were inoculated with syngeneic breast cancer cells. Bone degradation was radiographically evaluated and nociception was assessed in limb-use and burrowing tests. RESULTS Cancer-bearing rodents showed reduced relative bone density and limb-use scores, confirming disease development. Burrowing performance decreased over time in both rodent models. CONCLUSION Burrowing performance was reduced in both rodent models, indicating that the burrowing test is a relevant and reproducible behavioural test for assessing disease development in both mouse and rat models of cancer-induced bone pain.
Collapse
Affiliation(s)
- Sonny Hermanus Johannes Sliepen
- Grünenthal GmbH, Grünenthal Innovation, Aachen, Germany.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Diaz-Delcastillo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rikke Brix Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Kristine Appel
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kris Rutten
- Grünenthal GmbH, Grünenthal Innovation, Aachen, Germany
| |
Collapse
|
19
|
Åhlgren J, Voikar V. Housing mice in the individually ventilated or open cages-Does it matter for behavioral phenotype? GENES, BRAIN, AND BEHAVIOR 2019; 18:e12564. [PMID: 30848040 PMCID: PMC6849734 DOI: 10.1111/gbb.12564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Abstract
Individually ventilated caging (IVC) systems for rodents are increasingly common in laboratory animal facilities. However, the impact of such substantial change in housing conditions on animal physiology and behavior is still debated. Most importantly, there arise the questions regarding reproducibility and comparison of previous or new phenotypes between the IVC and open cages. The present study was set up for detailed and systematic comparison of behavioral phenotypes in male and female mice of three widely used inbred strains (C57BL/6JRccHsd, DBA/2JRccHsd, 129S2/SvHSd) after being kept in two housing environments (IVC and open cages) for 6 weeks (since 4 weeks of age) before behavioral testing. The tests addressed exploratory, anxiety-like and stress-related behavior (light-dark box, open field, forced swim test, stress-induced hyperthermia), social approach and species-specific behavior (nest building, marble burying). In all tests, large and expected strain differences were found. Somewhat surprisingly, the most striking effect of environment was found for basal body temperature and weight loss after one night of single housing in respective cages. In addition, the performance in light-dark box and open field was affected by environment. Several parameters in different tests showed significant interaction between housing and genetic background. In summary, the IVC housing did not invalidate the well-known differences between the mouse strains which have been established by previous studies. However, within the strains the results can be influenced by sex and housing system depending on the behavioral tasks applied. The bottom-line is that the environmental conditions should be described explicitly in all publications.
Collapse
Affiliation(s)
- Johanna Åhlgren
- Laboratory Animal Center, Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Vootele Voikar
- Neuroscience Center, Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Laboratory Animal Center, Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
20
|
Deslauriers J, Toth M, Zhou X, Risbrough VB. Heritable Differences in Catecholamine Signaling Modulate Susceptibility to Trauma and Response to Methylphenidate Treatment: Relevance for PTSD. Front Behav Neurosci 2019; 13:111. [PMID: 31164811 PMCID: PMC6534065 DOI: 10.3389/fnbeh.2019.00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 12/31/2022] Open
Abstract
Alterations in cortical catecholamine signaling pathways can modulate acute and enduring responses to trauma. Heritable variation in catecholamine signaling is produced by a common functional polymorphism in the catechol-O-methyltransferase (COMT), with Val carriers exhibiting greater degradation of catecholamines than Met carriers. Furthermore, it has recently been suggested that drugs enhancing cortical catecholamine signaling may be a new therapeutic approach for posttraumatic stress disorder (PTSD) patients. We hypothesized that heritable differences in catecholamine signaling regulate the behavioral response to trauma, and that methylphenidate (MPD), a drug that preferentially blocks catecholamine reuptake in the prefrontal cortex (PFC), exerts COMT-dependent effects on trauma-induced behaviors. We first examined the contribution of the functional mutation COMTval158met to modulate enduring behavioral responses to predator stress in a unique "humanized" COMTval158met mouse line. Animals were exposed to a predator (cat) for 10 min and enduring avoidance behaviors were examined in the open field, light-dark box, and "trauma-reminder" tests 1-2 weeks later. Second, we examined the efficacy of chronic methylphenidate to reverse predator stress effects and if these effects were modulated by COMTval158met genotype. Mice were exposed to predator stress and began treatment with either saline or methylphenidate (3 mg/kg/day) 1 week after stress until the end of the testing [avoidance behaviors, working memory, and social preference (SP)]. In males, predator stress and COMTval158met had an additive effect on enduring anxiety-like behavior, with Val stressed mice showing the strongest avoidance behavior after stress compared to Met carriers. No effect of COMT genotype was observed in females. Therefore methylphenidate effects were investigated only in males. Chronic methylphenidate treatment reversed the stress-induced avoidance behavior and increased social investigation independently of genotype. Methylphenidate effects on working memory, however, were genotype-dependent, decreasing working memory in non-stressed Met carriers, and improving stress-induced working memory deficit in Val carriers. These results suggest that heritable variance in catecholamine signaling modulates the avoidance response to an acute trauma. This work supports recent human findings that methylphenidate might be a therapeutic alternative for PTSD patients and suggests that methylphenidate effects on anxiety (generalized avoidance, social withdrawal) vs. cognitive (working memory) symptoms may be modulated through COMT-independent and dependent mechanisms, respectively.
