1
|
Lazarova M, Stefanova M, Tsvetanova E, Georgieva A, Tasheva K, Radeva L, Yoncheva K. Resveratrol-Loaded Pluronic Micelles Ameliorate Scopolamine-Induced Cognitive Dysfunction Targeting Acetylcholinesterase Activity and Programmed Cell Death. Int J Mol Sci 2024; 25:12777. [PMID: 39684486 DOI: 10.3390/ijms252312777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous experimental studies suggest the potential for resveratrol (RVT) to be useful in the Alzheimer's disease treatment, but its low bioavailability limits its application. This study aimed to assess the potential of resveratrol-loaded micelles as a neuronal delivery platform to protect rats from scopolamine-induced memory impairment. Resveratrol was incorporated into Pluronic micelles, and the effects of micellar (mRVT) and pure resveratrol (RVT) were compared in the model of scopolamine-induced dementia in male Wistar rats. Memory performance was assessed by a T maze test. The effect of the treatment on specific neurotransmitter levels and protein expression in the cortex and the hippocampus were evaluated biochemically. Our results revealed that the polymeric micelles were in nanoscale (approximately 33 nm) and reached 79% encapsulation efficiency. The treatment with mRVT demonstrated better spatial memory protective effect. The biochemical assays showed that mRVT in a dose of 10 mg/kg enhanced the effects of the pure drug in regard to noradrenalin neurotransmission and acetylcholinesterase inhibitory activity in the hippocampus. Furthermore, micellar resveratrol increased the cAMP-response element-binding protein expression in the cortex and hippocampus of rats as well as the Bcl2/BAX ratio, which indicated an anti-apoptotic effect in the experimental dementia model. In conclusion, our results indicated the potential of a micellar system loaded with resveratrol for neurodegenerative diseases treatment.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
2
|
de la Monte SM, Tong M. Dysregulated mTOR networks in experimental sporadic Alzheimer's disease. Front Cell Neurosci 2024; 18:1432359. [PMID: 39386180 PMCID: PMC11461251 DOI: 10.3389/fncel.2024.1432359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background Beyond the signature amyloid-beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been shown to exhibit dysregulated metabolic signaling through insulin and insulin-like growth factor (IGF) networks that crosstalk with the mechanistic target of rapamycin (mTOR). Its broad impact on brain structure and function suggests that mTOR is likely an important therapeutic target for AD. Objective This study characterizes temporal lobe (TL) mTOR signaling abnormalities in a rat model of sporadic AD neurodegeneration. Methods Long Evans rats were given intracerebroventricular injections of streptozotocin (ic-STZ) or saline (control), and 4 weeks later, they were administered neurobehavioral tests followed by terminal harvesting of the TLs for histopathological study and measurement of AD biomarkers, neuroinflammatory/oxidative stress markers, and total and phosphorylated insulin/IGF-1-Akt-mTOR pathway signaling molecules. Results Rats treated with ic-STZ exhibited significantly impaired performance on Rotarod (RR) and Morris Water Maze (MWM) tests, brain atrophy, TL and hippocampal neuronal and white matter degeneration, and elevated TL pTau, AβPP, Aβ, AChE, 4-HNE, and GAPDH and reduced ubiquitin, IL-2, IL-6, and IFN-γ immunoreactivities. In addition, ic-STZ reduced TL pY1135/1136-IGF-1R, Akt, PTEN, pS380-PTEN, pS2448-mTOR, p70S6K, pT412-p70S6K, p/T-pT412-p70S6K, p/T-Rictor, and p/T-Raptor. Conclusion Experimental ic-STZ-induced sporadic AD-type neurodegeneration with neurobehavioral dysfunctions associated with inhibition of mTOR signaling networks linked to energy metabolism, plasticity, and white matter integrity.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Medicine, Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women and Infants Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
3
|
Balcerek E, Włodkowska U, Czajkowski R. FOS mapping reveals two complementary circuits for spatial navigation in mouse. Sci Rep 2024; 14:21252. [PMID: 39261637 PMCID: PMC11391074 DOI: 10.1038/s41598-024-72272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Here, we show that during continuous navigation in a dynamic external environment, mice are capable of developing a foraging strategy based exclusively on changing distal (allothetic) information and that this process may involve two alternative components of the spatial memory circuit: the hippocampus and retrosplenial cortex. To this end, we designed a novel custom apparatus and implemented a behavioral protocol based on the figure-8-maze paradigm with two goal locations associated with distinct contexts. We assessed whether mice are able to learn to retrieve a sequence of rewards guided exclusively by the changing context. We found out that training mice in the apparatus leads to change in strategy from the internal tendency to alternate into navigation based exclusively on visual information. This effect could be achieved using two different training protocols: prolonged alternation training, or a flexible protocol with unpredictable turn succession. Based on the c-FOS mapping we also provide evidence of opposing levels of engagement of hippocampus and retrosplenial cortex after training of mice in these two different regimens. This supports the hypothesis of the existence of parallel circuits guiding spatial navigation, one based on the well-described hippocampal representation, and another, RSC-dependent.
Collapse
Affiliation(s)
- Edyta Balcerek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Urszula Włodkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Rafał Czajkowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
4
|
Wang Y, Men X, Huang X, Qiu X, Wang W, Zhou J, Zhou Z. Unraveling the signaling network between dysregulated microRNA and mRNA expression in sevoflurane-induced developmental neurotoxicity in rat. Heliyon 2024; 10:e33333. [PMID: 39027541 PMCID: PMC11255675 DOI: 10.1016/j.heliyon.2024.e33333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Research has indicated that general anesthesia may cause neuroapoptosis and long-term cognitive dysfunction in developing animals, however, the precise mechanisms orchestrating these outcomes remain inadequately elucidated within scholarly discourse. The purpose of this study was to investigate the impact of sevoflurane on the hippocampus of developing rats by analyzing the changes in microRNA and mRNA and their interactions. Rats were exposed to sevoflurane for 4 h on their seventh day after birth, and the hippocampus was collected for analysis of neuroapoptosis by Western blot and immunohistochemistry. High-throughput sequencing was conducted to analyze the variances in miRNA and mRNA expression levels, and the Morris water maze was employed to assess long-term memory in rats exposed to sevoflurane after 8 weeks. The results showed that sevoflurane exposure led to dysregulation of 5 miRNAs and 306 mRNAs in the hippocampus. Bioinformatic analysis revealed that these dysregulated miRNA-mRNA target pairs were associated with pathological neurodevelopment and developmental disorders, such as regulation of axonogenesis, regulation of neuron projection development, regulation of neuron differentiation, transmission of nerve impulse, and neuronal cell body. Further analysis showed that these miRNAs formed potential network interactions with 44 mRNAs, and two important nodes were identified, miR-130b-5p and miR-449c-5p. Overall, this study suggests that the dysregulation of the miRNA-mRNA signaling network induced by sevoflurane may contribute to neurodevelopmental toxicity in the hippocampus of rats and be associated with long-term cognitive dysfunction.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Endocrinology, Xixi Hospital of Hangzhou (Affiliated Hangzhou Xixi Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Xin Men
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Xiaodong Huang
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Xiaoxiao Qiu
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Weilong Wang
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Jin Zhou
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Zhenfeng Zhou
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| |
Collapse
|
5
|
Lazarova M, Tsvetanova E, Georgieva A, Stefanova M, Uzunova D, Denev P, Vassileva V, Tasheva K. Extracts of Sideritis scardica and Clinopodium vulgare Alleviate Cognitive Impairments in Scopolamine-Induced Rat Dementia. Int J Mol Sci 2024; 25:1840. [PMID: 38339117 PMCID: PMC10855470 DOI: 10.3390/ijms25031840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Sideritis scardica Griseb. and Clinopodium vulgare L., belonging to the Lamiaceae family, are rich in terpenoids and phenolics and exhibit various pharmacological effects, including antioxidant, anti-inflammatory and anti-cancer activities. While the memory-enhancing impacts of S. scardica are well documented, the cognitive benefits of C. vulgare remain unexplored. This study assessed the potential effect of C. vulgare on learning and memory in healthy and scopolamine (Sco)-induced memory-impaired male Wistar rats, comparing it with the effects of S. scardica. Over a 21-day period, rats orally received extracts of cultivated S. scardica (200 mg/kg) and C. vulgare (100 mg/kg), either individually or in combination, with administration starting 10 days before and continuing 11 days simultaneously with Sco injection at a dose of 2 mg/kg intraperitoneally. The results showed that both extracts effectively mitigated Sco-induced memory impairment. Their combination significantly improved recognition memory and maintained monoaminergic function. S. scardica excelled in preserving spatial working memory, while C. vulgare exhibited comparable retention of recognition memory, robust antioxidant activity and acetylcholinesterase inhibitory activity. The extracts alleviated Sco-induced downregulation of p-CREB/BDNF signaling, suggesting neuroprotective mechanisms. The extract combination positively affected most of the Sco-induced impairments, underscoring the potential for further investigation of these extracts for therapeutic development.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria; (M.L.); (E.T.); (A.G.); (M.S.); (D.U.)
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria; (M.L.); (E.T.); (A.G.); (M.S.); (D.U.)
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria; (M.L.); (E.T.); (A.G.); (M.S.); (D.U.)
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria; (M.L.); (E.T.); (A.G.); (M.S.); (D.U.)
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria; (M.L.); (E.T.); (A.G.); (M.S.); (D.U.)
