1
|
Madison FN, Bingman VP, Smulders TV, Lattin CR. A bird's eye view of the hippocampus beyond space: Behavioral, neuroanatomical, and neuroendocrine perspectives. Horm Behav 2024; 157:105451. [PMID: 37977022 DOI: 10.1016/j.yhbeh.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Although the hippocampus is one of the most-studied brain regions in mammals, research on the avian hippocampus has been more limited in scope. It is generally agreed that the hippocampus is an ancient feature of the amniote brain, and therefore homologous between the two lineages. Because birds and mammals are evolutionarily not very closely related, any shared anatomy is likely to be crucial for shared functions of their hippocampi. These functions, in turn, are likely to be essential if they have been conserved for over 300 million years. Therefore, research on the avian hippocampus can help us understand how this brain region evolved and how it has changed over evolutionary time. Further, there is a strong research foundation in birds on hippocampal-supported behaviors such as spatial navigation, food caching, and brood parasitism that scientists can build upon to better understand how hippocampal anatomy, network circuitry, endocrinology, and physiology can help control these behaviors. In this review, we summarize our current understanding of the avian hippocampus in spatial cognition as well as in regulating anxiety, approach-avoidance behavior, and stress responses. Although there are still some questions about the exact number of subdivisions in the avian hippocampus and how that might vary in different avian families, there is intriguing evidence that the avian hippocampus might have complementary functional profiles along the rostral-caudal axis similar to the dorsal-ventral axis of the rodent hippocampus, where the rostral/dorsal hippocampus is more involved in cognitive processes like spatial learning and the caudal/ventral hippocampus regulates emotional states, anxiety, and the stress response. Future research should focus on elucidating the cellular and molecular mechanisms - including endocrinological - in the avian hippocampus that underlie behaviors such as spatial navigation, spatial memory, and anxiety-related behaviors, and in so doing, resolve outstanding questions about avian hippocampal function and organization.
Collapse
Affiliation(s)
- Farrah N Madison
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Verner P Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Tom V Smulders
- Centre for Behaviour and Evolution, School of Psychology, Newcastle University, Newcastle upon Tyne NE2 4DR, UK
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70808, USA.
| |
Collapse
|
2
|
Alario A, Trevino M, Justen H, Woodman CJ, Roth TC, Delmore KE. Learning and memory in hybrid migratory songbirds: cognition as a reproductive isolating barrier across seasons. Sci Rep 2023; 13:10866. [PMID: 37407574 DOI: 10.1038/s41598-023-37379-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Hybrid zones can be used to identify traits that maintain reproductive isolation and contribute to speciation. Cognitive traits may serve as post-mating reproductive isolating barriers, reducing the fitness of hybrids if, for example, misexpression occurs in hybrids and disrupts important neurological mechanisms. We tested this hypothesis in a hybrid zone between two subspecies of Swainson's thrushes (Catharus ustulatus) using two cognitive tests-an associative learning spatial test and neophobia test. We included comparisons across the sexes and seasons (spring migration and winter), testing if hybrid females performed worse than males (as per Haldane's rule) and if birds (regardless of ancestry or sex) performed better during migration, when they are building navigational maps and encountering new environments. We documented reduced cognitive abilities in hybrids, but this result was limited to males and winter. Hybrid females did not perform worse than males in either season. Although season was a significant predictor of performance, contrary to our prediction, all birds learned faster during the winter. The hypothesis that cognitive traits could serve as post-mating isolating barriers is relatively new; this is one of the first tests in a natural hybrid zone and non-food-caching species. We also provide one of the first comparisons of cognitive abilities between seasons. Future neurostructural and neurophysiological work should be used to examine mechanisms underlying our behavioral observations.
Collapse
Affiliation(s)
- Ashley Alario
- Texas A&M University, 3528 TAMU, College Station, TX, 77843, USA
| | - Marlene Trevino
- Texas A&M University, 3528 TAMU, College Station, TX, 77843, USA
| | - Hannah Justen
- Texas A&M University, 3528 TAMU, College Station, TX, 77843, USA
| | | | - Timothy C Roth
- Department of Psychology, Franklin and Marshall College, Lancaster, PA, 17603, USA
| | - Kira E Delmore
- Texas A&M University, 3528 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Understanding hippocampal neural plasticity in captivity: Unique contributions of spatial specialists. Learn Behav 2022; 50:55-70. [PMID: 35237946 DOI: 10.3758/s13420-021-00504-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
Neural plasticity in the hippocampus has been studied in a wide variety of model systems, including in avian species where the hippocampus underlies specialized spatial behaviours. Examples of such behaviours include navigating to a home roost over long distances by homing pigeons or returning to a potential nest site for egg deposit by brood parasites. The best studied example, however, is food storing in parids and the interaction between this behaviour and changes in hippocampus volume and neurogenesis. However, understanding the interaction between brain and behaviour necessitates research that includes studies with at least some form of captivity, which may itself affect hippocampal plasticity. Captivity might particularly affect spatial specialists where free-ranging movement on a large scale is especially important in daily, and seasonal, behaviours. This review examines how captivity might affect hippocampal plasticity in avian spatial specialists and specifically food-storing parids, and also considers how the effects of captivity may be mitigated by researchers studying hippocampal plasticity when the goal is understanding the relationship between behaviour and hippocampal change.
Collapse
|
4
|
Abstract
The hippocampal formation (HF) processes spatial memories for cache locations in food-hoarding birds. Hoarding is a seasonal behavior, and seasonal changes in the HF have been described in some studies, but not in others. One potential reason is that birds may have been sampled during the seasonal hoarding peak in some studies, but not in others. In this study, we investigate the seasonal changes in hoarding and HF in willow tits (Poecile montanus). We compare this to seasonal changes in HF in a closely related non-hoarding bird, the great tit (Parus major). Willow tits near Oulu, Finland, show a seasonal hoarding peak in September and both HF volume and neuron number show a similar peak. HF neuronal density also increases in September, but then remains the same throughout winter. Unexpectedly, the great tit HF also changes seasonally, although in a different pattern: the great tit telencephalon increases in volume from July to August and decreases again in November. Great tit HF volume follows suit, but with a delay. Great tit HF neuron number and density also increase from August to September and stay high throughout winter. We hypothesize that seasonal changes in hoarding birds’ HF are driven by food-hoarding experience (e.g., the formation of thousands of memories). The seasonal changes in great tit brains may also be due to experience-dependent plasticity, responding to changes in the social and spatial environment. Large-scale experience-dependent neural plasticity is therefore probably not an adaptation of food-hoarding birds, but a general property of the avian HF and telencephalon.