Collapse
Affiliation(s)
- Jessica Deslauriers
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, United States
| | - Mate Toth
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Xianjin Zhou
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Victoria B Risbrough
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
21
|
Yamamoto PK, Souza TA, Antiorio ATFB, Zanatto DA, Garcia‐Gomes MDSA, Alexandre‐Ribeiro SR, Oliveira NDS, Menck CFM, Bernardi MM, Massironi SMG, Mori CMC. Genetic and behavioral characterization of a
Kmt2d
mouse mutant, a new model for Kabuki Syndrome. GENES BRAIN AND BEHAVIOR 2019; 18:e12568. [DOI: 10.1111/gbb.12568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Pedro K. Yamamoto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Tiago A. Souza
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Ana T. F. B. Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Dennis A. Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | | | | | - Nicassia de Souza Oliveira
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Carlos F. M. Menck
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Maria M. Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University São Paulo Brazil
| | - Silvia M. G. Massironi
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
- Department of Immunology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Claudia M. C. Mori
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| |
Collapse
|
22
|
Effect of 25-methoxy hispidol A isolated from Poncirus trifoliate against bacteria-induced anxiety and depression by targeting neuroinflammation, oxidative stress and apoptosis in mice. Biomed Pharmacother 2019; 111:209-223. [DOI: 10.1016/j.biopha.2018.12.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 11/20/2022] Open
|
23
|
Khan A, Ullah MZ, Afridi R, Rasheed H, Khalid S, Ullah H, Ali H, AlSharari SD, Kim YS, Khan S. Antinociceptive properties of 25-methoxy hispidol A, a triterpinoid isolated from Poncirus trifoliata
(Rutaceae) through inhibition of NF-κB signalling in mice. Phytother Res 2018; 33:327-341. [DOI: 10.1002/ptr.6223] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Ashrafullah Khan
- Department of Pharmacy, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Muhammad Zia Ullah
- Department of Pharmacy, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Ruqayya Afridi
- Department of Pharmacy, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Hina Rasheed
- Department of Pharmacy, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Sidra Khalid
- Department of Pharmacy, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Hadayat Ullah
- Department of Pharmacy, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Shakir D. AlSharari
- Department of Pharmacology, College of Pharmacy; King Saud University; Riyadh Saudi Arabia
| | - Yeong Shik Kim
- College of Pharmacy, Natural Products Research Institute; Seoul National University; Seoul South Korea
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
- College of Pharmacy, Natural Products Research Institute; Seoul National University; Seoul South Korea
| |
Collapse
|
24
|
Attenuation of inflammatory pain by puerarin in animal model of inflammation through inhibition of pro-inflammatory mediators. Int Immunopharmacol 2018; 61:306-316. [DOI: 10.1016/j.intimp.2018.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 01/17/2023]
|
25
|
Shepherd AJ, Cloud ME, Cao YQ, Mohapatra DP. Deficits in Burrowing Behaviors Are Associated With Mouse Models of Neuropathic but Not Inflammatory Pain or Migraine. Front Behav Neurosci 2018; 12:124. [PMID: 30002622 PMCID: PMC6031738 DOI: 10.3389/fnbeh.2018.00124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/06/2018] [Indexed: 01/21/2023] Open
Abstract
Burrowing, or the removal of material from an enclosed tube, is emerging as a prominent means of testing changes in a voluntary behavior in rodent models of various pain states. Here, we report no significant differences between male and female mice in terms of burrowing performance, in a substantially shorter time frame than previous reports. We found that the color of the burrow tube affects the variability of burrowing performance when tested in a lit room, suggesting that light aversion is at least a partial driver of this behavior. Spared nerve injury (SNI; as a model of neuropathy) impairs burrowing performance and correlates with enhanced mechanical sensitivity as assessed by von Frey filaments, as well as being pharmacologically reversed by an analgesic, gabapentin. Loss of the SNI-induced burrowing deficit was observed with daily testing post-surgery, but not when the testing interval was increased to 5 days, suggesting a confounding effect of daily repeat testing in this paradigm. Intraplantar complete Freund’s adjuvant (as a model of inflammatory pain) and systemic nitroglycerin (as a model of migraine-like symptoms) administration did not induce any burrowing deficit, indicating that assessment of burrowing behavior may not be universally suitable for the detection of behavioral changes across all rodent pain models.
Collapse
Affiliation(s)
- Andrew J Shepherd
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Megan E Cloud
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Yu-Qing Cao
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Durga P Mohapatra
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
26
|
Anti-inflammatory, anti-rheumatic and analgesic activities of 2-(5-mercapto-1,3,4-oxadiazol-2-yl)-N-propylbenzenesulphonamide (MOPBS) in rodents. Inflammopharmacology 2018; 26:1037-1049. [DOI: 10.1007/s10787-018-0446-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
|
27
|
Packard AEB, Zhang J, Myers B, Ko CW, Wang F, Tso P, Ulrich-Lai YM. Apolipoprotein A-IV constrains HPA and behavioral stress responsivity in a strain-dependent manner. Psychoneuroendocrinology 2017; 86:34-44. [PMID: 28910603 PMCID: PMC5659927 DOI: 10.1016/j.psyneuen.2017.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/28/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
There is a critical gap in our knowledge of the mechanisms that govern interactions between daily life experiences (e.g., stress) and metabolic diseases, despite evidence that stress can have profound effects on cardiometabolic health. Apolipoprotein A-IV (apoA-IV) is a protein found in chylomicrons (lipoprotein particles that transport lipids throughout the body) where it participates in lipid handling and the regulation of peripheral metabolism. Moreover, apoA-IV is expressed in brain regions that regulate energy balance including the arcuate nucleus. Given that both peripheral and central metabolic processes are important modulators of hypothalamic-pituitary-adrenocortical (HPA) axis activity, the present work tests the hypothesis that apoA-IV activity affects stress responses. As emerging data suggests that apoA-IV actions can vary with background strain, we also explore the strain-dependence of apoA-IV stress regulation. These studies assess HPA axis, metabolic (hyperglycemia), and anxiety-related behavioral responses to psychogenic stress in control (wildtype) and apoA-IV-deficient (KO) mice on either the C57Bl/6J (C57) or 129×1/SvJ (129) background strain. The results indicate that apoA-IV KO increases post-stress corticosterone and anxiety-related behavior specifically in the 129 strain, and increases stress-induced hyperglycemia exclusively in the C57 strain. These data support the hypothesis that apoA-IV is a novel factor that limits stress reactivity in a manner that depends on genetic background. An improved understanding of the complex relationship among lipid homeostasis, stress sensitivity, and genetics is needed to optimize the development of personalized treatments for stress- and metabolism-related diseases.