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Valya Vassileva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria;
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria;
| |
Collapse
|
6
|
Kessler K, Giannisis A, Bial G, Foquet L, Nielsen HM, Raber J. Behavioral and cognitive performance of humanized APOEε3/ε3 liver mice in relation to plasma apolipoprotein E levels. Sci Rep 2023; 13:1728. [PMID: 36720957 PMCID: PMC9889814 DOI: 10.1038/s41598-023-28165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
Plasma apolipoprotein E levels were previously associated with the risk of developing Alzheimer's disease (AD), levels of cerebrospinal fluid AD biomarkers, cognition and imaging brain measures. Outside the brain, the liver is the primary source of apoE and liver transplantation studies have demonstrated that liver-derived apoE does not cross the blood-brain-barrier. How hepatic apoE may be implicated in behavioral and cognitive performance is not clear. In the current study, we behaviorally tested FRGN mice with humanized liver harboring the ε3/ε3 genotype (E3-human liver (HL)) and compared their behavioral and cognitive performance with that of age-matched ε3/ε3 targeted replacement (E3-TR) mice, the latter produces human apoE3 throughout the body whereas the E3-HL mice endogenously produce human apoE3 only in the liver. We also compared the liver weights and plasma apoE levels, and assessed whether plasma apoE levels were correlated with behavioral or cognitive measures in both models. E3-HL were more active but performed cognitively worse than E3-TR mice. E3-HL mice moved more in the open field containing objects, showed higher activity levels in the Y maze, showed higher activity levels during the baseline period in the fear conditioning test than E3-TR mice, and swam faster than E3-TR mice during training to locate the visible platform in the water maze. However, E3-HL mice showed reduced spatial memory retention in the water maze and reduced fear learning and contextual and cued fear memory than E3-TR mice. Liver weights were greater in E3-HL than E3-TR mice and sex-dependent only in the latter model. Plasma apoE3 levels were similar to those found in humans and comparable in female and male E3-TR mice but higher in female E3-HL mice. Finally, we found correlations between plasma apoE levels and behavioral and cognitive measures which were predominantly model-dependent. Our study demonstrates mouse-model dependent associations between plasma apoE levels, behavior and cognition in an 'AD-neutral' setting and suggests that a humanized liver might be sufficient to induce mouse behavioral and cognitive phenotypes.
Collapse
Affiliation(s)
- Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Andreas Giannisis
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Greg Bial
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | | | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden.
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA. .,Departments of Neurology and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
7
|
Hippocampus-sensitive and striatum-sensitive learning one month after morphine or cocaine exposure in male rats. Pharmacol Biochem Behav 2022; 217:173392. [PMID: 35513118 PMCID: PMC9796089 DOI: 10.1016/j.pbb.2022.173392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022]
Abstract
These experiments examined whether morphine and cocaine alter the balance between hippocampal and striatal memory systems measured long after drug exposure. Male rats received injections of morphine (5 mg/kg), cocaine (20 mg/kg), or saline for five consecutive days. One month later, rats were trained to find food on a hippocampus-sensitive place task or a striatum-sensitive response task. Relative to saline controls, morphine-treated rats exhibited impaired place learning but enhanced response learning; prior cocaine exposure did not significantly alter learning on either task. Another set of rats was trained on a dual-solution T-maze that can be solved with either place or response strategies. While a majority (67%) of control rats used place solutions, morphine treatment one month prior resulted in the exclusive use of response solutions (100%). Prior cocaine treatment did not significantly alter strategy selection. Molecular markers related to learning and drug abuse were measured in the hippocampus and striatum one month after drug exposure in behaviorally untested rats. Protein levels of glial-fibrillary acidic protein (GFAP), an intermediate filament specific to astrocytes, increased significantly in the hippocampus after morphine exposure, but not after cocaine exposure. Exposure to morphine or cocaine did not significantly change levels of brain-derived neurotrophic factor (BDNF) or a downstream target of BDNF signaling, glycogen synthase kinase 3β (GSK3β), in the hippocampus or striatum. Thus, exposure to morphine resulted in a long-lasting shift from hippocampal toward striatal dominance during learning, an effect that may be associated with lasting alterations in hippocampal astrocytes. Cocaine produced changes in the same direction, suggesting that use of a higher dose or longer duration of exposure might produce effects comparable to those seen with morphine.
Collapse
|
8
|
Homans C, Yalcin EB, Tong M, Gallucci G, Bautista D, Moriel N, de la Monte S. Therapeutic Effects of Myriocin in Experimental Alcohol-Related Neurobehavioral Dysfunction and Frontal Lobe White Matter Biochemical Pathology. JOURNAL OF BEHAVIORAL AND BRAIN SCIENCE 2022; 12:23-42. [PMID: 36815096 PMCID: PMC9942847 DOI: 10.4236/jbbs.2022.122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background & Objective Chronic excessive alcohol consumption causes white matter degeneration with myelin loss and impaired neuronal conductivity. Subsequent rarefaction of myelin accounts for the sustained deficits in cognition, learning, and memory. Correspondingly, chronic heavy or repeated binge alcohol exposures in humans and experimental models alter myelin lipid composition leading to build-up of ceramides which can be neurotoxic and broadly inhibitory to brain functions. Methods This study examined the effects of chronic + binge alcohol exposures (8 weeks) and intervention with myriocin, a ceramide inhibitor, on neurobehavioral functions (Open Field, Novel Object Recognition, and Morris Water Maze tests) and frontal lobe white matter myelin lipid biochemical pathology in an adult Long-Evans rat model. Results The ethanol-exposed group had significant deficits in executive functions with increased indices of anxiety and impairments in spatial learning acquisition. Myriocin partially remediated these effects of ethanol while not impacting behavior in the control group. Ethanol-fed rats had significantly smaller brains with broadly reduced expression of sulfatides and reduced expression of two of the three sphingomyelins detected in frontal white matter. Myriocin partially resolved these effects corresponding with improvements in neurobehavioral function. Conclusion Therapeutic strategies that support cerebral white matter myelin expression of sulfatide and sphingomyelin may help remediate cognitive-behavioral dysfunction following chronic heavy alcohol consumption in humans.
Collapse
Affiliation(s)
- Camilla Homans
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Emine B. Yalcin
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA,Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Gina Gallucci
- Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - David Bautista
- Warren Alpert Medical School of Brown University, Providence, RI, USA,Brown University, Providence, RI, USA
| | - Natalia Moriel
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne de la Monte
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA,Warren Alpert Medical School of Brown University, Providence, RI, USA,Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Women and Infants Hospital of Rhode Island, Providence VA Medical Center, Providence, RI, USA,
| |
Collapse
|
9
|
Pantoni MM, Kim JL, Van Alstyne KR, Anagnostaras SG. MDMA and memory, addiction, and depression: dose-effect analysis. Psychopharmacology (Berl) 2022; 239:935-949. [PMID: 35179622 PMCID: PMC8891111 DOI: 10.1007/s00213-022-06086-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
RATIONALE ±3,4-Methylenedioxymethamphetamine (MDMA) is a recreational drug that shows substantial promise as a psychotherapeutic agent. Still, there is some concern regarding its behavioral toxicity, and its dose-effect relationship is poorly understood. We previously explored the role of dose in the cognitive effects of MDMA in a systematic review of existing literature and found no evidence in animals that MDMA impairs memory at low doses (< 3 mg/kg) but mixed results at high doses (≥ 3 mg/kg). Since this review comprised mostly of single-dose studies and an assortment of methodologies, an empirical dose-ranging study on this topic is warranted. OBJECTIVES The current study aims to evaluate the conclusion from our systematic review that 3 mg/kg may be the threshold for MDMA-induced amnesia, and to further understand the dose-effect relationship of MDMA on behavioral assays of memory, addiction, and depression. METHODS We systematically examined the effects of 0.01 to 10 mg/kg MDMA on Pavlovian fear conditioning; behavioral sensitization, conditioned place preference, and conditioned responding; and the Porsolt forced swim test in mice. RESULTS High doses of MDMA (≥ 3 mg/kg) produced amnesia of fear conditioning memory, some evidence of an addictive potential, and antidepressant effects, while low doses of MDMA (≤ 1 mg/kg) had no effect on these behaviors. CONCLUSIONS The present dose-ranging study provides further evidence that 3 mg/kg is the threshold for MDMA-induced amnesia. These findings, in addition to our systematic review, demonstrate that careful selection of MDMA dose is critical. High doses (≥ 3 mg/kg) should likely be avoided due to evidence that they can produce amnesia and addiction. Conversely, there is little evidence to suggest that low doses, which are usually administered in clinical studies (approximately 1-2 mg/kg), will lead to these same adverse effects. Ultra-low doses (< 1 mg/kg) are likely even safer and should be investigated for therapeutic effects in future studies.
Collapse
Affiliation(s)
- Madeline M. Pantoni
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA ,grid.266102.10000 0001 2297 6811Translational Psychedelic Research Program, Department of Psychiatry and Behavioral Sciences, University of California San Francisco, CA San Francisco, USA
| | - Jinah L. Kim
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA
| | - Kaitlin R. Van Alstyne
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA
| | - Stephan G. Anagnostaras
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Program in Neurosciences, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
10
|
Pyk2 in dorsal hippocampus plays a selective role in spatial memory and synaptic plasticity. Sci Rep 2021; 11:16357. [PMID: 34381140 PMCID: PMC8358019 DOI: 10.1038/s41598-021-95813-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Pyk2 is a Ca2+-activated non-receptor tyrosine kinase enriched in the forebrain, especially in pyramidal neurons of the hippocampus. Previous reports suggested its role in hippocampal synaptic plasticity and spatial memory but with contradictory findings possibly due to experimental conditions. Here we address this issue and show that novel object location, a simple test of spatial memory induced by a single training session, is altered in Pyk2 KO mice and that re-expression of Pyk2 in the dorsal hippocampus corrects this deficit. Bilateral targeted deletion of Pyk2 in dorsal hippocampus CA1 region also alters novel object location. Long term potentiation (LTP) in CA1 is impaired in Pyk2 KO mice using a high frequency stimulation induction protocol but not with a theta burst protocol, explaining differences between previous reports. The same selective LTP alteration is observed in mice with Pyk2 deletion in dorsal hippocampus CA1 region. Thus, our results establish the role of Pyk2 in specific aspects of spatial memory and synaptic plasticity and show the dependence of the phenotype on the type of experiments used to reveal it. In combination with other studies, we provide evidence for a selective role of non-receptor tyrosine kinases in specific aspects of hippocampal neurons synaptic plasticity.