Collapse
|
5
|
Seewagen CL. The threat of global mercury pollution to bird migration: potential mechanisms and current evidence. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1254-1267. [PMID: 30159636 DOI: 10.1007/s10646-018-1971-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Mercury is a global pollutant that has been widely shown to adversely affect reproduction and other endpoints related to fitness and health in birds, but almost nothing is known about its effects on migration relative to other life cycle processes. Here I consider the physiological and histological effects that mercury is known to have on non-migrating birds and non-avian vertebrates to identify potential mechanisms by which mercury might hinder migration performance. I posit that the broad ability of mercury to inactivate enzymes and compromise the function of other proteins is a single mechanism by which mercury has strong potential to disrupt many of the physiological processes that make long-distance migration possible. In just this way alone, there is reason to expect mercury to interfere with navigation, flight endurance, oxidative balance, and stopover refueling. Navigation and flight could be further affected by neurotoxic effects of mercury on the brain regions that process geomagnetic information from the visual system and control biomechanics, respectively. Interference with photochemical reactions in the retina and decreases in scotopic vision sensitivity caused by mercury also have the potential to disrupt visual-based magnetic navigation. Finally, migration performance and possibly survival might be limited by the immunosuppressive effects of mercury on birds at a time when exposure to novel pathogens and parasites is great. I conclude that mercury pollution is likely to be further challenging what is already often the most difficult and perilous phase of a migratory bird's annual cycle, potentially contributing to global declines in migratory bird populations.
Collapse
Affiliation(s)
- Chad L Seewagen
- Great Hollow Nature Preserve & Ecological Research Center, 225 Route 37, New Fairfield, CT, USA.
| |
Collapse
|
6
|
Knoll F, Kawabe S. Avian palaeoneurology: Reflections on the eve of its 200th anniversary. J Anat 2020; 236:965-979. [PMID: 31999834 PMCID: PMC7219626 DOI: 10.1111/joa.13160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
In birds, the brain (especially the telencephalon) is remarkably developed, both in relative volume and complexity. Unlike in most early-branching sauropsids, the adults of birds and other archosaurs have a well-ossified neurocranium. In contrast to the situation in most of their reptilian relatives but similar to what can be seen in mammals, the brains of birds fit closely to the endocranial cavity so that their major external features are reflected in the endocasts. This makes birds a highly suitable group for palaeoneurological investigations. The first observation about the brain in a long-extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off. Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend. Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and neurosciences.
Collapse
Affiliation(s)
- Fabien Knoll
- ARAID‐Fundación Conjunto Paleontológico de Teruel‐DinópolisTeruelSpain
- Departamento de PaleobiologíaMuseo Nacional de Ciencias Naturales‐CSICMadridSpain
| | - Soichiro Kawabe
- Institute of Dinosaur ResearchFukui Prefectural UniversityFukuiJapan
- Fukui Prefectural Dinosaur MuseumFukuiJapan
| |
Collapse
|
7
|
Moon HY, Praag HV. Physical Activity and Brain Plasticity. J Exerc Nutrition Biochem 2019; 23:23-25. [PMID: 32018342 PMCID: PMC7004567 DOI: 10.20463/jenb.2019.0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
|
8
|
Environmental enrichment influences spatial learning ability in captive-reared intertidal gobies (Bathygobius cocosensis). Anim Cogn 2018; 22:89-98. [DOI: 10.1007/s10071-018-1225-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/28/2018] [Accepted: 11/19/2018] [Indexed: 02/03/2023]
|
9
|
Keagy J, Braithwaite VA, Boughman JW, Handling editor: Rudiger Riesch. Brain differences in ecologically differentiated sticklebacks. Curr Zool 2018; 64:243-250. [PMID: 30402065 PMCID: PMC5905471 DOI: 10.1093/cz/zox074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/20/2017] [Indexed: 11/12/2022] Open
Abstract
Populations that have recently diverged offer a powerful model for studying evolution. Ecological differences are expected to generate divergent selection on multiple traits, including neurobiological ones. Animals must detect, process, and act on information from their surroundings and the form of this information can be highly dependent on the environment. We might expect different environments to generate divergent selection not only on the sensory organs, but also on the brain regions responsible for processing sensory information. Here, we test this hypothesis using recently evolved reproductively isolated species pairs of threespine stickleback fish Gasterosteus aculeatus that have well-described differences in many morphological and behavioral traits correlating with ecological differences. We use a state-of-the-art method, magnetic resonance imaging, to get accurate volumetric data for 2 sensory processing regions, the olfactory bulbs and optic tecta. We found a tight correlation between ecology and the size of these brain regions relative to total brain size in 2 lakes with intact species pairs. Limnetic fish, which rely heavily on vision, had relatively larger optic tecta and smaller olfactory bulbs compared with benthic fish, which utilize olfaction to a greater extent. Benthic fish also had larger total brain volumes relative to their body size compared with limnetic fish. These differences were erased in a collapsed species pair in Enos Lake where anthropogenic disturbance has led to intense hybridization. Together these data indicate that evolution of sensory processing regions can occur rapidly and independently.
Collapse
Affiliation(s)
- Jason Keagy
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Victoria A Braithwaite
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park, PA 16802, USA
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
10
|
Carvalho-Paulo D, de Morais Magalhães NG, de Almeida Miranda D, Diniz DG, Henrique EP, Moraes IAM, Pereira PDC, de Melo MAD, de Lima CM, de Oliveira MA, Guerreiro-Diniz C, Sherry DF, Diniz CWP. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla. Front Neuroanat 2018; 11:126. [PMID: 29354035 PMCID: PMC5758497 DOI: 10.3389/fnana.2017.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla, that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D) morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy (n = 249 cells) with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period (n = 250 cells). Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes may play different physiological roles during migration.
Collapse
Affiliation(s)
- Dario Carvalho-Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nara G de Morais Magalhães
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Diego de Almeida Miranda
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Daniel G Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Ediely P Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Isis A M Moraes
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Patrick D C Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Mauro A D de Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Camila M de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marcus A de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Cristovam Guerreiro-Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - David F Sherry
- Department of Psychology, University of Western Ontario, London, ON, Canada.,Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Cristovam W P Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
11
|
Lynch KS. Region-specific neuron recruitment in the hippocampus of brown-headed cowbirds Molothrus ater (Passeriformes: Icteridae). THE EUROPEAN ZOOLOGICAL JOURNAL 2018. [DOI: 10.1080/24750263.2018.1435743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Kathleen S. Lynch
- Department of Biological Sciences, Hofstra University, Hempstead, NY, USA
| |
Collapse
|
12
|
The avian hippocampus and the hypothetical maps used by navigating migratory birds (with some reflection on compasses and migratory restlessness). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:465-474. [DOI: 10.1007/s00359-017-1161-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
|
13
|
Diniz CG, Magalhães NGM, Sousa AA, Santos Filho C, Diniz DG, Lima CM, Oliveira MA, Paulo DC, Pereira PDC, Sherry DF, Picanço-Diniz CW. Microglia and neurons in the hippocampus of migratory sandpipers. ACTA ACUST UNITED AC 2016; 49:e5005. [PMID: 26577847 PMCID: PMC4678657 DOI: 10.1590/1414-431x20155005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/05/2015] [Indexed: 11/25/2022]
Abstract
The semipalmated sandpiper Calidris pusilla and the spotted
sandpiper Actitis macularia are long- and short-distance migrants,
respectively. C. pusilla breeds in the sub-arctic and mid-arctic
tundra of Canada and Alaska and winters on the north and east coasts of South
America. A. macularia breeds in a broad distribution across most of
North America from the treeline to the southern United States. It winters in the
southern United States, and Central and South America. The autumn migration route of
C. pusilla includes a non-stop flight over the Atlantic Ocean,
whereas autumn route of A. macularia is largely over land. Because
of this difference in their migratory paths and the visuo-spatial recognition tasks
involved, we hypothesized that hippocampal volume and neuronal and glial numbers
would differ between these two species. A. macularia did not differ
from C. pusilla in the total number of hippocampal neurons, but the
species had a larger hippocampal formation and more hippocampal microglia. It remains
to be investigated whether these differences indicate interspecies differences or
neural specializations associated with different strategies of orientation and
navigation.