Collapse
Affiliation(s)
- Amy E B Packard
- Dept. of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 2120 E. Galbraith Road, Cincinnati, OH, USA.
| | - Jintao Zhang
- Dept. of Pathology and Laboratory Medicine, University of Cincinnati, 2120 E. Galbraith Road, Cincinnati, OH, USA.
| | - Brent Myers
- Dept. of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 2120 E. Galbraith Road, Cincinnati, OH, USA.
| | - Chih-Wei Ko
- Dept. of Pathology and Laboratory Medicine, University of Cincinnati, 2120 E. Galbraith Road, Cincinnati, OH, USA.
| | - Fei Wang
- Dept. of Pathology and Laboratory Medicine, University of Cincinnati, 2120 E. Galbraith Road, Cincinnati, OH, USA.
| | - Patrick Tso
- Dept. of Pathology and Laboratory Medicine, University of Cincinnati, 2120 E. Galbraith Road, Cincinnati, OH, USA.
| | - Yvonne M Ulrich-Lai
- Dept. of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 2120 E. Galbraith Road, Cincinnati, OH, USA.
| |
Collapse
|
28
|
Doucet M, El-Turabi A, Zabel F, Hunn BH, Bengoa-Vergniory N, Cioroch M, Ramm M, Smith AM, Gomes AC, Cabral de Miranda G, Wade-Martins R, Bachmann MF. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles. PLoS One 2017; 12:e0181844. [PMID: 28797124 PMCID: PMC5552317 DOI: 10.1371/journal.pone.0181844] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a progressive and currently incurable neurological disorder characterised by the loss of midbrain dopaminergic neurons and the accumulation of aggregated alpha-synuclein (a-syn). Oligomeric a-syn is proposed to play a central role in spreading protein aggregation in the brain with associated cellular toxicity contributing to a progressive neurological decline. For this reason, a-syn oligomers have attracted interest as therapeutic targets for neurodegenerative conditions such as PD and other alpha-synucleinopathies. In addition to strategies using small molecules, neutralisation of the toxic oligomers by antibodies represents an attractive and highly specific strategy for reducing disease progression. Emerging active immunisation approaches using vaccines are already being trialled to induce such antibodies. Here we propose a novel vaccine based on the RNA bacteriophage (Qbeta) virus-like particle conjugated with short peptides of human a-syn. High titres of antibodies were successfully and safely generated in wild-type and human a-syn over-expressing (SNCA-OVX) transgenic mice following vaccination. Antibodies from vaccine candidates targeting the C-terminal regions of a-syn were able to recognise Lewy bodies, the hallmark aggregates in human PD brains. Furthermore, antibodies specifically targeted oligomeric and aggregated a-syn as they exhibited 100 times greater affinity for oligomeric species over monomer a-syn proteins in solution. In the SNCA-OVX transgenic mice used, vaccination was, however, unable to confer significant changes to oligomeric a-syn bioburden. Similarly, there was no discernible effect of vaccine treatment on behavioural phenotype as compared to control groups. Thus, antibodies specific for oligomeric a-syn induced by vaccination were unable to treat symptoms of PD in this particular mouse model.
Collapse
Affiliation(s)
- Marika Doucet
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Aadil El-Turabi
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | | | - Benjamin H.M. Hunn
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Milena Cioroch
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Mauricio Ramm
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Amy M. Smith
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Ariane Cruz Gomes
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Gustavo Cabral de Miranda
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (RWM); (MFB)
| | - Martin F. Bachmann
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
- Immunology, Rheumatology, Immunology and Allergy (RIA), Inselspital, University of Bern, Switzerland
- * E-mail: (RWM); (MFB)
| |
Collapse
|
29
|
Water and T-maze protocols are equally efficient methods to assess spatial memory in 3xTg Alzheimer’s disease mice. Behav Brain Res 2017; 331:54-66. [DOI: 10.1016/j.bbr.2017.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/09/2017] [Accepted: 05/03/2017] [Indexed: 01/28/2023]
|
30
|
Breuss MW, Hansen AH, Landler L, Keays DA. Brain-specific knockin of the pathogenic Tubb5 E401K allele causes defects in motor coordination and prepulse inhibition. Behav Brain Res 2017; 323:47-55. [PMID: 28130172 DOI: 10.1016/j.bbr.2017.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 01/24/2023]
Abstract
The generation, migration, and differentiation of neurons requires the functional integrity of the microtubule cytoskeleton. Mutations in the tubulin gene family are known to cause various neurological diseases including lissencephaly, ocular motor disorders, polymicrogyria and amyotrophic lateral sclerosis. We have previously reported that mutations in TUBB5 cause microcephaly that is accompanied by severe intellectual impairment and motor delay. Here we present the characterization of a Tubb5 mouse model that allows for the conditional expression of the pathogenic E401K mutation. Homozygous knockin animals exhibit a severe reduction in brain size and in body weight. These animals do not show any significant impairment in general activity, anxiety, or in the acoustic startle response, however, present with notable defects in motor coordination. When assessed on the static rod apparatus mice took longer to orient and often lost their balance completely. Interestingly, mutant animals also showed defects in prepulse inhibition, a phenotype associated with sensorimotor gating and considered an endophenotype for schizophrenia. This study provides insight into the behavioral consequences of tubulin gene mutations.
Collapse
Affiliation(s)
- Martin W Breuss
- IMP, Research Institute of Molecular Pathology, Vienna 1030, Austria.
| | - Andi H Hansen
- IMP, Research Institute of Molecular Pathology, Vienna 1030, Austria
| | - Lukas Landler
- IMP, Research Institute of Molecular Pathology, Vienna 1030, Austria
| | - David A Keays
- IMP, Research Institute of Molecular Pathology, Vienna 1030, Austria.