Collapse
|
11
|
Chiodi V, Domenici MR, Biagini T, De Simone R, Tartaglione AM, Di Rosa M, Lo Re O, Mazza T, Micale V, Vinciguerra M. Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB J 2021; 35:e21793. [PMID: 34320234 DOI: 10.1096/fj.202100569r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Gene expression and epigenetic processes in several brain regions regulate physiological processes such as cognitive functions and social behavior. MacroH2A1.1 is a ubiquitous variant of histone H2A that regulates cell stemness and differentiation in various organs. Whether macroH2A1.1 has a modulatory role in emotional behavior is unknown. Here, we employed macroH2A1.1 knock-out (-/- ) mice to perform a comprehensive battery of behavioral tests, and an assessment of hippocampal synaptic plasticity (long-term potentiation) accompanied by whole hippocampus RNA sequencing. MacroH2A1.1-/- mice exhibit a stunningly enhancement both of sociability and of active stress-coping behavior, reflected by the increased social behavior in social activity tests and higher mobility time in the forced swim test, respectively. They also display an increased hippocampal synaptic plasticity, accompanied by significant neurotransmission transcriptional networks changes. These results suggest that systemic depletion of histone macroH2A1.1 supports an epigenetic control necessary for hippocampal function and social behavior.
Collapse
Affiliation(s)
- Valentina Chiodi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Rosaria Domenici
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Roberta De Simone
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Maria Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Vincenzo Micale
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.,Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic.,ERA Chair in Translational Stem Cell Biology, Medical University-Varna, Varna, Bulgaria.,Division of Medicine, University College London (UCL), London, UK
| |
Collapse
|
12
|
Buatois A, Gerlai R. Elemental and Configural Associative Learning in Spatial Tasks: Could Zebrafish be Used to Advance Our Knowledge? Front Behav Neurosci 2020; 14:570704. [PMID: 33390911 PMCID: PMC7773606 DOI: 10.3389/fnbeh.2020.570704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Spatial learning and memory have been studied for several decades. Analyses of these processes pose fundamental scientific questions but are also relevant from a biomedical perspective. The cellular, synaptic and molecular mechanisms underlying spatial learning have been intensively investigated, yet the behavioral mechanisms/strategies in a spatial task still pose unanswered questions. Spatial learning relies upon configural information about cues in the environment. However, each of these cues can also independently form part of an elemental association with the specific spatial position, and thus spatial tasks may be solved using elemental (single CS and US association) learning. Here, we first briefly review what we know about configural learning from studies with rodents. Subsequently, we discuss the pros and cons of employing a relatively novel laboratory organism, the zebrafish in such studies, providing some examples of methods with which both elemental and configural learning may be explored with this species. Last, we speculate about future research directions focusing on how zebrafish may advance our knowledge. We argue that zebrafish strikes a reasonable compromise between system complexity and practical simplicity and that adding this species to the studies with laboratory rodents will allow us to gain a better understanding of both the evolution of and the mechanisms underlying spatial learning. We conclude that zebrafish research will enhance the translational relevance of our findings.
Collapse
Affiliation(s)
- Alexis Buatois
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Vegh C, Stokes K, Ma D, Wear D, Cohen J, Ray SD, Pandey S. A Bird's-Eye View of the Multiple Biochemical Mechanisms that Propel Pathology of Alzheimer's Disease: Recent Advances and Mechanistic Perspectives on How to Halt the Disease Progression Targeting Multiple Pathways. J Alzheimers Dis 2020; 69:631-649. [PMID: 31127770 PMCID: PMC6598003 DOI: 10.3233/jad-181230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons consume the highest amount of oxygen, depend on oxidative metabolism for energy, and survive for the lifetime of an individual. Therefore, neurons are vulnerable to death caused by oxidative-stress, accumulation of damaged and dysfunctional proteins and organelles. There is an exponential increase in the number of patients diagnosed with neurodegenerative diseases such as Alzheimer's (AD) as the number of elderly increases exponentially. Development of AD pathology is a complex phenomenon characterized by neuronal death, accumulation of extracellular amyloid-β plaques and neurofibrillary tangles, and most importantly loss of memory and cognition. These pathologies are most likely caused by mechanisms including oxidative stress, mitochondrial dysfunction/stress, accumulation of misfolded proteins, and defective organelles due to impaired proteasome and autophagy mechanisms. Currently, there are no effective treatments to halt the progression of this disease. In order to treat this complex disease with multiple biochemical pathways involved, a complex treatment regimen targeting different mechanisms should be investigated. Furthermore, as AD is a progressive disease-causing morbidity over many years, any chemo-modulator for treatment must be used over long period of time. Therefore, treatments must be safe and non-interfering with other processes. Ideally, a treatment like medicinal food or a supplement that can be taken regularly without any side effect capable of reducing oxidative stress, stabilizing mitochondria, activating autophagy or proteasome, and increasing energy levels of neurons would be the best solution. This review summarizes progress in research on different mechanisms of AD development and some of the potential therapeutic development strategies targeting the aforementioned pathologies.
Collapse
Affiliation(s)
- Caleb Vegh
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Kyle Stokes
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Dennis Ma
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Darcy Wear
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Jerome Cohen
- Department of Psychology University of Windsor, Ontario, Canada
| | - Sidhartha D Ray
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy and School of Medicine, Manhattan, NY, USA
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| |
Collapse
|
14
|
Gerlai R. Evolutionary conservation, translational relevance and cognitive function: The future of zebrafish in behavioral neuroscience. Neurosci Biobehav Rev 2020; 116:426-435. [DOI: 10.1016/j.neubiorev.2020.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 01/04/2023]
|
15
|
Nicolas S, Léime CSÓ, Hoban AE, Hueston CM, Cryan JF, Nolan YM. Enduring effects of an unhealthy diet during adolescence on systemic but not neurobehavioural measures in adult rats. Nutr Neurosci 2020; 25:657-669. [PMID: 32723167 DOI: 10.1080/1028415x.2020.1796041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Adolescence is an important stage of maturation for various brain structures. It is during this time therefore that the brain may be more vulnerable to environmental factors such as diet that may influence mood and memory. Diets high in fat and sugar (termed a cafeteria diet) during adolescence have been shown to negatively impact upon cognitive performance, which may be reversed by switching to a standard diet during adulthood. Consumption of a cafeteria diet increases both peripheral and central levels of interleukin-1β (IL-1β), a pro-inflammatory cytokine which is also implicated in cognitive impairment during the ageing process. It is unknown whether adolescent exposure to a cafeteria diet potentiates the negative effects of IL-1β on cognitive function during adulthood.Methods: Male Sprague-Dawley rats consumed a cafeteria diet during adolescence after which time they received a lentivirus injection in the hippocampus to induce chronic low-grade overexpression of IL-1β. After viral integration, metabolic parameters, circulating and central pro-inflammatory cytokine levels, and cognitive behaviours were assessed.Results: Our data demonstrate that rats fed the cafeteria diet exhibit metabolic dysregulations in adulthood, which were concomitant with low-grade peripheral and central inflammation. Overexpression of hippocampal IL-1β in adulthood impaired spatial working memory. However, adolescent exposure to a cafeteria diet, combined with or without hippocampal IL-1β in adulthood did not induce any lasting cognitive deficits when the diet was replaced with a standard diet in adulthood. Discussion: These data demonstrate that cafeteria diet consumption during adolescence induces metabolic and inflammatory changes, but not behavioural changes in adulthood.
Collapse
Affiliation(s)
- Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Ciarán S Ó Léime
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alan E Hoban
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Abstract
Psychiatric and cognitive disturbances are the most common comorbidities of epileptic disorders in children. The successful treatment of these comorbidities faces many challenges including their etiologically heterogonous nature. Translational neurobehavioral research in age-tailored and clinically relevant rodent seizure models offers a controlled setting to investigate emotional and cognitive behavioral disturbances, their causative factors, and potentially novel treatment interventions. In this review, we propose a conceptual framework that provides a nonsubjective approach to rodent emotional behavioral testing with a focus on the clinically relevant outcome of behavioral response adaptability. We also describe the battery of neurobehavioral tests that we tailored to seizure models with prominent amygdalo-hippocampal involvement, including testing panels for anxiety-like, exploratory, and hyperactive behaviors (the open-field and light-dark box tests), depressive-like behaviors (the forced swim test), and visuospatial navigation (Morris water maze). The review also discusses the modifications we introduced to active avoidance testing in order to simultaneously test auditory and hippocampal-dependent emotionally relevant learning and memory. When interpreting the significance and clinical relevance of the behavioral responses obtained from a given testing panel, it is important to avoid a holistic disease-based approach as a specific panel may not necessarily mirror a disease entity. The analysis of measurable behavioral responses has to be performed in the context of outcomes obtained from multiple related and complementary neurobehavioral testing panels. Behavioral testing is also complemented by mechanistic electrophysiological and molecular investigations.
Collapse
|
17
|
Noda S, Sato S, Fukuda T, Tada N, Uchiyama Y, Tanaka K, Hattori N. Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice. Neurobiol Dis 2019; 136:104717. [PMID: 31846738 DOI: 10.1016/j.nbd.2019.104717] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by the loss of nigrostriatal dopamine neurons. PARK2 mutations cause early-onset Parkinson's disease (EO-PD). PARK2 encodes an E3 ubiquitin ligase, Parkin. Extensive in vitro studies and cell line characterization have shown that Parkin is required for mitophagy, but the physiological pathology and context of the pathway remain unknown. In general, monogenic Parkin knockout mice do not accurately reflect human PD symptoms and exhibit no signs of dopaminergic (DA) neurodegeneration. To assess the critical role of Parkin-mediated mitophagy in DA neurons, we characterized Parkin knockout mice over a long period of time. At the age of 110 weeks, Parkin knockout mice exhibited locomotor impairments, including hindlimb defects and neuronal loss. In their DA neurons, fragmented mitochondria with abnormal internal structures accumulated. The age-related motor dysfunction and damaged mitochondria pathology in Parkin-deficient mice suggest that impairment of mitochondrial clearance may underlie the pathology of PD.