Collapse
Affiliation(s)
- C G Diniz
- Laboratório de Biologia Molecular e Ambiental, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - N G M Magalhães
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - A A Sousa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - C Santos Filho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - D G Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - C M Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - M A Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - D C Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - P D C Pereira
- Laboratório de Biologia Molecular e Ambiental, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - D F Sherry
- Department of Psychology Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - C W Picanço-Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
14
|
LaDage LD. Factors That Modulate Neurogenesis: A Top-Down Approach. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:184-190. [PMID: 27560485 DOI: 10.1159/000446906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although hippocampal neurogenesis in the adult brain has been conserved across the vertebrate lineage, laboratory studies have primarily examined this phenomenon in rodent models. This approach has been successful in elucidating important factors and mechanisms that can modulate rates of hippocampal neurogenesis, including hormones, environmental complexity, learning and memory, motor stimulation, and stress. However, recent studies have found that neurobiological research on neurogenesis in rodents may not easily translate to, or explain, neurogenesis patterns in nonrodent systems, particularly in species examined in the field. This review examines some of the evolutionary and ecological variables that may also modulate neurogenesis patterns. This 'top-down' and more naturalistic approach, which incorporates ecology and natural history, particularly of nonmodel species, may allow for a more comprehensive understanding of the functional significance of neurogenesis.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State University Altoona, Altoona, Pa., USA
| |
Collapse
|
15
|
Guigueno MF, MacDougall-Shackleton SA, Sherry DF. Sex and seasonal differences in hippocampal volume and neurogenesis in brood-parasitic brown-headed cowbirds (Molothrus ater). Dev Neurobiol 2016; 76:1275-1290. [PMID: 27455512 DOI: 10.1002/dneu.22421] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
Abstract
Brown-headed cowbirds (Molothrus ater) are one of few species in which females show more complex space use than males. Female cowbirds search for, revisit, and parasitize host nests and, in a previous study, outperformed males on an open field spatial search task. Previous research reported a female-biased sex difference in the volume of the hippocampus, a region of the brain involved in spatial memory. Neurons produced by adult neurogenesis may be involved in the formation of new memories and replace older neurons that could cause interference in memory. We tested for sex and seasonal differences in hippocampal volume and neurogenesis of brood-parasitic brown-headed cowbirds and the closely related non-brood-parasitic red-winged blackbird (Agelaius phoeniceus) to determine whether there were differences in the hippocampus that reflected space use in the wild. Females had a larger hippocampus than males in both species, but hippocampal neurogenesis, measured by doublecortin immunoreactivity (DCX+), was greater in female than in male cowbirds in the absence of any sex difference in blackbirds, supporting the hypothesis of hippocampal specialization in female cowbirds. Cowbirds of both sexes had a larger hippocampus with greater hippocampal DCX+ than blackbirds. Hippocampus volume remained stable between breeding conditions, but DCX+ was greater post-breeding, indicating that old memories may be lost through hippocampal reorganization following breeding. Our results support, in part, the hypothesis that the hippocampus of cowbirds is specialized for brood parasitism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1275-1290, 2016.
Collapse
Affiliation(s)
- Mélanie F Guigueno
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada. .,Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.,Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - David F Sherry
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.,Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Meskenaite V, Krackow S, Lipp HP. Age-Dependent Neurogenesis and Neuron Numbers within the Olfactory Bulb and Hippocampus of Homing Pigeons. Front Behav Neurosci 2016; 10:126. [PMID: 27445724 PMCID: PMC4916210 DOI: 10.3389/fnbeh.2016.00126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/06/2016] [Indexed: 12/14/2022] Open
Abstract
Many birds are supreme long-distance navigators that develop their navigational ability in the first months after fledgling but update the memorized environmental information needed for navigation also later in life. We studied the extent of juvenile and adult neurogenesis that could provide such age-related plasticity in brain regions known to mediate different mechanisms of pigeon homing: the olfactory bulb (OB), and the triangular area of the hippocampal formation (HP tr). Newly generated neurons (visualized by doublecortin, DCX) and mature neurons were counted stereologically in 35 pigeon brains ranging from 1 to 168 months of age. At the age of 1 month, both areas showed maximal proportions of DCX positive neurons, which rapidly declined during the first year of life. In the OB, the number of DCX-positive periglomerular neurons declined further over time, but the number of mature periglomerular cells appeared unchanged. In the hippocampus, the proportion of DCX-positive neurons showed a similar decline yet to a lesser extent. Remarkably, in the triangular area of the hippocampus, the oldest birds showed nearly twice the number of neurons as compared to young adult pigeons, suggesting that adult born neurons in these regions expanded the local circuitry even in aged birds. This increase might reflect navigational experience and, possibly, expanded spatial memory. On the other hand, the decrease of juvenile neurons in the aging OB without adding new circuitry might be related to the improved attachment to the loft characterizing adult and old pigeons.
Collapse
Affiliation(s)
- Virginia Meskenaite
- Institute of Anatomy, University of ZurichZurich, Switzerland; The Interface Group, Institute of Physiology, University of ZurichZurich, Switzerland
| | - Sven Krackow
- Institute of Anatomy, University of Zurich Zurich, Switzerland
| | - Hans-Peter Lipp
- Institute of Anatomy, University of ZurichZurich, Switzerland; Department of Physiology, School of Medical Sciences, Kwazulu-Natal UniversityDurban, South Africa; Institute of Evolutionary Medicine, University of ZurichZurich, Switzerland
| |
Collapse
|
17
|
Kuhn SL, Raichlen DA, Clark AE. What moves us? How mobility and movement are at the center of human evolution. Evol Anthropol 2016; 25:86-97. [DOI: 10.1002/evan.21480] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Mettke-Hofmann C. Avian movements in a modern world: cognitive challenges. Anim Cogn 2016; 20:77-86. [PMID: 27287625 PMCID: PMC5274642 DOI: 10.1007/s10071-016-1006-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/17/2016] [Accepted: 05/31/2016] [Indexed: 02/03/2023]
Abstract
Different movement patterns have evolved as a response to predictable and unpredictable variation in the environment with migration being an adaptation to predictable environments, nomadism to unpredictable environments and partial migration to a mixture of predictable and unpredictable conditions. Along different movement patterns, different cognitive abilities have evolved which are reviewed and discussed in relation to an organism’s ability to respond to largely unpredictable environmental change due to climate and human-induced change, and linked to population trends. In brief, migrants have a combination of reliance on memory, low propensity to explore and high avoidance of environmental change that in combination with overall small brain sizes results in low flexibility to respond to unpredictable environmental change. In line with this, many migrants have negative population trends. In contrast, while nomads may use their memory to find suitable habitats, they can counteract negative effects of finding such habitats disturbed by large-scale exploratory movements and paying attention to environmental cues. They are also little avoidant of environmental change. Population trends are largely stable or increasing indicating their ability to cope with climate and human-induced change. Cognitive abilities in partial migrants are little investigated, but indicate attention to environmental cues coupled with high exploratory tendencies that allow them a flexible response to unpredictable environmental change. Indeed, their population trends are mainly stable or increasing. In conclusion, cognitive abilities have evolved in conjunction with different movement patterns and affect an organism’s ability to adapt to rapidly human-induced changes in the environment.