| |
Collapse
|
31
|
Zhang H, He F, Shi M, Wang W, Tian X, Kang J, Han W, Wu R, Zhou L, Hu M, Li X, Mi F, Zhao G, Jia H. Toll-Like Receptor 4-Myeloid Differentiation Primary Response Gene 88 Pathway Is Involved in the Inflammatory Development of Polymyositis by Mediating Interferon-γ and Interleukin-17A in Humans and Experimental Autoimmune Myositis Mouse Model. Front Neurol 2017; 8:132. [PMID: 28446897 PMCID: PMC5388689 DOI: 10.3389/fneur.2017.00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Toll-like receptor 4 (TLR4) is one of the key players in the development of many autoimmune diseases. To determine the possible role of TLR4 in polymyositis (PM) development, we collected muscle samples from PM patients and mice subjected to an experimental autoimmune myositis (EAM) model. METHODS We measured TLR4-MyD88 pathway-related factors, interferon-γ (IFN-γ), and interleukin-17A (IL-17A) in EAM mice and PM patients. Then, we observed the changes of above factors and the inflammatory development of EAM mice with TLR4 antagonist TAK-242, IFN-γ, or IL-17A antibody treatment. RESULTS The expression of TLR4, MyD88, and NF-κB was significantly upregulated in the muscle tissues both in 22 patients with PM and in the EAM model. As expected, increased levels of various cytokines, such as IL-1β, IL-6, IL-10, IL-12, tumor necrosis factor-α, TGF-β, IFN-γ, and IL-17A, were evident in the serum of EAM mice. Moreover, mRNA expression levels of IFN-γ and IL-17A were significantly increased in both PM patients and EAM mice. Consistently, the levels of these factors were positively correlated with the degree of muscle inflammation in EAM mice. However, when EAM mice were treated with TLR4 antagonist TAK-242, the expression of IFN-γ and IL-17A was decreased. When the cytokines were neutralized by anti-IFN-γ or anti-IL-17A antibody, the inflammatory development of EAM exacerbated or mitigated. CONCLUSION The present study provided the important evidence that the TLR4-MyD88 pathway may be involved in the immune mechanisms of PM by mediating IFN-γ and IL-17A.
Collapse
Affiliation(s)
- Hongya Zhang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fangyuan He
- Department of Neurology, Xi'an Children's Hospital, Xi'an, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenxiu Wang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaojia Tian
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Juan Kang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenjuan Han
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rui Wu
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Linfu Zhou
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mengmeng Hu
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaobo Li
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fang Mi
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongge Jia
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Neurology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
32
|
McMackin MZ, Henderson CK, Cortopassi GA. Neurobehavioral deficits in the KIKO mouse model of Friedreich's ataxia. Behav Brain Res 2017; 316:183-188. [PMID: 27575947 PMCID: PMC5051948 DOI: 10.1016/j.bbr.2016.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/30/2022]
Abstract
Friedreich's Ataxia (FA) is a pediatric neurodegenerative disease whose clinical presentation includes ataxia, muscle weakness, and peripheral sensory neuropathy. The KIKO mouse is an animal model of FA with frataxin deficiency first described in 2002, but neurobehavioral deficits have never been described in this model. The identification of robust neurobehavioral deficits in KIKO mice could support the testing of drugs for FA, which currently has no approved therapy. We tested 13 neurobehavioral tasks to identify a robust KIKO phenotype: Open Field, Grip Strength Test(s), Cylinder, Skilled Forelimb Grasp Task(s), Treadmill Endurance, Locotronic Motor Coordination, Inverted Screen, Treadscan, and Von Frey. Of these, Inverted Screen, Treadscan and Von Frey produced significant neurobehavioral deficits at >8 months of age, and relate to the clinically relevant endpoints of muscle strength and endurance, gait ataxia, and peripheral insensitivity. Thus we identify robust phenotypic measures related to Friedreich's ataxia clinical endpoints which could be used to test effectiveness of potential drug therapy.
Collapse
Affiliation(s)
- Marissa Z McMackin
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Chelsea K Henderson
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Gino A Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
33
|
Wan Z, Zhang X, Peng A, He M, Lei Z, Wang Y. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I. Int Immunopharmacol 2016; 41:74-81. [PMID: 27816788 DOI: 10.1016/j.intimp.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To analyze the effects of TLR4 on the expression of the HMGB1, MHC-I and downstream cytokines IL-6 and TNF-α, and to investigate the biological role of the TLR4-HMGB1 signaling pathway in the development of the autoimmune myositis. METHODS We built mice models with experimental autoimmune myositis (EAM) and used the inverted screen experiment to measure their muscle endurance; we also examined inflammatory infiltration of muscle tissues after HE staining; and we assessed the expression of MHC-I using immunohistochemistry. In addition, peripheral blood mononuclear cells (PBMC) were extracted and flow cytometry was utilized to detect the effect of IFN-γ on the expression of MHC-I. Furthermore, PBMCs were treated with IFN-γ, anti-TLR4, anti-HMGB1 and anti-MHC-I. Real-time PCR and western blotting were employed to examine the expressions of TLR4, HMGB1 and MHC-I in different groups. The ELISA method was also utilized to detect the expression of the downstream cytokines TNF-α and IL-6. RESULTS The expressions of TLR4, HMGB1 and MHC-I in muscle tissues from mice with EAM were significantly higher than those in the control group (all P<0.05). After IFN-γ treatment, the expressions of TLR4, HMGB1, MHC-I, TNF-α and IL-6 in PBMCs significantly increased (all P<0.05). The treatment of anti-TLR4, anti-HMGB1 and anti-MHC-I could significantly downregulate the expression of MHC-I (all P<0.05). In addition, anti-TLR4 and anti-HMGB1 significantly reduced the expression of TNF-α and IL-6 (all P<0.05). CONCLUSIONS The TLR4-HMGB1 signaling pathway affects the process of autoimmune myositis inflammation by regulating the expression of MHC-I and other pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Zemin Wan
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
| | - Xiujuan Zhang
- Department of Liver Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Anping Peng
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Min He
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Zhenhua Lei
- Department of Urology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Yunxiu Wang
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| |
Collapse
|
34
|
Postnatal training of 129/Sv mice confirms the long-term influence of early exercising on the motor properties of mice. Behav Brain Res 2016; 310:126-34. [PMID: 27130139 DOI: 10.1016/j.bbr.2016.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023]
Abstract
A previous study showed that motor experiences during critical periods of development durably affect the motor properties of adult C57BL/6J mice. However, dependence on early environmental features may vary with the genetic profile. To evaluate the contribution of the genetic background on external influences to motricity, we performed the same experiment in a 129/Sv mouse strain that show a strongly different motor profile. Mice were subjected to endurance training (enriched environment or forced treadmill), hypergravity (chronic centrifugation), or simulated microgravity (hindlimb unloading) between postnatal days 10 and 30. They were then returned to standard housing until testing at the age of nine months. The endurance-trained mice showed a fast-slow shift in the deep zone of the tibialis. In addition, mice reared in the enriched environment showed a modified gait and body posture, and improved performance on the rotarod, whereas forced treadmill training did not affect motor output. Hypergravity induced a fast-slow shift in the superficial zone of the tibialis, with no consequence on motor output. Hindlimb unloading provoked an increased percentage of immature hybrid fibres in the tibialis and a shift in the soleus muscle. When compared with similarly reared C57BL/6J mice, 129/Sv mice showed qualitative differences attributable to the lower efficiency of early training due to their lower basal motor activity level. Nevertheless, the results are essentially consistent in both strains, and support the hypothesis that early motor experience influences the muscle phenotype and motor output.