Collapse
Affiliation(s)
- Sachiko Noda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Neuropathology, The Jikei University, School of Medicine, Tokyo 105-8461, Japan
| | - Norihiro Tada
- Atopy Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
18
|
Kim MJ, Lee RU, Oh J, Choi JE, Kim H, Lee K, Hwang SK, Lee JH, Lee JA, Kaang BK, Lim CS, Lee YS. Spatial Learning and Motor Deficits in Vacuolar Protein Sorting-associated Protein 13b ( Vps13b) Mutant Mouse. Exp Neurobiol 2019; 28:485-494. [PMID: 31495077 PMCID: PMC6751864 DOI: 10.5607/en.2019.28.4.485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/04/2023] Open
Abstract
Vacuolar protein sorting-associated protein 13B (VPS13B), also known as COH1, is one of the VPS13 family members which is involved in transmembrane transport, Golgi integrity, and neuritogenesis. Mutations in the VPS13B gene are associated with Cohen syndrome and other cognitive disorders such as intellectual disabilities and autism spectrum disorder (ASD). However, the patho-physiology of VPS13B-associated cognitive deficits is unclear, in part, due to the lack of animal models. Here, we generated a Vps13b exon 2 deletion mutant mouse and analyzed the behavioral phenotypes. We found that Vps13b mutant mice showed reduced activity in open field test and significantly shorter latency to fall in the rotarod test, suggesting that the mutants have motor deficits. In addition, we found that Vps13b mutant mice showed deficits in spatial learning in the hidden platform version of the Morris water maze. The Vps13b mutant mice were normal in other behaviors such as anxiety-like behaviors, working memory and social behaviors. Our results suggest that Vps13b mutant mice may recapitulate key clinical symptoms in Cohen syndrome such as intellectual disability and hypotonia. Vps13b mutant mice may serve as a useful model to investigate the pathophysiology of VPS13B-associated disorders.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Ro Un Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jihae Oh
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Ja Eun Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyopil Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyungmin Lee
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, Daegu 41944, Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Jae-Hyung Lee
- Department of Life and Nanopharmaceutical Sciences, Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Jin-A Lee
- Department of Biotechnology and Biological Sciences, Hannam University, Daejeon 34430, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Chae-Seok Lim
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Yong-Seok Lee
- Department of Physiology, Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
19
|
Tang-Schomer MD, Kaplan DL, Whalen MJ. Film interface for drug testing for delivery to cells in culture and in the brain. Acta Biomater 2019; 94:306-319. [PMID: 30836199 DOI: 10.1016/j.actbio.2019.02.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
Abstract
Brain access remains a major challenge in drug testing. The nearly 'impermeable' blood-brain-barrier (BBB) prevents most drugs from gaining access to brain cells via systematic intravenous (IV) injection. In this study, silk fibroin films were used as drug carrier as well as cell culture substrate to simulate the in vivo interface between drug reservoir and brain cells for testing drug delivery in the brain. In in vitro studies, film-released arabinofuranosyl cytidine (AraC), a mitotic inhibitor, selectively killed glial cells in film-supported mixed neural cell cultures; with widened dosage windows for drug efficacy and tolerance compared to drugs in solution. In the brain, the presence of silk films was well tolerated with no signs of acute neuroinflammation, cell death, or altered brain function. Topical application of silk films on the cortical surface delivered Evans blue, a BBB-impenetrable fluorescent marker, through the intact dura matter into the parenchyma of the ipsilateral hemisphere as deep as the hippocampal region, but not the contralateral hemisphere. In a mouse traumatic brain injury (TBI) model, necrosis markers by film delivery accessed more cells in the lesion core than by con-current IV delivery; whereas the total coverage including the peri-lesional area appeared to be comparable between the two routes. The complementary distribution patterns of co-delivered markers provided direct evidence of the partial confinement of either route's access to brain cells by a restrictive zone near the lesion border. Finally, film-delivered necrostatin-1 reduced overall cell necrosis by approximately 40% in the TBI model. These findings from representative small molecules of delivery route-dependent drug access are broadly applicable for evaluating drug actions both in vitro and in vivo. Combined with its demonstrated role of supporting neuron-electrode interfaces, the film system can be further developed for testing a range of neuromodulation approaches (i.e., drug delivery, electrical stimulation, cell graft) in the brain. STATEMENT OF SIGNIFICANCE: This study demonstrated that silk fibroin films can be used to evaluate drug actions both in vitro and in vivo, partially overcoming the significant delivery barriers of the brain. This system can be adapted for efficient drug access to specific brain regions and/or cell types. The film system can be further developed for testing a range of interventions with drugs, electrical signals or cell graft for analysis of treatment outcomes including cell responses and brain function.
Collapse
Affiliation(s)
- Min D Tang-Schomer
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; University of Connecticut Health Center & Connecticut Children's Medical Center, Department of Pediatrics, Farmington, CT 06032, USA.
| | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, Medford, MA 02155, United States.
| | - Michael J Whalen
- Harvard Medical School, Acute Brain Injury Research Laboratory, Massachusetts General Hospital for Children, Charlestown, MA 02129, United States.
| |
Collapse
|
20
|
Kenny EM, Fidan E, Yang Q, Anthonymuthu TS, New LA, Meyer EA, Wang H, Kochanek PM, Dixon CE, Kagan VE, Bayır H. Ferroptosis Contributes to Neuronal Death and Functional Outcome After Traumatic Brain Injury. Crit Care Med 2019; 47:410-418. [PMID: 30531185 PMCID: PMC6449247 DOI: 10.1097/ccm.0000000000003555] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Traumatic brain injury triggers multiple cell death pathways, possibly including ferroptosis-a recently described cell death pathway that results from accumulation of 15-lipoxygenase-mediated lipid oxidation products, specifically oxidized phosphatidylethanolamine containing arachidonic or adrenic acid. This study aimed to investigate whether ferroptosis contributed to the pathogenesis of in vitro and in vivo traumatic brain injury, and whether inhibition of 15-lipoxygenase provided neuroprotection. DESIGN Cell culture study and randomized controlled animal study. SETTING University research laboratory. SUBJECTS HT22 neuronal cell line and adult male C57BL/6 mice. INTERVENTIONS HT22 cells were subjected to pharmacologic induction of ferroptosis or mechanical stretch injury with and without administration of inhibitors of ferroptosis. Mice were subjected to sham or controlled cortical impact injury. Injured mice were randomized to receive vehicle or baicalein (12/15-lipoxygenase inhibitor) at 10-15 minutes postinjury. MEASUREMENTS AND MAIN RESULTS Pharmacologic inducers of ferroptosis and mechanical stretch injury resulted in cell death that was rescued by prototypical antiferroptotic agents including baicalein. Liquid chromatography tandem-mass spectrometry revealed the abundance of arachidonic/adrenic-phosphatidylethanolamine compared with other arachidonic/adrenic acid-containing phospholipids in the brain. Controlled cortical impact resulted in accumulation of oxidized phosphatidylethanolamine, increased expression of 15-lipoxygenase and acyl-CoA synthetase long-chain family member 4 (enzyme that generates substrate for the esterification of arachidonic/adrenic acid into phosphatidylethanolamine), and depletion of glutathione in the ipsilateral cortex. Postinjury administration of baicalein attenuated oxidation of arachidonic/adrenic acid-containing-phosphatidylethanolamine, decreased the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling positive cells in the hippocampus, and improved spatial memory acquisition versus vehicle. CONCLUSIONS Biomarkers of ferroptotic death were increased after traumatic brain injury. Baicalein decreased ferroptotic phosphatidylethanolamine oxidation and improved outcome after controlled cortical impact, suggesting that 15-lipoxygenase pathway might be a valuable therapeutic target after traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Kenny
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Emin Fidan
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Qin Yang
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Tamil S. Anthonymuthu
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Lee Ann New
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Elizabeth A. Meyer
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Hong Wang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Hülya Bayır
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, 15213
| |
Collapse
|
21
|
Davidson TL, Jones S, Roy M, Stevenson RJ. The Cognitive Control of Eating and Body Weight: It's More Than What You "Think". Front Psychol 2019; 10:62. [PMID: 30814963 PMCID: PMC6381074 DOI: 10.3389/fpsyg.2019.00062] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, a great deal of research has established the importance of cognitive processes in the control of energy intake and body weight. The present paper begins by identifying several of these cognitive processes. We then summarize evidence from human and nonhuman animal models, which shows how excess intake of obesity-promoting Western diet (WD) may have deleterious effects on these cognitive control processes. Findings that these effects may be manifested as early-life deficits in cognitive functioning and may also be associated with the emergence of serious late-life cognitive impairment are described. Consistent with these possibilities, we review evidence, obtained primarily from rodent models, that consuming a WD is associated with the emergence of pathophysiologies in the hippocampus, an important brain substrate for learning, memory, and cognition. The implications of this research for mechanism are discussed within the context of a “vicious-cycle model,” which describes how eating a WD could impair hippocampal function, producing cognitive deficits that promote increased WD intake and body weight gain, which could contribute to further hippocampal dysfunction, cognitive decline, and excess eating and weight gain.