Collapse
Affiliation(s)
- Claudia Mettke-Hofmann
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
19
|
Brain contrasts between migratory and nonmigratory North American lark sparrows (Chondestes grammacus). Neuroreport 2015; 26:1011-6. [DOI: 10.1097/wnr.0000000000000460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Krilow JM, Iwaniuk AN. Seasonal Variation in Forebrain Region Sizes in Male Ruffed Grouse (Bonasa umbellus). BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:189-202. [PMID: 25997574 DOI: 10.1159/000381277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
Abstract
The song system of songbirds has provided significant insight into the underlying mechanisms and behavioural consequences of seasonal neuroplasticity. The extent to which seasonal changes in brain region volumes occur in non-songbird species has, however, remained largely untested. Here, we tested whether brain region volumes varied with season in the ruffed grouse (Bonasa umbellus), a gallinaceous bird that produces a unique wing-beating display known as 'drumming' as its primary form of courtship behaviour. Using unbiased stereology, we measured the sizes of the cerebellum, nucleus rotundus, telencephalon, mesopallium, hippocampal formation, striatopallidal complex and arcopallium across spring males, fall males and fall females. The majority of these brain regions did not vary significantly across these three groups. The two exceptions were the striatopallidal complex and arcopallium, both of which were significantly larger in spring males that are actively drumming. These seasonal changes in volume strongly implicate the striatopallidal complex and arcopallium as key structures in the production and/or modulation of the ruffed grouse drumming display and represent the first evidence of seasonal plasticity in the telencephalon underlying a non-vocal courtship behaviour. Our findings also suggest that seasonal plasticity in the striatopallidal complex and arcopallium might be a trait that is shared across many bird species and that both structures are related to the production of multiple forms of courtship and not just learned song.
Collapse
Affiliation(s)
- Justin M Krilow
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alta., Canada
| | | |
Collapse
|
21
|
Flahr LM, Michel NL, Zahara ARD, Jones PD, Morrissey CA. Developmental Exposure to Aroclor 1254 Alters Migratory Behavior in Juvenile European Starlings (Sturnus vulgaris). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6274-6283. [PMID: 25893686 DOI: 10.1021/acs.est.5b01185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Birds exposed to endocrine disrupting chemicals during development could be susceptible to neurological and other physiological changes affecting migratory behaviors. We investigated the effects of ecologically relevant levels of Aroclor 1254, a polychlorinated biphenyl (PCB) mixture, on moult, fattening, migratory activity, and orientation in juvenile European starlings (Sturnus vulgaris). Birds were orally administered 0 (control), 0.35 (low), 0.70 (intermediate), or 1.05 (high) μg Aroclor 1254/g-body weight by gavage from 1 through 18 days posthatch and later exposed in captivity to a photoperiod shift simulating an autumn migration. Migratory activity and orientation were examined using Emlen funnel trials. Across treatments, we found significant increases in mass, fat, and moulting and decreasing plasma thyroid hormones over time. We observed a significant increase in activity as photoperiod was shifted from 13L:11D (light:dark) to 12L:12D, demonstrating that migratory condition was induced in captivity. At 12L:12D, control birds oriented to 155.95° (South-Southeast), while high-dosed birds did not. High-dosed birds showed a delayed orientation to 197.48° (South-Southwest) under 10L:14D, concomitant with apparent delays in moult. These findings demonstrate how subtle contaminant-induced alterations during development could lead to longer-scale effects, including changes in migratory activity and orientation, which could potentially result in deleterious effects on fitness and survival.
Collapse
Affiliation(s)
- Leanne M Flahr
- †Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5B3
- ‡Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5B3
| | - Nicole L Michel
- §School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5C8
| | - Alexander R D Zahara
- ∥Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2
| | - Paul D Jones
- ‡Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5B3
- §School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5C8
| | - Christy A Morrissey
- ‡Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5B3
- ∥Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2
| |
Collapse
|
22
|
Herold C, Coppola VJ, Bingman VP. The maturation of research into the avian hippocampal formation: Recent discoveries from one of the nature's foremost navigators. Hippocampus 2015; 25:1193-211. [DOI: 10.1002/hipo.22463] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Christina Herold
- C. & O. Vogt-Institute of Brain Research, University of Düsseldorf; Düsseldorf Germany
| | - Vincent J. Coppola
- Department of Psychology; J. P. Scott Center for Neuroscience, Bowling Green State University; Bowling Green Ohio
| | - Verner P. Bingman
- Department of Psychology; J. P. Scott Center for Neuroscience, Bowling Green State University; Bowling Green Ohio
| |
Collapse
|
23
|
Sherry DF, MacDougall-Shackleton SA. Seasonal change in the avian hippocampus. Front Neuroendocrinol 2015; 37:158-67. [PMID: 25497862 DOI: 10.1016/j.yfrne.2014.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 02/04/2023]
Abstract
The hippocampus plays an important role in cognitive processes, including memory and spatial orientation, in birds. The hippocampus undergoes seasonal change in food-storing birds and brood parasites, there are changes in the hippocampus during breeding, and further changes occur in some species in association with migration. In food-storing birds, seasonal change in the hippocampus occurs in fall and winter when the cognitively demanding behaviour of caching and retrieving food occurs. The timing of annual change in the hippocampus of food-storing birds is quite variable, however, and appears not to be under photoperiod control. A variety of factors, including cognitive performance, exercise, and stress may all influence seasonal change in the avian hippocampus. The causal processes underlying seasonal change in the avian hippocampus have not been extensively examined and the more fully described hormonal influences on the mammalian hippocampus may provide hypotheses for investigating the control of hippocampal seasonality in birds.
Collapse
Affiliation(s)
- David F Sherry
- Departments of Psychology and Biology, Advanced Facility for Avian Research, University of Western Ontario, Canada.
| | | |
Collapse
|
24
|
Singh S, Singh D, Srivastava U. Seasonal dynamics within the neurons of the hippocampus in adult female Indian Ring neck Parrots (Psittacula krameri) and Asian Koels (Eudynamys scolopaceus). CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In birds, a narrow strip of tissue found on the dorsomedial surface of the telencephalon and separated from the rest of the hemisphere by a ventricle is termed the hippocampal complex. Two neurohistological techniques, namely the cresyl-violet method and the Golgi–Colonnier technique, have been employed in the present study to observe seasonal dynamics within the neuronal classes of hippocampus in female Indian Ring neck Parrots (Psittacula krameri (Scopoli, 1769)) and Asian Koels (Eudynamys scolopaceus (L., 1758)). Hippocampus is known to play a central role in a variety of behaviors such as homing, visual discrimination, learning, and sexual behavior. Therefore, changes in sexual behavior during the breeding period contribute to plasticity in the hippocampus in terms of fluctuations in neuronal characteristics thereby helping the bird cope with changing conditions. A significant increase in dendritic thickness, neuronal spacing, spine morphology, and spine density were identified within the hippocampal neurons during the breeding period of the studied birds. This study establishes an overall account of seasonal dynamics occurring within the neurons of all fields of the hippocampus of birds in terms of increased dendritic thickness, spine density, spine morphology, and neuronal spacing thereby favoring the view that morphological fluctuations in neuronal characteristics during the breeding period are likely to have consequences for hippocampal neuronal function.