Collapse
|
35
|
Mercer AA, Palarz KJ, Tabatadze N, Woolley CS, Raman IM. Sex differences in cerebellar synaptic transmission and sex-specific responses to autism-linked Gabrb3 mutations in mice. eLife 2016; 5. [PMID: 27077953 PMCID: PMC4878876 DOI: 10.7554/elife.07596] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/13/2016] [Indexed: 12/18/2022] Open
Abstract
Neurons of the cerebellar nuclei (CbN) transmit cerebellar signals to premotor areas. The cerebellum expresses several autism-linked genes, including GABRB3, which encodes GABAA receptor β3 subunits and is among the maternal alleles deleted in Angelman syndrome. We tested how this Gabrb3 m-/p+ mutation affects CbN physiology in mice, separating responses of males and females. Wild-type mice showed sex differences in synaptic excitation, inhibition, and intrinsic properties. Relative to females, CbN cells of males had smaller synaptically evoked mGluR1/5-dependent currents, slower Purkinje-mediated IPSCs, and lower spontaneous firing rates, but rotarod performances were indistinguishable. In mutant CbN cells, IPSC kinetics were unchanged, but mutant males, unlike females, showed enlarged mGluR1/5 responses and accelerated spontaneous firing. These changes appear compensatory, since mutant males but not females performed indistinguishably from wild-type siblings on the rotarod task. Thus, sex differences in cerebellar physiology produce similar behavioral output, but provide distinct baselines for responses to mutations.
Collapse
Affiliation(s)
- Audrey A Mercer
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States.,Department of Neurobiology, Northwestern University, Evanston, United States
| | - Kristin J Palarz
- Department of Neurobiology, Northwestern University, Evanston, United States.,Integrated Science Program, Northwestern University, Evanston, United States
| | - Nino Tabatadze
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Catherine S Woolley
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States.,Department of Neurobiology, Northwestern University, Evanston, United States
| | - Indira M Raman
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States.,Department of Neurobiology, Northwestern University, Evanston, United States.,Integrated Science Program, Northwestern University, Evanston, United States
| |
Collapse
|
36
|
A two-hit model of suicide-trait-related behaviors in the context of a schizophrenia-like phenotype: Distinct effects of lithium chloride and clozapine. Physiol Behav 2016; 156:48-58. [DOI: 10.1016/j.physbeh.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 01/30/2023]
|
37
|
E Dief A, M Samy D, I Dowedar F. Impact of exercise and vitamin B1 intake on hippocampal brain-derived neurotrophic factor and spatial memory performance in a rat model of stress. J Nutr Sci Vitaminol (Tokyo) 2016; 61:1-7. [PMID: 25994133 DOI: 10.3177/jnsv.61.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic stress affects brain areas involved in learning and emotional responses through modulation of neurotropic factors or neurotransmitters. Therefore, we investigated the role of exercise and thiamine supplementation on spatial memory and on brain-derived neurotrophic factor (BDNF) and acetylcholine (Ach) content in the hippocampus of the stressed animals. Male Wistar rats were randomly assigned to 4 groups (8 rats/group): control group; stress group; swimming and stress group; and thiamine and stress group. All animals were assessed by a T maze for spatial memory or open field test for locomotion and anxiety. BDNF and Ach were estimated in the hippocampus. Chronic immobilization stress resulted in a significant decrease in BDNF and Ach levels in the hippocampus and impairment in spatial memory functions and decreased basal activity. However, either swimming training or thiamine intake for 30 d was proved to induce a significant increase both in BDNF and Ach in conjunction with improved performance in the T maze, marked anxiolytic effect and enhanced ambulation in the open field test, as compared to the stress group. Interestingly, swimming-exercised rats showed significantly higher levels of BDNF versus thiamine-receiving rats, while thiamine-receiving rats showed higher locomotor activity and less freezing behavior in the open field test compared to the swimming group. It was concluded that decreased BDNF and Ach after stress exposure could be a mechanism for the deleterious actions of stress on memory function; swimming exercise or vitamin B1 supplementation for 30 d was a protective tool to improve coping with chronic stress by modulating BDNF and Ach content along with enhancement of memory functions and motor activities.