Collapse
Affiliation(s)
- Terry L Davidson
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| | - Sabrina Jones
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| | - Megan Roy
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| | | |
Collapse
|
22
|
Persistent therapeutic effect of a novel α5-GABA A receptor antagonist in rodent preclinical models of vascular cognitive impairment. Eur J Pharmacol 2018; 834:118-125. [PMID: 30012500 DOI: 10.1016/j.ejphar.2018.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/28/2023]
Abstract
This study examined the potential of the selective extra-synaptic α5-GABAA receptor inhibitor S44819 (Egis-13529) to improve cognitive performance in preclinical models of vascular cognitive impairment (VCI). Chronic hypoperfusion of the brain in mice was induced by permanent occlusion of the right common carotid artery (rUCO). rUCO induced impairments of cognitive function in the object recognition test (OR) and the rewarded T-maze (RTM). In both tests, a single oral treatment with S44819 (OR - 0.1-3 mg/kg, RTM - 1-3 mg/kg p.o.) significantly reduced the effect of rUCO. Long-term treatment with S44819 (1-10 mg/kg twice daily p.o. for 14 days), that was initiated 24 h after surgery and was followed by a 10- or 13-day wash-out period, fully prevented the decline of cognitive performance of rUCO mice. In rats, occlusion of the middle cerebral artery (MCA) for 30 min caused a significantly diminished performance in the OR. This was prevented by S44819 given p.o. 15 mg/kg twice daily for 8 days, starting 7 days after surgery and tested following a 7-day wash-out period. Taken together, S44819 markedly and stably improved reference and working memory impaired by rUCO in mice. In rats, the compound effectively suppressed the development of cognitive impairment after mild stroke. In conclusion, as longer-term administration led to a persistent reversal of the cognitive deficits, it appears that S44819 may have symptomatic, as well as disease-modifying effects in models of VCI. Proof of concept is therefore provided for testing S44819 in the therapy of VCI and post-stroke dementia in humans.
Collapse
|
23
|
TRIM9 Mediates Netrin-1-Induced Neuronal Morphogenesis in the Developing and Adult Hippocampus. J Neurosci 2018; 36:9513-5. [PMID: 27629703 DOI: 10.1523/jneurosci.1917-16.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022] Open
|
24
|
Logan S, Owen D, Chen S, Chen WJ, Ungvari Z, Farley J, Csiszar A, Sharpe A, Loos M, Koopmans B, Richardson A, Sonntag WE. Simultaneous assessment of cognitive function, circadian rhythm, and spontaneous activity in aging mice. GeroScience 2018; 40:123-137. [PMID: 29687240 DOI: 10.1007/s11357-018-0019-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/11/2018] [Indexed: 12/27/2022] Open
Abstract
Cognitive function declines substantially with age in both humans and animal models. In humans, this decline is associated with decreases in independence and quality of life. Although the methodology for analysis of cognitive function in human models is relatively well established, similar analyses in animal models have many technical issues (e.g., unintended experimenter bias, motivational issues, stress, and testing during the light phase of the light dark cycle) that limit interpretation of the results. These caveats, and others, potentially bias the interpretation of studies in rodents and prevent the application of current tests of learning and memory as part of an overall healthspan assessment in rodent models of aging. The goal of this study was to establish the methodology to assess cognitive function in aging animals that addresses many of these concerns. Here, we use a food reward-based discrimination procedure with minimal stress in C57Bl/6J male mice at 6, 21, and 27 months of age, followed by a reversal task to assess behavioral flexibility. Importantly, the procedures minimize issues related to between-experimenter confounds and are conducted during both the dark and light phases of the light dark cycle in a home-cage setting. During cognitive testing, we were able to assess multiple measures of spontaneous movement and diurnal activity in young and aged mice including, distance moved, velocity, and acceleration over a 90-h period. Both initial discrimination and reversal learning significantly decreased with age and, similar to rats and humans, not all old mice demonstrated impairments in learning with age. These results permitted classification of animals based on their cognitive status. Analysis of movement parameters indicated decreases in distance moved as well as velocity and acceleration with increasing age. Based on these data, we developed preliminary models indicating, as in humans, a close relationship exists between age-related movement parameters and cognitive ability. Our results provide a reliable method for assessing cognitive performance with minimal stress and simultaneously provide key information on movement and diurnal activity. These methods represent a novel approach to developing non-invasive healthspan measures in rodent models that allow standardization across laboratories.
Collapse
Affiliation(s)
- Sreemathi Logan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA.
| | - Daniel Owen
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Sixia Chen
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei-Jen Chen
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Julie Farley
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Amanda Sharpe
- College of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | | | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| |
Collapse
|
25
|
Kafkafi N, Agassi J, Chesler EJ, Crabbe JC, Crusio WE, Eilam D, Gerlai R, Golani I, Gomez-Marin A, Heller R, Iraqi F, Jaljuli I, Karp NA, Morgan H, Nicholson G, Pfaff DW, Richter SH, Stark PB, Stiedl O, Stodden V, Tarantino LM, Tucci V, Valdar W, Williams RW, Würbel H, Benjamini Y. Reproducibility and replicability of rodent phenotyping in preclinical studies. Neurosci Biobehav Rev 2018; 87:218-232. [PMID: 29357292 PMCID: PMC6071910 DOI: 10.1016/j.neubiorev.2018.01.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/13/2017] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
Abstract
The scientific community is increasingly concerned with the proportion of
published “discoveries” that are not replicated in subsequent
studies. The field of rodent behavioral phenotyping was one of the first to
raise this concern, and to relate it to other methodological issues: the complex
interaction between genotype and environment; the definitions of behavioral
constructs; and the use of laboratory mice and rats as model species for
investigating human health and disease mechanisms. In January 2015, researchers
from various disciplines gathered at Tel Aviv University to discuss these
issues. The general consensus was that the issue is prevalent and of concern,
and should be addressed at the statistical, methodological and policy levels,
but is not so severe as to call into question the validity and the usefulness of
model organisms as a whole. Well-organized community efforts, coupled with
improved data and metadata sharing, have a key role in identifying specific
problems and promoting effective solutions. Replicability is closely related to
validity, may affect generalizability and translation of findings, and has
important ethical implications.
Collapse
Affiliation(s)
| | | | | | - John C Crabbe
- Oregon Health & Science University, and VA Portland Health Care System, United States
| | | | | | | | | | | | | | | | | | - Natasha A Karp
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | - William Valdar
- University of North Carolina at Chapel Hill, United States
| | | | | | | |
Collapse
|
26
|
Pálvölgyi A, Móricz K, Pataki Á, Mihalik B, Gigler G, Megyeri K, Udvari S, Gacsályi I, Antoni FA. Loop F of the GABA A receptor alpha subunit governs GABA potency. Neuropharmacology 2018; 128:408-415. [DOI: 10.1016/j.neuropharm.2017.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022]
|
27
|
Rosenfeld CS, Shay DA, Vieira-Potter VJ. Cognitive Effects of Aromatase and Possible Role in Memory Disorders. Front Endocrinol (Lausanne) 2018; 9:610. [PMID: 30386297 PMCID: PMC6199361 DOI: 10.3389/fendo.2018.00610] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
Diverse cognitive functions in many vertebrate species are influenced by local conversion of androgens to 17β-estradiol (E2) by aromatase. This enzyme is highly expressed in various brain regions across species, with some inter-species variation in terms of regional brain expression. Since women with breast cancer and men and women with other disorders are often treated with aromatase inhibitors (AI), these populations might be especially vulnerable to cognitive deficits due to low neuroE2 synthesis, i.e., synthesis of E2 directly within the brain. Animal models have been useful in deciphering aromatase effects on cognitive functions. Consequences of AI administration at various life cycle stages have been assessed on auditory, song processing, and spatial memory in birds and various aspects of cognition in rodent models. Additionally, cognitive deficits have been described in aromatase knockout (ArKO) mice that systemically lack this gene throughout their lifespan. This review will consider evidence to date that AI treatment in male and female rodent models, birds, and humans results in cognitive impairments. How brain aromatase regulates cognitive function throughout the lifespan, and gaps in current knowledge will be considered, along with future directions to better define how aromatase might guide learning and memory from early development through the geriatric period. Better understanding the importance of E2 synthesis on neurobehavioral responses at various ages will likely aid in the discovery of therapeutic strategies to prevent potential cognitive deficits, including Alzheimer's Disease, in individuals treated with AI or those possessing CYP19 gene polymorphisms, as well as cognitive effects of normal aging that may be related to changes in brain aromatase activity.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
- *Correspondence: Cheryl S. Rosenfeld
| | - Dusti A. Shay
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Victoria J. Vieira-Potter
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Victoria J. Vieira-Potter
| |
Collapse
|
28
|
McGuiness JA, Scheinert RB, Asokan A, Stadler VC, Lee CS, Rani A, Kumar A, Foster TC, Ormerod BK. Indomethacin Increases Neurogenesis across Age Groups and Improves Delayed Probe Trial Difference Scores in Middle-Aged Rats. Front Aging Neurosci 2017; 9:280. [PMID: 28928652 PMCID: PMC5591789 DOI: 10.3389/fnagi.2017.00280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/11/2017] [Indexed: 01/20/2023] Open
Abstract
We tested whether indomethacin or rosiglitazone treatment could rejuvenate spatial ability and hippocampal neurogenesis in aging rats. Young (4 mo; n = 30), middle-aged (12 mo; n = 31), and aged (18 mo; n = 31) male Fischer 344 rats were trained and then tested in a rapid acquisition water maze task and then fed vehicle (500 μl strawberry milk), indomethacin (2.0 mg/ml), or rosiglitazone (8.0 mg/ml) twice daily for the remainder of the experiment. A week after drug treatment commenced, the rats were given 3 daily BrdU (50 mg/kg) injections to test whether age-related declines in neurogenesis were reversed. One week after the final BrdU injection (~2.5 weeks after the 1st water maze session), the rats were trained to a find novel hidden water maze platform location, tested on 15 min and 24 h probe trials and then killed 24 h later. During the first water maze session, young rats outperformed aged rats but all rats learned information about the hidden platform location. Middle-aged and aged rats exhibited better memory probe trial performances than young rats in the 2nd water maze session and indomethacin improved memory probe trial performances on the 2nd vs. 1st water maze session in middle-aged rats. Middle-aged rats with more new neurons had fewer phagocytic microglia and exhibited better hidden platform training trial performances on the 2nd water maze session. Regardless of age, indomethacin increased new hippocampal neuron numbers and both rosiglitazone and indomethacin increased subependymal neuroblasts/neuron densities. Taken together, our results suggest the feasibility of studying the effects of longer-term immunomodulation on age-related declines in cognition and neurogenesis.