Collapse
Affiliation(s)
- Sippy Singh
- Department of Zoology, University of Allahabad, Allahabad 211002, India
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| | - Durgesh Singh
- Department of Zoology, University of Allahabad, Allahabad 211002, India
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| | - U.C. Srivastava
- Department of Zoology, University of Allahabad, Allahabad 211002, India
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| |
Collapse
|
25
|
McKinnon EA, Fraser KC, Stanley CQ, Stutchbury BJM. Tracking from the tropics reveals behaviour of juvenile songbirds on their first spring migration. PLoS One 2014; 9:e105605. [PMID: 25141193 PMCID: PMC4139399 DOI: 10.1371/journal.pone.0105605] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022] Open
Abstract
Juvenile songbirds on spring migration travel from tropical wintering sites to temperate breeding destinations thousands of kilometres away with no prior experience to guide them. We provide a first glimpse at the migration timing, routes, and stopover behaviour of juvenile wood thrushes (Hylocichla mustelina) on their inaugural spring migration by using miniaturized archival geolocators to track them from Central America to the U.S. and Canada. We found significant differences between the timing of juvenile migration and that of more experienced adults: juveniles not only departed later from tropical wintering sites relative to adults, they also became progressively later as they moved northward. The increasing delay was driven by more frequent short stops by juveniles along their migration route, particularly in the U.S. as they got closer to breeding sites. Surprisingly, juveniles were just as likely as adults to cross the Gulf of Mexico, an open-water crossing of 800-1000 km, and migration route at the Gulf was not significantly different for juveniles relative to adults. To determine if the later departure of juveniles was related to poor body condition in winter relative to adults, we examined percent lean body mass, fat scores, and pectoral muscle scores of juvenile versus adult birds at a wintering site in Belize. We found no age-related differences in body condition. Later migration timing of juveniles relative to adults could be an adaptive strategy (as opposed to condition-dependent) to avoid the high costs of fast migration and competition for breeding territories with experienced and larger adults. We did find significant differences in wing size between adults and juveniles, which could contribute to lower flight efficiency of juveniles and thus slower overall migration speed. We provide the first step toward understanding the "black box" of juvenile songbird migration by documenting their migration timing and en route performance.
Collapse
Affiliation(s)
- Emily A. McKinnon
- Dept. of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| | | | | | | |
Collapse
|
26
|
Barkan S, Yom-Tov Y, Barnea A. A possible relation between new neuronal recruitment and migratory behavior inAcrocephaluswarblers. Dev Neurobiol 2014; 74:1194-209. [DOI: 10.1002/dneu.22198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Shay Barkan
- Department of Zoology; Tel-Aviv University; Tel-Aviv 61391 Israel
| | - Yoram Yom-Tov
- Department of Zoology; Tel-Aviv University; Tel-Aviv 61391 Israel
| | - Anat Barnea
- Department of Natural and Life Sciences; The Open University of Israel; Ra'anana 43107 Israel
| |
Collapse
|
27
|
Mettke-Hofmann C. Cognitive ecology: ecological factors, life-styles, and cognition. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2014; 5:345-60. [PMID: 26308568 DOI: 10.1002/wcs.1289] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 11/08/2022]
Abstract
UNLABELLED Cognitive ecology integrates cognition, ecology, and neurobiology in one topic and has recently broadened into an exciting diversity of themes covering the entire range of cognition and ecological conditions. The review identifies three major environmental factors interacting with cognition: environmental variation (predictable and unpredictable), environmental complexity and predation. Generally, variable environments favor cognitive abilities such as exploration, learning, innovation, memory and also result in larger brains as compared to stable environments. Likewise, cognition is enhanced in complex versus simple environments, whereas the relationship between predation and cognitive abilities can be positive or negative. However, organisms have often evolved entire life-styles (e.g., residency versus migration, food-caching versus noncaching, generalism versus specialism) to deal with these environmental factors. Considering cognition within this framework provides a much more diverse picture of how cognitive abilities evolved in conjunction with other adaptations to environmental challenges. This integrated approach identifies gaps of knowledge and allows the formulation of hypotheses for future testing. Several recently emerged approaches study cognitive abilities at a new and in part highly integrated level. For example, the effect that environment has on the development of cognitive abilities during ontogeny will improve our understanding about cause and effect and gene-environment interactions. Together with two recently emerged highly integrative approaches that link personality and pace-of-life syndromes with cognitive ecology these new directions will improve insight how cognition is interlinked with other major organizational processes. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The author has declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Claudia Mettke-Hofmann
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
28
|
González-Gómez PL, Madrid-Lopez N, Salazar JE, Suárez R, Razeto-Barry P, Mpodozis J, Bozinovic F, Vásquez RA. Cognitive ecology in hummingbirds: the role of sexual dimorphism and its anatomical correlates on memory. PLoS One 2014; 9:e90165. [PMID: 24599049 PMCID: PMC3943908 DOI: 10.1371/journal.pone.0090165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/30/2014] [Indexed: 01/15/2023] Open
Abstract
In scatter-hoarding species, several behavioral and neuroanatomical adaptations allow them to store and retrieve thousands of food items per year. Nectarivorous animals face a similar scenario having to remember quality, location and replenishment schedules of several nectar sources. In the green-backed firecrown hummingbird (Sephanoides sephanoides), males are territorial and have the ability to accurately keep track of nectar characteristics of their defended food sources. In contrast, females display an opportunistic strategy, performing rapid intrusions into males territories. In response, males behave aggressively during the non-reproductive season. In addition, females have higher energetic demands due to higher thermoregulatory costs and travel times. The natural scenario of this species led us to compared cognitive abilities and hippocampal size between males and females. Males were able to remember nectar location and renewal rates significantly better than females. However, the hippocampal formation was significantly larger in females than males. We discuss these findings in terms of sexually dimorphic use of spatial resources and variable patterns of brain dimorphisms in birds.
Collapse
Affiliation(s)
- Paulina L. González-Gómez
- Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Instituto de Filosofía y Ciencias de la Complejidad, Santiago, Chile
- * E-mail:
| | - Natalia Madrid-Lopez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Juan E. Salazar
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rodrigo Suárez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Departamento de Ecología, MIII & LINCGlobal, Centro de Estudios Avanzados en Ecología & Biodiversidad, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A. Vásquez
- Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Salvanes AGV, Moberg O, Ebbesson LOE, Nilsen TO, Jensen KH, Braithwaite VA. Environmental enrichment promotes neural plasticity and cognitive ability in fish. Proc Biol Sci 2013; 280:20131331. [PMID: 23902903 DOI: 10.1098/rspb.2013.1331] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Different kinds of experience during early life can play a significant role in the development of an animal's behavioural phenotype. In natural contexts, this influences behaviours from anti-predator responses to navigation abilities. By contrast, for animals reared in captive environments, the homogeneous nature of their experience tends to reduce behavioural flexibility. Studies with cage-reared rodents indicate that captivity often compromises neural development and neural plasticity. Such neural and behavioural deficits can be problematic if captive-bred animals are being reared with the intention of releasing them as part of a conservation strategy. Over the last decade, there has been growing interest in the use of environmental enrichment to promote behavioural flexibility in animals that are bred for release. Here, we describe the positive effects of environmental enrichment on neural plasticity and cognition in juvenile Atlantic salmon (Salmo salar). Exposing fish to enriched conditions upregulated the forebrain expression of NeuroD1 mRNA and improved learning ability assessed in a spatial task. The addition of enrichment to the captive environment thus promotes neural and behavioural changes that are likely to promote behavioural flexibility and improve post-release survival.