Collapse
Affiliation(s)
- Abeer E Dief
- Medical Physiology Department, Faculty of Medicine, Alexandria University
| | | | | |
Collapse
|
38
|
Wolf A, Bauer B, Abner EL, Ashkenazy-Frolinger T, Hartz AMS. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice. PLoS One 2016; 11:e0147733. [PMID: 26808326 PMCID: PMC4726499 DOI: 10.1371/journal.pone.0147733] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/07/2016] [Indexed: 01/16/2023] Open
Abstract
Transgenic Tg2576 mice overexpressing human amyloid precursor protein (hAPP) are a widely used Alzheimer's disease (AD) mouse model to evaluate treatment effects on amyloid beta (Aβ) pathology and cognition. Tg2576 mice on a B6;SJL background strain carry a recessive rd1 mutation that leads to early retinal degeneration and visual impairment in homozygous carriers. This can impair performance in behavioral tests that rely on visual cues, and thus, affect study results. Therefore, B6;SJL/Tg2576 mice were systematically backcrossed with 129S6/SvEvTac mice resulting in 129S6/Tg2576 mice that lack the rd1 mutation. 129S6/Tg2576 mice do not develop retinal degeneration but still show Aβ accumulation in the brain that is comparable to the original B6;SJL/Tg2576 mouse. However, comprehensive studies on cognitive decline in 129S6/Tg2576 mice are limited. In this study, we used two dementia mouse models on a 129S6 background--scopolamine-treated 129S6/SvEvTac mice (3-5 month-old) and transgenic 129S6/Tg2576 mice (11-13 month-old)-to establish a behavioral test battery for assessing learning and memory. The test battery consisted of five tests to evaluate different aspects of cognitive impairment: a Y-Maze forced alternation task, a novel object recognition test, the Morris water maze, the radial arm water maze, and a Y-maze spontaneous alternation task. We first established this behavioral test battery with the scopolamine-induced dementia model using 129S6/SvEvTac mice and then evaluated 129S6/Tg2576 mice using the same testing protocol. Both models showed distinctive patterns of cognitive impairment. Together, the non-invasive behavioral test battery presented here allows detecting cognitive impairment in scopolamine-treated 129S6/SvEvTac mice and in transgenic 129S6/Tg2576 mice. Due to the modular nature of this test battery, more behavioral tests, e.g. invasive assays to gain additional cognitive information, can easily be added.
Collapse
Affiliation(s)
- Andrea Wolf
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55812, United States of America
| | - Björn Bauer
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55812, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States of America
| | - Erin L. Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States of America
| | - Tal Ashkenazy-Frolinger
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States of America
| | - Anika M. S. Hartz
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55812, United States of America
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States of America
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, United States of America
| |
Collapse
|
39
|
Moraga-Amaro R, Gonzalez H, Pacheco R, Stehberg J. Dopamine receptor D3 deficiency results in chronic depression and anxiety. Behav Brain Res 2014; 274:186-93. [PMID: 25110304 DOI: 10.1016/j.bbr.2014.07.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/26/2014] [Accepted: 07/31/2014] [Indexed: 01/17/2023]
Abstract
Over the last decade accumulating evidence suggests that brain dopamine (DA) has a role in depression, particularly given the high comorbidity of depression with Parkinson's Disease (PD) and the antidepressant effects of the DA receptor subtype 3 (D3R) agonist pramipexole. The present study assesses the role of D3R in depression. Here we hypothesized that D3R mediates the antidepressant effects of DA. Thus, genetic deficiency of D3R in D3R knockout (D3RKO) mice would yield animals with chronic depressive symptoms. Whereas D3R deficient mice did not show significant alterations in locomotion when tested in the openfield, these animals showed anxiety-like symptoms measured as a significant increase in thigmotaxis at the openfield and a significantly lower time spent in the lit compartment at the light/dark exploration test. D3RKO animals also showed depressive-like symptoms as measured by increased immobility time in the Porsolt forced swim test and the tail suspension test, as well as anhedonia measured in the non-motor dependent sucrose test. In conclusion, D3R deficiency results in anxiety-like and depressive-like symptoms that cannot be attributed to motor dysfunction.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello, Santiago, Chile
| | - Hugo Gonzalez
- Laboratorio of Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa (7780272), Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio of Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa (7780272), Santiago, Chile; Programa de Biomedicina, Universidad San Sebastián, Av. Zañartu 1482, Ñuñoa (7780272), Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
40
|
Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure. Physiol Behav 2014; 133:30-8. [PMID: 24832050 DOI: 10.1016/j.physbeh.2014.05.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/26/2014] [Accepted: 05/06/2014] [Indexed: 01/19/2023]
Abstract
Light-dark box and open field are conventional tests for assessment of anxiety-like behavior in the laboratory mice, based on approach-avoidance conflict. However, except the basic principles, variations in the equipment and procedures are very common. Therefore, contribution of certain methodological issues in different settings was investigated. Three inbred strains (C57BL/6, 129/Sv, DBA/2) and one outbred stock (ICR) of mice were used in the experiments. An effect of initial placement of mice either in the light or dark compartment was studied in the light-dark test. Moreover, two tracking systems were applied - position of the animals was detected either by infrared sensors in square box (1/2 dark) or by videotracking in rectangular box (1/3 dark). Both approaches revealed robust and consistent strain differences in the exploratory behavior. In general, C57BL/6 and ICR mice showed reduced anxiety-like behavior as compared to 129/Sv and DBA/2 strains. However, the latter two strains differed markedly in their behavior. DBA/2 mice displayed high avoidance of the light compartment accompanied by thigmotaxis, whereas the hypoactive 129 mice spent a significant proportion of time in risk-assessment behavior at the opening between two compartments. Starting from the light side increased the time spent in the light compartment and reduced the latency to the first transition. In the open field arena, black floor promoted exploratory behavior - increased time and distance in the center and increased rearing compared to white floor. In conclusion, modifications of the apparatus and procedure had significant effects on approach-avoidance behavior in general whereas the strain rankings remained unaffected.
Collapse
|
41
|
Dief AE, Kamha ES, Baraka AM, Elshorbagy AK. Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: A potential role for cyclic AMP protein kinase. Neurotoxicology 2014; 42:76-82. [DOI: 10.1016/j.neuro.2014.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/25/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
42
|
Lahmann C, Clark RH, Iberl M, Ashcroft FM. A mutation causing increased KATP channel activity leads to reduced anxiety in mice. Physiol Behav 2014; 129:79-84. [PMID: 24582665 PMCID: PMC5576528 DOI: 10.1016/j.physbeh.2014.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/17/2014] [Accepted: 02/12/2014] [Indexed: 01/13/2023]
Abstract
Activating mutations in the Kir6.2 (KCNJ11) subunit of the ATP-sensitive potassium channel cause neonatal diabetes. Many patients also suffer from neurological complications. By using mice carrying a human Kir6.2 mutation (Val(59) to Met(59); nV59M mice) targeted to neurones, we show that these mutations also result in altered anxiety behaviour. The light/dark box, successive alleys and elevated plus maze tasks revealed that nV59M mice have reduced anxiety related responses. Additionally, nV59M mice displayed enhanced basal locomotor activity and exploratory behaviour, as assessed by the low anxiety open-field test. These findings, in combination with previously reported hyperactivity of nV59M mice, appear to correlate with the increased impulsivity and inattentiveness reported in iDEND/DEND patients.