Collapse
Affiliation(s)
- James A. McGuiness
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Rachel B. Scheinert
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Aditya Asokan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Vivien-Charlott Stadler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Christian S. Lee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Asha Rani
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Ashok Kumar
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Thomas C. Foster
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Brandi K. Ormerod
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| |
Collapse
|
29
|
Lei M, Shafique A, Shang K, Couttas TA, Zhao H, Don AS, Karl T. Contextual fear conditioning is enhanced in mice lacking functional sphingosine kinase 2. Behav Brain Res 2017. [DOI: 10.1016/j.bbr.2017.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Bessières B, Nicole O, Bontempi B. Assessing recent and remote associative olfactory memory in rats using the social transmission of food preference paradigm. Nat Protoc 2017; 12:1415-1436. [DOI: 10.1038/nprot.2017.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Gerlai R. Animated images in the analysis of zebrafish behavior. Curr Zool 2017; 63:35-44. [PMID: 29491961 PMCID: PMC5804150 DOI: 10.1093/cz/zow077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022] Open
Abstract
This invited review is based upon a recent oral paper I presented at the Virtual Reality Symposium of the 34th International Ethological Conference (2015, Cairns, Australia), and as such it describes studies conducted mainly in my own laboratory. It reviews how we utilized visual stimuli for inducing behavioral responses in the zebrafish with a focus on shoaling, group forming behavior. The zebrafish is gaining increasing popularity in neuroscience. With this interest, its behavior is also more frequently studied. One of the many advantages of the zebrafish over traditional laboratory rodents is that this species is diurnal, and it relies heavily upon its visual system. Thus, similarly to our own species, zebrafish respond to visual stimuli in a robust and easily quantifiable manner. For the past decade, we have been exploring how to use such visual stimuli, and have developed numerous paradigms with which we can induce and quantify a variety of behavioral responses, including shoaling. This review summarizes some of these studies, and discusses questions including whether one should use live fish as stimulus, whether and how one could present animated (moving images) of fish, and how one could optimize a range of stimulus presentation parameters to elicit the most robust responses in zebrafish. Although the zebrafish is a relative newcomer in ethology and behavioral neuroscience, and although many of our findings only represent the first steps in this research, our results suggest that the behavioral analysis of the zebrafish will have an important place in biomedical research.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, Rm CCT4004, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
32
|
Borralleras C, Mato S, Amédée T, Matute C, Mulle C, Pérez-Jurado LA, Campuzano V. Synaptic plasticity and spatial working memory are impaired in the CD mouse model of Williams-Beuren syndrome. Mol Brain 2016; 9:76. [PMID: 27485321 PMCID: PMC4971717 DOI: 10.1186/s13041-016-0258-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/29/2016] [Indexed: 01/22/2023] Open
Abstract
Mice heterozygous for a complete deletion (CD) equivalent to the most common deletion found in individuals with Williams-Beuren syndrome (WBS) recapitulate relevant features of the neurocognitive phenotype, such as hypersociability, along with some neuroanatomical alterations in specific brain areas. However, the pathophysiological mechanisms underlying these phenotypes still remain largely unknown. We have studied the synaptic function and cognition in CD mice using hippocampal slices and a behavioral test sensitive to hippocampal function. We have found that long-term potentiation (LTP) elicited by theta burst stimulation (TBS) was significantly impaired in hippocampal field CA1 of CD animals. This deficit might be associated with the observed alterations in spatial working memory. However, we did not detect changes in presynaptic function, LTP induction mechanisms or AMPA and NMDA receptor function. Reduced levels of Brain-derived neurotrophic factor (BDNF) were present in the CA1-CA3 hippocampal region of CD mice, which could account for LTP deficits in these mice. Taken together, these results suggest a defect of CA1 synapses in CD mice to sustain synaptic strength after stimulation. These data represent the first description of synaptic functional deficits in CD mice and further highlights the utility of the CD model to study the mechanisms underlying the WBS neurocognitive profile.
Collapse
Affiliation(s)
- Cristina Borralleras
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Susana Mato
- Department of Neuroscience, Neurotek-University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Zamudio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Thierry Amédée
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 - University of Bordeaux, F-33000, Bordeaux, France
| | - Carlos Matute
- Department of Neuroscience, Neurotek-University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Zamudio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 - University of Bordeaux, F-33000, Bordeaux, France
| | - Luis A Pérez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Victoria Campuzano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. .,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
33
|
Young MJ, Geiszler PC, Pardon MC. A novel role for the immunophilin FKBP52 in motor coordination. Behav Brain Res 2016; 313:97-110. [PMID: 27418439 DOI: 10.1016/j.bbr.2016.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/09/2016] [Accepted: 07/10/2016] [Indexed: 02/01/2023]
Abstract
FKBP52 is a ubiquitously distributed immunophilin that has been associated with wide-ranging functions in cell signalling as well as hormonal and stress responses. Amongst other pathways, it acts via complex-formation with corticosteroid receptors and has consequently been associated with stress- and age- related neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Reduced levels of FKBP52 have been linked to tau dysfunction and amyloid beta toxicity in AD. However, FKBP52's role in cognition and neurodegenerative disorder-like phenotypes remain to be elucidated. The present study aimed therefore at investigating the cognitive and behavioural effects of reduced FKBP52 levels of genetically modified mice during ageing. Female and male FKBP52(+/+), FKBP52(+/-) and FKBP52(-/-) mice were compared at two-, ten-, twelve-, fifteen- and eighteen-months-of-age in a series of behavioural tests covering specie-specific behaviour, motor activity and coordination, fear-, spatial and recognition memory as well as curiosity and emotionality. Whilst cognitively unimpaired, FKBP52(+/-) mice performed worse on an accelerating rotating rod than FKBP52(+/+) littermates across all age-groups suggesting that FKBP52 is involved in processes controlling motor coordination. This deficit did not exacerbate with age but did worsen with repeated testing; pointing towards a role for FKBP52 in learning of tasks requiring motor coordination abilities. This study contributes to the knowledge base of FKBP52's implication in neurodegenerative diseases by demonstrating that FKBP52 by itself does not directly affect cognition and may therefore rather play an indirect, modulatory role in the functional pathology of AD, whereas it directly affects motor coordination, an early sign of neurodegenerative damages to the brain.
Collapse
Affiliation(s)
- Matthew J Young
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Philippine C Geiszler
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Marie-Christine Pardon
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom.
| |
Collapse
|
34
|
Geiszler PC, Barron MR, Pardon MC. Impaired burrowing is the most prominent behavioral deficit of aging htau mice. Neuroscience 2016; 329:98-111. [PMID: 27167086 PMCID: PMC4915442 DOI: 10.1016/j.neuroscience.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 01/22/2023]
Abstract
htau mice exhibit robust deficits in food burrowing. Behavioral differences between htau and mtau−/− are age-dependent. Before 6 months of age, the htau phenotype is stronger than the mtau−/− phenotype. With aging, the htau phenotype is milder than the mtau−/− phenotype.
htau mice are deficient of murine tau but express all six human tau isoforms, leading to gradual tau misprocessing and aggregation in brain areas relevant to Alzheimer’s disease. While histopathological changes in htau mice have been researched in the past, we focused here on functional consequences of human tau accumulation. htau mice and their background controls – murine tau knock-out (mtau−/−) and C57Bl/6J mice – underwent a comprehensive trial battery to investigate species-specific behavior, locomotor activity, emotional responses, exploratory traits, spatial and recognition memory as well as acquisition, retention and extinction of contextual fear at two, four, six, nine and twelve months of age. In htau mice, tau pathology was already present at two months of age, whereas deficits in food burrowing and spatial working memory were first noted at four months of age. At later stages the presence of human tau on a mtau−/− background appeared to guard cognitive performance; as mtau−/− but not htau mice differed from C57Bl/6J mice in the food burrowing, spontaneous alternation and object discrimination tasks. Aging mtau−/− mice also exhibited increased body mass and locomotor activity. These data highlight that reduced food-burrowing performance was the most robust aspect of the htau phenotype with aging. htau and mtau−/− deficits in food burrowing pointed at the necessity of intact tau systems for daily life activities. While some htau and mtau−/− deficits overlap, age differences between the two genotypes may reflect distinct functional effects and compared to C57Bl/6J mice, the htau phenotype appeared stronger than the mtau−/− phenotype at young ages but milder with aging.
Collapse
Affiliation(s)
- Philippine Camilla Geiszler
- Neuroscience Group, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | - Matthew Richard Barron
- Neuroscience Group, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | - Marie-Christine Pardon
- Neuroscience Group, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
35
|
|
36
|
Gibb SL, Zhao Y, Potter D, Hylin MJ, Bruhn R, Baimukanova G, Zhao J, Xue H, Abdel-Mohsen M, Pillai SK, Moore AN, Johnson EM, Cox CS, Dash PK, Pati S. TIMP3 Attenuates the Loss of Neural Stem Cells, Mature Neurons and Neurocognitive Dysfunction in Traumatic Brain Injury. Stem Cells 2015; 33:3530-44. [PMID: 26299440 DOI: 10.1002/stem.2189] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) have been shown to have potent therapeutic effects in a number of disorders including traumatic brain injury (TBI). However, the molecular mechanism(s) underlying these protective effects are largely unknown. Herein we demonstrate that tissue inhibitor of matrix metalloproteinase-3 (TIMP3), a soluble protein released by MSCs, is neuroprotective and enhances neuronal survival and neurite outgrowth in vitro. In vivo in a murine model of TBI, intravenous recombinant TIMP3 enhances dendritic outgrowth and abrogates loss of hippocampal neural stem cells and mature neurons. Mechanistically we demonstrate in vitro and in vivo that TIMP3-mediated neuroprotection is critically dependent on activation of the Akt-mTORC1 pathway. In support of the neuroprotective effect of TIMP3, we find that intravenous delivery of recombinant TIMP3 attenuates deficits in hippocampal-dependent neurocognition. Taken together, our data strongly suggest that TIMP3 has direct neuroprotective effects that can mitigate the deleterious effects associated with TBI, an area with few if any therapeutic options.