Collapse
|
30
|
Distribution and characterization of doublecortin-expressing cells and fibers in the brain of the adult pigeon (Columba livia). J Chem Neuroanat 2013; 47:57-70. [DOI: 10.1016/j.jchemneu.2012.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 01/03/2023]
|
31
|
Mettke-Hofmann C, Wink M, Braun M, Winkler H. Residency and a Broad Feeding Spectrum are Related to Extensive Spatial Exploration in Parrots*. Behav Ecol 2012. [DOI: 10.1093/beheco/ars130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Nguyen N, Gesquiere L, Alberts SC, Altmann J. Sex differences in the mother–neonate relationship in wild baboons: social, experiential and hormonal correlates. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Römer B, Krebs J, Overall RW, Fabel K, Babu H, Overstreet-Wadiche L, Brandt MD, Williams RW, Jessberger S, Kempermann G. Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: I. Co-regulation by activity. Front Neurosci 2011; 5:107. [PMID: 21991243 PMCID: PMC3180604 DOI: 10.3389/fnins.2011.00107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 08/29/2011] [Indexed: 11/13/2022] Open
Abstract
Besides the massive plasticity at the level of synapses, we find in the hippocampus of adult mice and rats two systems with very strong macroscopic structural plasticity: adult neurogenesis, that is the lifelong generation of new granule cells, and dynamic changes in the mossy fibers linking the dentate gyrus to area CA3. In particular the anatomy of the infrapyramidal mossy fiber tract (IMF) changes in response to a variety of extrinsic and intrinsic stimuli. Because mossy fibers are the axons of granule cells, the question arises whether these two types of plasticity are linked. Using immunohistochemistry for markers associated with axonal growth and pro-opiomelanocortin (POMC)–GFP mice to visualize the post-mitotic maturation phase of adult hippocampal neurogenesis, we found that newly generated mossy fibers preferentially but not exclusively contribute to the IMF. The neurogenic stimulus of an enriched environment increased the volume of the IMF. In addition, the IMF grew with a time course consistent with axonal outgrowth from the newborn neurons after the induction of neurogenic seizures using kainate. These results indicate that two aspects of plasticity in the adult hippocampus, mossy fiber size and neurogenesis, are related and may share underlying mechanisms. In a second part of this study, published separately (Krebs et al., 2011) we have addressed the question of whether there is a shared genetics underlying both traits.
Collapse
Affiliation(s)
- Benedikt Römer
- Genomics of Regeneration, Center for Regenerative Therapies Dresden Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Barnea A, Pravosudov V. Birds as a model to study adult neurogenesis: bridging evolutionary, comparative and neuroethological approaches. Eur J Neurosci 2011; 34:884-907. [PMID: 21929623 PMCID: PMC3177424 DOI: 10.1111/j.1460-9568.2011.07851.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the last few decades, evidence has demonstrated that adult neurogenesis is a well-preserved feature throughout the animal kingdom. In birds, ongoing neuronal addition occurs rather broadly, to a number of brain regions. This review describes adult avian neurogenesis and neuronal recruitment, discusses factors that regulate these processes, and touches upon the question of their genetic control. Several attributes make birds an extremely advantageous model to study neurogenesis. First, song learning exhibits seasonal variation that is associated with seasonal variation in neuronal turnover in some song control brain nuclei, which seems to be regulated via adult neurogenesis. Second, food-caching birds naturally use memory-dependent behavior in learning the locations of thousands of food caches scattered over their home ranges. In comparison with other birds, food-caching species have relatively enlarged hippocampi with more neurons and intense neurogenesis, which appears to be related to spatial learning. Finally, migratory behavior and naturally occurring social systems in birds also provide opportunities to investigate neurogenesis. This diversity of naturally occurring memory-based behaviors, combined with the fact that birds can be studied both in the wild and in the laboratory, make them ideal for investigation of neural processes underlying learning. This can be done by using various approaches, from evolutionary and comparative to neuroethological and molecular. Finally, we connect the avian arena to a broader view by providing a brief comparative and evolutionary overview of adult neurogenesis and by discussing the possible functional role of the new neurons. We conclude by indicating future directions and possible medical applications.
Collapse
Affiliation(s)
- Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, PO Box 808, Ra'anana 43107, Israel.
| | | |
Collapse
|
35
|
Sherry DF. The Hippocampus of Food-Storing Birds. BRAIN, BEHAVIOR AND EVOLUTION 2011; 78:133-5. [DOI: 10.1159/000330314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Mehlhorn J, Rehkämper G. Homing pigeons as a model for the influence of experience on brain composition-including considerations on evolutionary theory. Commun Integr Biol 2010; 3:592-3. [DOI: 10.4161/cib.3.6.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/19/2022] Open
|
37
|
LaDage LD, Roth TC, Pravosudov VV. Hippocampal neurogenesis is associated with migratory behaviour in adult but not juvenile sparrows (Zonotrichia leucophrys ssp.). Proc Biol Sci 2010; 278:138-43. [PMID: 20659933 DOI: 10.1098/rspb.2010.0861] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been hypothesized that individuals who have higher demands for spatially based behaviours should show increases in hippocampal attributes. Some avian species have been shown to use a spatially based representation of their environment during migration. Further, differences in hippocampal attributes have been shown between migratory and non-migratory subspecies as well as between individuals with and without migratory experience (juveniles versus adults). We tested whether migratory behaviour might also be associated with increased hippocampal neurogenesis, and whether potential differences track previously reported differences in hippocampal attributes between a migratory (Zonotrichia leucophrys gambelii) and non-migratory subspecies (Z. l. nuttalli) of white-crowned sparrows. We found that non-migratory adults had relatively fewer numbers of immature hippocampal neurons than adult migratory birds, while adult non-migrants had a lower density of new hippocampal neurons than adult and juvenile migratory birds and juvenile non-migratory birds. Our results suggest that neurogenesis decreases with age, as juveniles, regardless of migratory status, exhibit similar and higher levels of neurogenesis than non-migratory adults. However, our results also suggest that adult migrants may either seasonally increase or maintain neurogenesis levels comparable to those found in juveniles. Our results thus suggest that migratory behaviour in adults is associated with maintained or increased neurogenesis and the differential production of new neurons may be the mechanism underpinning changes in the hippocampal architecture between adult migratory and non-migratory birds.