Collapse
Affiliation(s)
- Carolina Lahmann
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Rebecca H Clark
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Michaela Iberl
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
43
|
Gangarossa G, Laffray S, Bourinet E, Valjent E. T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants. Front Behav Neurosci 2014; 8:92. [PMID: 24672455 PMCID: PMC3957728 DOI: 10.3389/fnbeh.2014.00092] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/03/2014] [Indexed: 01/28/2023] Open
Abstract
The fine-tuning of neuronal excitability relies on a tight control of Ca2+ homeostasis. The low voltage-activated (LVA) T-type calcium channels (Cav3.1, Cav3.2 and Cav3.3 isoforms) play a critical role in regulating these processes. Despite their wide expression throughout the central nervous system, the implication of T-type Cav3.2 isoform in brain functions is still poorly characterized. Here, we investigate the effect of genetic ablation of this isoform in affective disorders, including anxiety, cognitive functions as well as sensitivity to drugs of abuse. Using a wide range of behavioral assays we show that genetic ablation of the cacna1h gene results in an anxiety-like phenotype, whereas novelty-induced locomotor activity is unaffected. Deletion of the T-type channel Cav3.2 also triggers impairment of hippocampus-dependent recognition memories. Acute and sensitized hyperlocomotion induced by d-amphetamine and cocaine are dramatically reduced in T-type Cav3.2 deficient mice. In addition, the administration of the T-type blocker TTA-A2 prevented the expression of locomotor sensitization observed in wildtype mice. In conclusion, our data reveal that physiological activity of this specific Ca2+ channel is required for affective and cognitive behaviors. Moreover, our work highlights the interest of T-type channel blockers as therapeutic strategies to reverse drug-associated alterations.
Collapse
Affiliation(s)
- Giuseppe Gangarossa
- Institut de Génomique Fonctionnelle, CNRS UMR-5203, Montpellier, France ; INSERM U661, Montpellier, France ; Universités de Montpellier 1 and 2 UMR-5203, Montpellier, France
| | - Sophie Laffray
- Institut de Génomique Fonctionnelle, CNRS UMR-5203, Montpellier, France ; INSERM U661, Montpellier, France ; Universités de Montpellier 1 and 2 UMR-5203, Montpellier, France ; Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle Montpellier, France
| | - Emmanuel Bourinet
- Institut de Génomique Fonctionnelle, CNRS UMR-5203, Montpellier, France ; INSERM U661, Montpellier, France ; Universités de Montpellier 1 and 2 UMR-5203, Montpellier, France ; Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle Montpellier, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, CNRS UMR-5203, Montpellier, France ; INSERM U661, Montpellier, France ; Universités de Montpellier 1 and 2 UMR-5203, Montpellier, France
| |
Collapse
|
44
|
Abstract
AbstractEnvironmental enrichment aims to improve the well-being of laboratory animals and provides an opportunity to improve experimental reliability and validity. Animals raised in more stimulating environments have improved learning and memory as well as more complex brain architecture. However, the effects of environmental enrichment on motor performance, anxiety and emotional development have been poorly studied. Moreover, most investigators studying the effects of enrichment provide extremely large and complex housing conditions to maximize the likelihood of finding effects. These situations are difficult to replicate across animal facilities and are not operationally practical. In this experiment, we investigated how simple, inexpensive disposable shelterstyle enrichment items alter behavior in C57Bl/6 and 129S6 mice. Breeding pairs were established in the presence of a Ketchum “Refuge”, Shepherd Shack “Dome”, or no enrichment. Offspring were assessed neurobehaviorally, either just after weaning (pre-adolescent, P22–P25), or as young adults (P60–P90). Major strain differences were observed in open field activity, elevated maze exploration, and Y-maze activity levels. The presence of the Refuge and/or Dome enrichment shelters significantly altered motor activity, coordination and some measures of anxiety. Mice housed in the presence of shelters were also less dominant than control mice in a tube test assay. Our experiments provide a detailed analysis of the effects of inexpensive and practical methods of housing enrichment on biobehavioral phenotypes in these two commonly used strains of laboratory mice, and suggest that the effects of these shelters on mouse neurobiology and behavior need to be rigorously analyzed before being adopted within vivariums.
Collapse
|
45
|
Beneficial role of rapamycin in experimental autoimmune myositis. PLoS One 2013; 8:e74450. [PMID: 24265670 PMCID: PMC3827074 DOI: 10.1371/journal.pone.0074450] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/06/2013] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION We developed an experimental autoimmune myositis (EAM) mouse model of polymyositis where we outlined the role of regulatory T (Treg) cells. Rapamycin, this immunosuppressant drug used to prevent rejection in organ transplantation, is known to spare Treg. Our aim was to test the efficacy of rapamycin in vivo in this EAM model and to investigate the effects of the drug on different immune cell sub-populations. METHODS EAM is induced by 3 injections of myosin emulsified in CFA. Mice received rapamycin during 25 days starting one day before myosin immunization (preventive treatment), or during 10 days following the last myosin immunization (curative treatment). RESULTS Under preventive or curative treatment, an increase of muscle strength was observed with a parallel decrease of muscle inflammation, both being well correlated (R(2) = -0.645, p<0.0001). Rapamycin induced a general decrease in muscle of CD4 and CD8 T cells in lymphoid tissues, but spared B cells. Among T cells, the frequency of Treg was increased in rapamycin treated mice in draining lymph nodes (16.9 ± 2.2% vs. 9.3 ± 1.4%, p<0.001), which were mostly activated regulatory T cells (CD62L(low)CD44(high): 58.1 ± 5.78% vs. 33.1 ± 7%, treated vs. untreated, p<0.001). In rapamycin treated mice, inhibition of proliferation (Ki-67(+)) is more important in effector T cells compared to Tregs cells (p<0.05). Furthermore, during preventive treatment, rapamycin increased the levels of KLF2 transcript in CD44(low) CD62L(high) naive T cell and in CD62L(low) CD44(high) activated T cell. CONCLUSIONS Rapamycin showed efficacy both as curative and preventive treatment in our murine model of experimental myositis, in which it induced an increase of muscle strength with a parallel decrease in muscle inflammation. Rapamycin administration was also associated with a decrease in the frequency of effector T cells, an increase in Tregs, and, when administered as preventive treatment, an upregulation of KFL2 in naive and activated T cells.