Collapse
Affiliation(s)
- Stuart L Gibb
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yuhai Zhao
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Daniel Potter
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Michael J Hylin
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Roberta Bruhn
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Gyulnar Baimukanova
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Hasen Xue
- Department of Pediatric Surgery and Institute for Molecular Medicine, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Satish K Pillai
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Evan M Johnson
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Charles S Cox
- Department of Pediatric Surgery and Institute for Molecular Medicine, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Shibani Pati
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
37
|
Deletion of Rapgef6, a candidate schizophrenia susceptibility gene, disrupts amygdala function in mice. Transl Psychiatry 2015; 5:e577. [PMID: 26057047 PMCID: PMC4490285 DOI: 10.1038/tp.2015.75] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/22/2015] [Accepted: 04/23/2015] [Indexed: 02/01/2023] Open
Abstract
In human genetic studies of schizophrenia, we uncovered copy-number variants in RAPGEF6 and RAPGEF2 genes. To discern the effects of RAPGEF6 deletion in humans, we investigated the behavior and neural functions of a mouse lacking Rapgef6. Rapgef6 deletion resulted in impaired amygdala function measured as reduced fear conditioning and anxiolysis. Hippocampal-dependent spatial memory and prefrontal cortex-dependent working memory tasks were intact. Neural activation measured by cFOS phosphorylation demonstrated a reduction in hippocampal and amygdala activation after fear conditioning, while neural morphology assessment uncovered reduced spine density and primary dendrite number in pyramidal neurons of the CA3 hippocampal region of knockout mice. Electrophysiological analysis showed enhanced long-term potentiation at cortico-amygdala synapses. Rapgef6 deletion mice were most impaired in hippocampal and amygdalar function, brain regions implicated in schizophrenia pathophysiology. The results provide a deeper understanding of the role of the amygdala in schizophrenia and suggest that RAPGEF6 may be a novel therapeutic target in schizophrenia.
Collapse
|
38
|
Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome. Anesthesiology 2014; 121:852-65. [PMID: 25093591 DOI: 10.1097/aln.0000000000000403] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a painful condition with approximately 50,000 annual new cases in the United States. It is a major cause of work-related disability, chronic pain after limb fractures, and persistent pain after extremity surgery. Additionally, CRPS patients often experience cognitive changes, anxiety, and depression. The supraspinal mechanisms linked to these CRPS-related comorbidities remain poorly understood. METHODS The authors used a previously characterized mouse model of tibia fracture/cast immobilization showing the principal stigmata of CRPS (n = 8 to 20 per group) observed in humans. The central hypothesis was that fracture/cast mice manifest changes in measures of thigmotaxis (indicative of anxiety) and working memory reflected in neuroplastic changes in amygdala, perirhinal cortex, and hippocampus. RESULTS The authors demonstrate that nociceptive sensitization in these mice is accompanied by altered thigmotactic behaviors in the zero maze but not open field assay, and working memory dysfunction in novel object recognition and social memory but not in novel location recognition. Furthermore, the authors found evidence of structural changes and synaptic plasticity including changes in dendritic architecture and decreased levels of synaptophysin and brain-derived neurotrophic factor in specific brain regions. CONCLUSIONS The study findings provide novel observations regarding behavioral changes and brain plasticity in a mouse model of CRPS. In addition to elucidating some of the supraspinal correlates of the syndrome, this work supports the potential use of therapeutic interventions that not only directly target sensory input and other peripheral mechanisms, but also attempt to ameliorate the broader pain experience by modifying its associated cognitive and emotional comorbidities.
Collapse
|
39
|
Van Kempen TA, Gorecka J, Gonzalez AD, Soeda F, Milner TA, Waters EM. Characterization of neural estrogen signaling and neurotrophic changes in the accelerated ovarian failure mouse model of menopause. Endocrinology 2014; 155:3610-23. [PMID: 24926825 PMCID: PMC4138565 DOI: 10.1210/en.2014-1190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accelerated ovarian failure (AOF) can be induced in young mice with low doses of 4-vinylcyclohexene diepoxide (VCD), modeling the hormone changes observed across menopause. We assessed markers of synaptic plasticity in the hippocampus, anxiety-like behavior, and spatial learning longitudinally at 4 time points across the AOF model: premenopause, early perimenopause, late perimenopause, and postmenopause (POST). As others have shown, VCD administration decreased ovarian follicle counts and increased acyclicity as the model progressed to POST but with no impact on organ or body weights. The morphology of Iba1 immunoreactive microglia did not differ between vehicle- and VCD-administered mice. Hippocampal postsynaptic density 95 levels were minimally altered across the AOF model but decreased at POST in CA3b 24 hours after exogenous estradiol benzoate (EB). In contrast, hippocampal phosphorylated AKT levels transiently decreased in premenopause but increased at POST after 24 hours of EB in select subregions. Electron microscopy revealed fewer estrogen receptor α containing dendritic spines and terminals in CA1 stratum radiatum at POST. mRNA levels of most brain-derived neurotrophic factor exons (except V and VI) were lower in POST compared with ovariectomized mice. Exon V was sensitive to 24 hours of EB administration in POST-VCD. Anxiety-like behavior was unaffected at any menopause phase. Spatial learning was unaffected in all groups, but POST-VCD mice performed below chance. Our results suggest that the AOF model is suitable for longitudinal studies of neurobiological changes across the menopause transition in mice. Our findings also point to complex interactions between estrogen receptors and pathways involved in synaptic plasticity.
Collapse
Affiliation(s)
- Tracey A Van Kempen
- Brain and Mind Research Institute (T.A.V.K., T.A.M.) and Graduate Program in Neuroscience (T.A.V.K., A.D.G.), Weill Cornell Medical College, and Laboratory of Neuroendocrinology (J.G., T.A.M., E.M.W.), The Rockefeller University, New York, New York 10065; and Department of Environmental and Molecular Health Sciences (F.S.), Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Choi JM, Lee S, Park KY, Kang SA, Cho EJ. Protective Effect of Kimchi against Aβ25-35-induced Impairment of Cognition and Memory. ACTA ACUST UNITED AC 2014. [DOI: 10.3746/jkfn.2014.43.3.360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Reproducibility and relevance of future behavioral sciences should benefit from a cross fertilization of past recommendations and today's technology: "Back to the future". J Neurosci Methods 2014; 234:2-12. [PMID: 24632384 DOI: 10.1016/j.jneumeth.2014.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/24/2022]
Abstract
Thanks to the discovery of novel technologies and sophisticated analysis tools we can now 'see' molecules, genes and even patterns of gene expression, which have resulted in major advances in many areas of biology. Recently, similar technologies have been developed for behavioral studies. However, the wide implementation of such technological progress in behavioral research remains behind, as if there are inhibiting factors for accepting and adopting available innovations. The methods of the majority of studies measuring and interpreting behavior of laboratory animals seem to have frozen in time somewhere in the last century. As an example of the so-called classical tests, we will present the history and shortcomings of one of the most frequently used tests, the open field. Similar objections and critical remarks, however, can be made with regard to the elevated plus maze, light-dark box, various other mazes, object recognition tests, etc. Possible solutions and recommendations on how progress in behavioral neuroscience can be achieved and accelerated will be discussed in the second part of this review.
Collapse
|
42
|
Cheng D, Low JK, Logge W, Garner B, Karl T. Novel behavioural characteristics of female APPSwe/PS1ΔE9 double transgenic mice. Behav Brain Res 2014; 260:111-8. [DOI: 10.1016/j.bbr.2013.11.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023]
|
43
|
Miller JK, Wiener JM. PTSD recovery, spatial processing, and the val66met polymorphism. Front Hum Neurosci 2014; 8:100. [PMID: 24616687 PMCID: PMC3935252 DOI: 10.3389/fnhum.2014.00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/10/2014] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - Jan M Wiener
- Department of Psychology, Bournemouth University Dorset, UK
| |
Collapse
|
44
|
Zhang ZH, Shi GX, Li QQ, Wang YJ, Li P, Zhao JX, Yang JW, Liu CZ. Comparison of cognitive performance between two rat models of vascular dementia. Int J Neurosci 2014; 124:818-23. [PMID: 24397495 DOI: 10.3109/00207454.2014.880435] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE An ideal animal model to explore that pathogenesis and prevention of dementia is essential. The present study was designed to compare the difference of behavior and cerebral blood flow of the two vascular dementia rat models at different time intervals. METHODS The rats were randomly allocated to three groups: bilateral common carotid artery occlusion (BCCAO) group, thromboembolism (TE) group and sham-operated (SHAM) group. The performance in the Morris water maze (MWM) was analyzed at 7, 14 and 28 d after operation and cerebral blood flow (CBF) was analyzed at 28 days after operation. RESULT The results showed that the two models exhibited longer latency, less times to crossing platform in MWM and lower CBF than the SHAM rats. Compared with the TE rats, the BCCAO rats have a significant prolongation of escape latency at 7 days and 28 days. In the probe trial, the BCCAO rats showed less number of times across the platform. CONCLUSION The BCCAO rats maybe provide a more useful model to study the physiopathological mechanisms of cognitive impairment related to chronic cerebral ischemia.
Collapse
Affiliation(s)
- Zhen-Hua Zhang
- 1Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Dongcheng District, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Cortical abnormalities and non-spatial learning deficits in a mouse model of CranioFrontoNasal syndrome. PLoS One 2014; 9:e88325. [PMID: 24520368 PMCID: PMC3919725 DOI: 10.1371/journal.pone.0088325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022] Open
Abstract
Eph receptors and their ephrin ligands play critical roles in the development of the nervous system, however, less is known about their functions in the adult brain. Here, we investigated the function of ephrinB1, an ephrinB family member that is mutated in CranioFrontoNasal Syndrome. We show that ephrinB1 deficient mice (EfnB1Y/−) demonstrate spared spatial learning and memory but exhibit exclusive impairment in non-spatial learning and memory tasks. We established that ephrinB1 does not control learning and memory through direct modulation of synaptic plasticity in adults, since it is not expressed in the adult brain. Rather we show that the cortex of EfnB1Y/− mice displayed supernumerary neurons, with a particular increase in calretinin-positive interneurons. Further, the increased neuron number in EfnB1Y/− mutants correlated with shorter dendritic arborization and decreased spine densities of cortical pyramidal neurons. Our findings indicate that ephrinB1 plays an important role in cortical maturation and that its loss has deleterious consequences on selective cognitive functions in the adult.