Collapse
Affiliation(s)
- Lara D LaDage
- Department of Biology, University of Nevada, Reno, , 1664 North Virginia Street, MS 314, Reno, NV 89557, USA.
| | | | | |
Collapse
|
38
|
Mehlhorn J, Haastert B, Rehkämper G. Asymmetry of different brain structures in homing pigeons with and without navigational experience. J Exp Biol 2010; 213:2219-24. [DOI: 10.1242/jeb.043208] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Homing pigeons (Columba livia f.d.) are well-known for their homing abilities, and their brains seem to be functionally adapted to homing as exemplified, e.g. by their larger hippocampi and olfactory bulbs. Their hippocampus size is influenced by navigational experience, and, as in other birds, functional specialisation of the left and right hemispheres (‘lateralisation’) occurs in homing pigeons. To show in what way lateralisation is reflected in brain structure volume, and whether some lateralisation or asymmetry in homing pigeons is caused by experience, we compared brains of homing pigeons with and without navigational experience referring to this. Fourteen homing pigeons were raised under identical constraints. After fledging, seven of them were allowed to fly around the loft and participated successfully in races. The other seven stayed permanently in the loft and thus did not share the navigational experiences of the first group. After reaching sexual maturity, all individuals were killed and morphometric analyses were carried out to measure the volumes of five basic brain parts and eight telencephalic brain parts. Measurements of telencephalic brain parts and optic tectum were done separately for the left and right hemispheres. The comparison of left/right quotients of both groups reveal that pigeons with navigational experience show a smaller left mesopallium in comparison with the right mesopallium and pigeons without navigational experience a larger left mesopallium in comparison with the right one. Additionally, there are significant differences between left and right brain subdivisions within the two pigeon groups, namely a larger left hyperpallium apicale in both pigeon groups and a larger right nidopallium, left hippocampus and right optic tectum in pigeons with navigational experience. Pigeons without navigational experience did not show more significant differences between their left and right brain subdivisions. The results of our study confirm that the brain of homing pigeons is an example for mosaic evolution and indicates that lateralisation is correlated with individual life history (experience) and not exclusively based on heritable traits.
Collapse
Affiliation(s)
- Julia Mehlhorn
- C. and O. Vogt Institute of Brain Research, University of Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | - Gerd Rehkämper
- C. and O. Vogt Institute of Brain Research, University of Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
39
|
Selective involvement of the goldfish lateral pallium in spatial memory. Behav Brain Res 2010; 210:191-201. [PMID: 20178818 DOI: 10.1016/j.bbr.2010.02.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 11/20/2022]
Abstract
The involvement of the main pallial subdivisions of the teleost telencephalic pallium in spatial cognition was evaluated in a series of three experiments. The first two compared the effects of lesions selective to the lateral (LP), medial (MP) and dorsal (DP) telencephalic pallium of goldfish, on the retention and the reversal learning of a spatial constancy task which requires the use of allocentric or relational strategies. The results showed that LP lesions produced a selective impairment on the capability of goldfish to solve the spatial task previously learned and on the reversal learning of the same procedure, whereas MP and DP lesions did not produce observable deficits. The third experiment evaluated, by means of the AgNOR stain, learning-dependent changes of the neuronal transcription activity in the pallium of goldfish trained in the spatial constancy task or in a cue version of the same procedure, which only differed on their spatial cognition demands. The results revealed that training in the spatial task produced an increment in the transcriptive activity which was selective to the neurons of the ventral lateral pallium, as indicated by increases in the size of the nucleolar organizing region (NOR), the nucleolar organelles associated with the synthesis of ribosomal proteins. In contrast, training in the cue version did not produced observable changes. These data, revealing a striking functional similarity between the lateral telencephalic pallium of the teleost fish and the amniote hippocampus, provide additional evidence regarding the homology of both structures.
Collapse
|
40
|
Tarr BA, Rabinowitz JS, Ali Imtiaz M, DeVoogd TJ. Captivity reduces hippocampal volume but not survival of new cells in a food-storing bird. Dev Neurobiol 2010; 69:972-81. [PMID: 19813245 DOI: 10.1002/dneu.20736] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In many naturalistic studies of the hippocampus wild animals are held in captivity. To test if captivity itself affects hippocampal integrity, adult black-capped chickadees (Poecile atricapilla) were caught in the fall, injected with bromodeoxyuridine to mark neurogenesis, and alternately released to the wild or held in captivity. The wild birds were recaptured after 4-6 weeks and perfused simultaneously with their captive counterparts. The hippocampus of captive birds was 23% smaller than wild birds, with no hemispheric differences in volume within groups. Between groups there was no statistically significant difference in the size of the telencephalon, or in the number and density of surviving new cells. Proximate causes of the reduced hippocampal volume could include stress, lack of exercise, diminished social interaction, or limited caching opportunity-a hippocampal-dependent activity. The results suggest the avian hippocampus-a structure essential for rapid, complex relational and spatial learning-is both plastic and sensitive, much as in mammals, including humans.
Collapse
Affiliation(s)
- Bernard A Tarr
- Department of Psychology, Cornell University, Ithaca, New York, USA.
| | | | | | | |
Collapse
|
41
|
LADAGE LARAD, RIGGS BECKYJ, SINERVO BARRY, PRAVOSUDOV VLADIMIRV. Dorsal cortex volume in male side-blotched lizards (Uta stansburiana) is associated with different space use strategies. Anim Behav 2009; 78:91-96. [PMID: 20161271 PMCID: PMC2701711 DOI: 10.1016/j.anbehav.2009.03.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spatial abilities have been associated with many ecologically-relevant behaviors such as territoriality, mate choice, navigation and acquisition of food resources. Differential demands on spatial abilities in birds and mammals have been shown to affect the hippocampus, the region of the brain responsible for spatial processing. In some bird and mammal species, higher demands on spatial abilities are associated with larger hippocampal volumes. The medial and dorsal cortices are the putative reptilian homologues of the mammalian hippocampus, yet few studies have examined the relationship between these brain areas and differential spatial use strategies in reptiles. Further, many studies in birds and mammals compare hippocampal attributes between species that utilize space differently, potentially confounding species-specific effects with effects due to differential behaviors in spatial use. Here, we investigated the relationship between spatial use strategies and medial and dorsal cortical volumes in males of the side-blotched lizard (Uta stansburiana). In this species, males occur in three different morphs, each morph using different spatial niches: large territory holders, small territory holders and non-territory holders with home ranges smaller than the territories of small territory holders. We found that large territory holders had larger dorsal cortical volumes relative to the remainder of the telencephalon compared with non-territorial males, and small territory holders were intermediate. These results suggest that some aspect of holding a large territory may place demands on spatial abilities, which is reflected in a brain region thought partially responsible for spatial processing.