Collapse
|
46
|
Blaney CE, Gunn RK, Stover KR, Brown RE. Maternal genotype influences behavioral development of 3×Tg-AD mouse pups. Behav Brain Res 2013; 252:40-8. [DOI: 10.1016/j.bbr.2013.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
|
47
|
Impaired long-term memory retention: Common denominator for acutely or genetically reduced hippocampal neurogenesis in adult mice. Behav Brain Res 2013; 252:275-86. [DOI: 10.1016/j.bbr.2013.05.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 05/13/2013] [Accepted: 05/18/2013] [Indexed: 01/03/2023]
|
48
|
Zorrilla EP, Roberts AJ, Rivier JE, Koob GF. Anxiolytic-like effects of antisauvagine-30 in mice are not mediated by CRF2 receptors. PLoS One 2013; 8:e63942. [PMID: 24015170 PMCID: PMC3756045 DOI: 10.1371/journal.pone.0063942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/09/2013] [Indexed: 11/18/2022] Open
Abstract
The role of brain corticotropin-releasing factor type 2 (CRF2) receptors in behavioral stress responses remains controversial. Conflicting findings suggest pro-stress, anti-stress or no effects of impeding CRF2 signaling. Previous studies have used antisauvagine-30 as a selective CRF2 antagonist. The present study tested the hypotheses that 1) potential anxiolytic-like actions of intracerebroventricular (i.c.v.) administration of antisauvagine-30 also are present in mice lacking CRF2 receptors and 2) potential anxiolytic-like effects of antisauvagine-30 are not shared by the more selective CRF2 antagonist astressin2-B. Cannulated, male CRF2 receptor knockout (n = 22) and wildtype littermate mice (n = 21) backcrossed onto a C57BL/6J genetic background were tested in the marble burying, elevated plus-maze, and shock-induced freezing tests following pretreatment (i.c.v.) with vehicle, antisauvagine-30 or astressin2-B. Antisauvagine-30 reduced shock-induced freezing equally in wildtype and CRF2 knockout mice. In contrast, neither astressin2-B nor CRF2 genotype influenced shock-induced freezing. Neither CRF antagonist nor CRF2 genotype influenced anxiety-like behavior in the plus-maze or marble burying tests. A literature review showed that the typical antisauvagine-30 concentration infused in previous intracranial studies (∼1 mM) was 3 orders greater than its IC50 to block CRF1-mediated cAMP responses and 4 orders greater than its binding constants (Kd, Ki) for CRF1 receptors. Thus, increasing, previously used doses of antisauvagine-30 also exert non-CRF2-mediated effects, perhaps via CRF1. The results do not support the hypothesis that brain CRF2 receptors tonically promote anxiogenic-like behavior. Utilization of CRF2 antagonists, such as astressin2-B, at doses that are more subtype-selective, can better clarify the significance of brain CRF2 systems in stress-related behavior.
Collapse
Affiliation(s)
- Eric P. Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (EPZ); (GFK)
| | - Amanda J. Roberts
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jean E. Rivier
- The Clayton Foundation Laboratories for Peptide Biology and Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - George F. Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (EPZ); (GFK)
| |
Collapse
|
49
|
Abstract
The plus-maze was derived from the early work of Montgomery. He observed that rats tended to avoid the open arms of a maze, preferring the enclosed ones. Handley, Mithani and File et al. performed the first studies on the plus-maze design we use today, and in 1987 Lister published a design for use with mice. Time spent on, and entries into, the open arms are an index of anxiety; the lower these indices, the more anxious the mouse is. Alternatively, a mouse that spends most of its time in the closed arms is classed as anxious. One of the problems of the plus-maze is that, while time spent on, and entries into, the open arms is a fairly unambiguous measure of anxiety, time in the central area is more difficult to interpret, although time spent here has been classified as “decision making”. In many tests central area time is a considerable part of the total test time. Shepherd et al. produced an ingenious design to eliminate the central area, which they called the “zero maze”. However, although used by several groups, it has never been as widely adopted as the plus-maze. In the present article I describe a modification of the plus-maze design that not only eliminates the central area but also incorporates elements from other anxiety tests, such as the light-dark box and emergence tests. It is a linear series of four alleys, each having increasing anxiogenic properties. It has given similar results to the plus-maze in general. Although it may not be more sensitive than the plus-maze (more data is needed before a firm conclusion can be reached on this point), it provides a useful confirmation of plus-maze results which would be useful when, for example, only a single example of a mutant mouse was available, as, for example, in ENU-based mutagenesis programs.
Collapse
|
50
|
Abstract
Kondziela7 devised the inverted screen test and published it in 1964. It is a test of muscle strength using all four limbs. Most normal mice easily score maximum on this task; it is a quick but insensitive gross screen, and the weights test described in this article will provide a finer measure of muscular strength. There are also several strain gauge-based pieces of apparatus available commercially that will provide more graded data than the inverted screen test, but their cost may put them beyond the reach of many laboratories which do not specialize in strength testing. Hence in 2000 a cheap and simple apparatus was devised by the author. It consists of a series of chain links of increasing length, attached to a "fur collector" a ball of fine wire mesh sold for preventing limescale build up in hard water areas. An accidental observation revealed that mice could grip these very tightly, so they proved ideal as a grip point for a weight-lifting apparatus. A common fault with commercial strength meters is that the bar or other grip feature is not thin enough for mice to exert a maximum grip. As a general rule, the thinner the wire or bar, the better a mouse can grip with its small claws. This is a pure test of strength, although as for any test motivational factors could potentially play a role. The use of scale collectors, however, seems to minimize motivational problems as the motivation appears to be very high for most normal young adult mice.
Collapse
|