Collapse
|
46
|
Too LK, Mitchell AJ, Yau B, Ball HJ, McGregor IS, Hunt NH. Interleukin-18 deficiency and its long-term behavioural and cognitive impacts in a murine model of pneumococcal meningitis. Behav Brain Res 2014; 263:176-89. [PMID: 24503119 DOI: 10.1016/j.bbr.2014.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
Abstract
Pneumococcal meningitis often results in death or neurological sequelae, but the underlying pathogenetic mechanisms remain poorly understood. In C57BL/6J mice subjected to intracerebroventricular (icv) challenge with Streptococcus pneumoniae, the chemokine CCL2 and cytokines interferon-γ, interleukin (IL)-1β, IL-6 and tumour necrosis factor were prominently expressed in the brain during the acute phase of the disease. The upregulation of these immune mediators was markedly diminished in IL-18-deficient mice. Uninfected IL-18(-/-) mice exhibited decreases in anxiety phenotype and licking behaviour, and an increase in behavioural habituation, in an automated monitoring system (the IntelliCage). Without antibiotic intervention, a majority of IL-18(+/+) mice developed irreversible disease after icv S. pneumoniae but this was significantly improved by deleting IL-18 gene function. IL-18(+/+) mice cured of pneumococcal meningitis with four doses of ceftriaxone, initiated at 20 h post-inoculation, showed enduring sequelae. These included abnormal behavioural phenotypes featuring diurnal hypoactivity and nocturnal hyperactivity, light phobia and disrupted cognitive function. While the hyperactive phenotype was absent in the corresponding IL-18(-/-) survivors, cognitive impairments and behavioural deficits were still present. Overall, the results suggest that the high levels of cytokines and/or chemokines released after pneumococcal challenge provoked a series of pathological events, ultimately causing acute death. Furthermore, since only a subset of behavioural phenotypes were ameliorated in the pneumococcus-infected IL-18(-/-) mice, the pathological pathways causing mortality may be, at least in part, distinct from those leading to long-term neurological sequelae.
Collapse
Affiliation(s)
- L K Too
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - A J Mitchell
- The Centenary Institute, Newtown, NSW 2042, Australia
| | - B Yau
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - H J Ball
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - I S McGregor
- School of Psychology, University of Sydney, Sydney, NSW 2006, Australia
| | - N H Hunt
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
47
|
Too LK, Ball HJ, McGregor IS, Hunt NH. A novel automated test battery reveals enduring behavioural alterations and cognitive impairments in survivors of murine pneumococcal meningitis. Brain Behav Immun 2014; 35:107-24. [PMID: 24060586 DOI: 10.1016/j.bbi.2013.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/29/2013] [Accepted: 09/11/2013] [Indexed: 01/21/2023] Open
Abstract
Pneumococcal meningitis, caused by Streptococcus pneumoniae infection, is a major form of lethal bacterial meningitis. Survivors are predisposed to developing lifelong disabling sequelae, including cognitive impairment, psychological problems and motor deficits. In our experimental model, ventricular inoculation of 10(5) colony-forming units of S. pneumoniae type 3 caused 90% of mice to develop life-threatening meningitis within 48 h. Antibiotic treatment with ceftriaxone 20 h post infection reduced the incidence of severe meningitis to <10%. At the time of treatment, upregulation of pro-inflammatory cytokines was detected, including interleukin-1β, interleukin-6 and tumour necrosis factor. We evaluated the long-term behavioural and cognitive sequelae in control mice and those surviving meningitis using an automated system (the IntelliCage) in which mice perform a range of behavioural and spatial tasks to obtain water rewards from conditioning units in their home cage. Surviving mice showed a number of altered behaviours relative to controls, including (i) hypoexploration when first exposed to the IntelliCage, (ii) altered activity patterns (fewer visits to conditioning stations during the light phase and more in the dark phase), (iii) avoidance of light (a constant or flashing LED stimulus), (iv) impaired spatial learning (a complex patrolling task), and (v) impaired discrimination reversal learning. Overall these results suggest photophobia and weakened learning ability in post-meningitic mice, particularly on tasks engaging hippocampal and prefrontal neural substrates. This study also demonstrates a standardised and comprehensive battery of tests that can be readily used to investigate neurological sequelae in undisturbed mice residing in a complex home cage environment.
Collapse
Affiliation(s)
- L K Too
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - H J Ball
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - I S McGregor
- School of Psychology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - N H Hunt
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
48
|
Chen CY, Noble-Haeusslein LJ, Ferriero D, Semple BD. Traumatic injury to the immature frontal lobe: a new murine model of long-term motor impairment in the absence of psychosocial or cognitive deficits. Dev Neurosci 2013; 35:474-90. [PMID: 24247103 DOI: 10.1159/000355874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
Traumatic brain injury in children commonly involves the frontal lobes and is associated with distinct structural and behavioral changes. Despite the clinical significance of injuries localized to this region during brain development, the mechanisms underlying secondary damage and long-term recovery are poorly understood. Here, we have characterized the first model of unilateral focal traumatic injury to the developing frontal lobe. Male C57Bl/6J mice at postnatal day (p)21, an age approximating a toddler-aged child, received a controlled cortical impact or sham surgery to the left frontal lobe and were euthanized 1 or 7 days later. A necrotic cavity and local inflammatory response were largely confined to the unilateral frontal lobe, dorsal corpus callosum and striatum anterior to the bregma. While cell death and accumulated β-amyloid precursor protein were characteristic features of the pericontusional motor cortex, corpus callosum, cingulum and dorsal striatum, underlying structures including the hippocampus showed no overt pathology. To determine the long-term functional consequences of injury at p21, two additional cohorts were subjected to a battery of behavioral tests in adolescence (p35-45) or adulthood (p70-80). In both cohorts, brain-injured mice showed normal levels of anxiety, sociability, spatial learning and memory. The signature phenotypic features were deficits in motor function and motor learning, coincident with a reduction in ipsilateral cortical brain volumes. Together, these findings demonstrate classic morphological features of a focal traumatic injury, including early cell death and axonal injury, and long-term volumetric loss of cortical volumes. The presence of deficits in sensorimotor function and coordination in the absence of abnormal findings related to anxiety, sociability and memory likely reflects several variables, including the unique location of the injury and the emergence of favorable compensatory mechanisms during subsequent brain development.
Collapse
Affiliation(s)
- Chien-Yi Chen
- Department of Neurological Surgery,University of California, San Francisco, San Francisco, Calif., USA
| | | | | | | |
Collapse
|
49
|
The utility of the zebrafish model in conditioned place preference to assess the rewarding effects of drugs. Behav Pharmacol 2013; 24:375-83. [PMID: 23811781 DOI: 10.1097/fbp.0b013e328363d14a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Substance abuse is a significant public health concern both domestically and worldwide. The persistent use of substances regardless of aversive consequences forces the user to give higher priority to the drug than to normal activities and obligations. The harmful and hazardous use of psychoactive substances can lead to a dependence syndrome. In this regard, the genetic and neurobiological underpinnings of reward-seeking behavior need to be fully understood in order to develop effective pharmacotherapies and other methods of treatment. Animal models are often implemented in preclinical screening for testing the efficacy of novel treatments. Several paradigms exist that model various facets of addiction including sensitization, tolerance, withdrawal, drug seeking, extinction, and relapse. Self-administration and, most notably, conditioned place preference (CPP) are relatively simple tests that serve as indicators of the aforementioned aspects of addiction by means of behavioral quantification. CPP is a commonly used technique to evaluate the motivational effects of compounds and experiences that have been associated with a positive or negative reward, which capitalizes on the basic principles of Pavlovian conditioning. During training, the unconditioned stimulus is consistently paired with a neutral set of environmental stimuli, which obtain, during conditioning, secondary motivational properties that elicit approach behavior in the absence of the unconditioned stimulus. For over 50 years, rodents have been the primary test subjects. However, the zebrafish (Danio rerio) is gaining favor as a valuable model organism in the fields of biology, genetics, and behavioral neuroscience. This paper presents a discussion on the merits, advantages, and limitations of the zebrafish model and its utility in relation to CPP.
Collapse
|
50
|
Gerlai R. Antipredatory behavior of zebrafish: adaptive function and a tool for translational research. EVOLUTIONARY PSYCHOLOGY 2013; 11:591-605. [PMID: 23864295 PMCID: PMC10481052 DOI: 10.1177/147470491301100308] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 10/23/2012] [Indexed: 03/29/2024] Open
Abstract
The zebrafish is gaining popularity in behavioral brain research. It may be a cost-effective tool with which we can improve our understanding of the biological and genetic mechanisms of human brain function and dysfunction. Some, myself and collaborators included, have argued that such translational relevance may be best achieved if one considers the ecology and species-specific characteristics of the study organism. In this review, I focus on our own studies investigating zebrafish fear responses, which may be utilized in analyzing the mechanisms of fear and anxiety, and which may be used for screening anxiolytic drugs. I review how zebrafish respond to their natural and synthetic alarm substance as well as to other fear-inducing stimuli, including sympatric and allopatric predatory fish, sympatric or allopatric harmless fish, moving (animated) images of predatory fish and moving images of abstract shapes. I discuss the behavioral responses these stimuli elicit, summarize the methods of the quantification of the behaviors, and speculate about their possible adaptive nature. Although we utilize complex visual stimuli and do not yet know what key features zebrafish may be sensitive to, our results, together with those published by others, imply that this simple vertebrate may have a bright future in behavioral brain research.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada.
| |
Collapse
|