Collapse
Affiliation(s)
| | | | - BARRY SINERVO
- University of California- Santa Cruz Department of Ecology & Evolutionary Biology
| | | |
Collapse
|
42
|
LaDage LD, Roth TC, Pravosudov VV. Biases in measuring the brain: the trouble with the telencephalon. BRAIN, BEHAVIOR AND EVOLUTION 2009; 73:253-8. [PMID: 19546533 DOI: 10.1159/000225623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 04/30/2009] [Indexed: 11/19/2022]
Abstract
When correlating behavior with particular brain regions thought responsible for the behavior, a different region of the brain is usually measured as a control region. This technique is often used to relate spatial processes with the hippocampus, while concomitantly controlling for overall brain changes by measuring the remainder of the telencephalon. We have identified two methods in the literature (the HOM and TTM) that estimate the volume of the telencephalon, although the majority of studies are ambiguous regarding the method employed in measuring the telencephalon. Of these two methods, the HOM might produce an artificial correlation between the telencephalon and the hippocampus, and this bias could result in a significant overestimation of the relative hippocampal volume and a significant underestimation of the telencephalon volume, both of which are regularly used in large comparative analyses. We suggest that future studies should avoid this method and all studies should explicitly delineate the procedures used when estimating brain volumes.
Collapse
Affiliation(s)
- Lara D LaDage
- Department of Biology, University of Nevada, Reno, Nev. 89557, USA.
| | | | | |
Collapse
|
43
|
Mehlhorn J, Rehkämper G. Neurobiology of the homing pigeon--a review. Naturwissenschaften 2009; 96:1011-25. [PMID: 19488733 DOI: 10.1007/s00114-009-0560-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/24/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
Homing pigeons are well known as good homers, and the knowledge of principal parameters determining their homing behaviour and the neurological basis for this have been elucidated in the last decades. Several orientation mechanisms and parameters-sun compass, earth's magnetic field, olfactory cues, visual cues-are known to be involved in homing behaviour, whereas there are still controversial discussions about their detailed function and their importance. This paper attempts to review and summarise the present knowledge about pigeon homing by describing the known orientation mechanisms and factors, including their pros and cons. Additionally, behavioural features like motivation, experience, and track preferences are discussed. All behaviour has its origin in the brain and the neuronal basis of homing and the neuroanatomical particularities of homing pigeons are a main topic of this review. Homing pigeons have larger brains in comparison to other non-homing pigeon breeds and particularly show increased size of the hippocampus. This underlines our hypothesis that there is a relationship between hippocampus size and spatial ability. The role of the hippocampus in homing and its plasticity in response to navigational experience are discussed in support of this hypothesis.
Collapse
Affiliation(s)
- Julia Mehlhorn
- Study Group Behaviour and Brain, C.&O. Vogt, Institute of Brain Research, University of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
44
|
Mettke-Hofmann C, Lorentzen S, Schlicht E, Schneider J, Werner F. Spatial Neophilia and Spatial Neophobia in Resident and Migratory Warblers (Sylvia). Ethology 2009. [DOI: 10.1111/j.1439-0310.2009.01632.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Li Y, Mu Y, Gage FH. Chapter 5 Development of Neural Circuits in the Adult Hippocampus. Curr Top Dev Biol 2009; 87:149-74. [DOI: 10.1016/s0070-2153(09)01205-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Healy SD, Bacon IE, Haggis O, Harris AP, Kelley LA. Explanations for variation in cognitive ability: Behavioural ecology meets comparative cognition. Behav Processes 2008; 80:288-94. [PMID: 18992792 DOI: 10.1016/j.beproc.2008.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 11/15/2022]
Abstract
Sara Shettleworth has played a defining role in the development of animal cognition and its integration into other parts of biology, especially behavioural ecology. Here we chart some of that progress in understanding the causes and importance of variation in cognitive ability and highlight how Tinbergen's levels of explanation provide a useful framework for this field. We also review how experimental design is crucial in investigating cognition and stress the need for naturalistic experiments and field studies. We focus particularly on the example of the relationship among food hoarding, spatial cognition and hippocampal structure, and review the conflicting evidence for sex differences in spatial cognition. We finish with speculation that a combination of Tinbergen and Shettleworth-style approaches would be the way to grapple with the as-yet unanswered questions of why birds mimic heterospecifics.
Collapse
Affiliation(s)
- S D Healy
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Kings Buildings, Edinburgh EH93JT, UK.
| | | | | | | | | |
Collapse
|
47
|
Eeva T, Ahola M, Laaksonen T, Lehikoinen E. The effects of sex, age and breeding success on breeding dispersal of pied flycatchers along a pollution gradient. Oecologia 2008; 157:231-8. [DOI: 10.1007/s00442-008-1074-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 05/09/2008] [Indexed: 11/25/2022]
|
48
|
Day LB, Guerra M, Schlinger BA, Rothstein SI. Sex differences in the effects of captivity on hippocampus size in brown-headed cowbirds (Molothrus ater obscurus). Behav Neurosci 2008; 122:527-34. [PMID: 18513123 PMCID: PMC2851228 DOI: 10.1037/0735-7044.122.3.527] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In brood parasitic cowbirds, hippocampus (Hp) size is correlated with environmental spatial memory demands. Searching for host nests is the presumed causal factor influencing cowbird Hp size, because Hp volumes vary across species, sexes, and seasons according to nest-searching participation. Brown-headed cowbirds have female-only nest searching and, at least in the eastern subspecies, a larger Hp in females than in males, suggesting that nest searching influences cowbird Hp size. We predicted that female brown-headed cowbirds housed in aviaries lacking host nests would have a smaller Hp than wild-caught females whereas males would be unaffected. We found that the Hp was smaller in captive females, but not males, compared to their wild-caught counterparts. This did not appear to be due to general effects of an impoverished environment on all brain regions. Our results imply that interruption of nest searching in cowbirds prevents seasonal increase in Hp size in females. Future studies should isolate which behavioral differences between wild and captive birds contributed to captivity-induced changes in Hp volume in females while not affecting males.
Collapse
Affiliation(s)
- Lainy B Day
- Department of Biology, University of Mississippi, 219 Shoemaker Hall, University, MS 38677, USA.
| | | | | | | |
Collapse
|
49
|
Hedenström A. Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos Trans R Soc Lond B Biol Sci 2008; 363:287-99. [PMID: 17638691 PMCID: PMC2606751 DOI: 10.1098/rstb.2007.2140] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The annual life cycle of many birds includes breeding, moult and migration. All these processes are time and energy consuming and the extent of investment in any one may compromise the others. The output from breeding is of course the ultimate goal for all birds, while the investment in moult and migration should be selected so that lifetime fitness is maximized. In particular, long-distance migrants breeding at high latitudes face severe time pressures, which is a probable reason why natural selection has evolved efficient behaviours, physiological and morphological adaptations allowing the maximum possible migration speed. Optimal migration theory commonly assumes time minimization as an overall strategy, but the minimization of energy cost and predation risk may also be involved. Based on these assumptions, it is possible to derive adaptive behaviours such as when and at which fuel load a stopover site should be abandoned. I review some core components of optimal migration theory together with some key predictions. A review of accumulated empirical tests of the departure rule indicates that time minimization is an important component of the overall migration strategy, and hence gives support to the assumption about time-selected migration. I also briefly discuss how the optimal policy may be implemented by the bird by applying a set of simple rules. The time constraints on migrants increase with increasing body size. Some consequences of this are discussed.
Collapse
Affiliation(s)
- Anders Hedenström
- Department of Theoretical Ecology, Lund University, Ecology Building, 223 62 Lund, Sweden.
| |
Collapse
|
50
|
Healy SD, Rowe C. A critique of comparative studies of brain size. Proc Biol Sci 2007; 274:453-64. [PMID: 17476764 PMCID: PMC1766390 DOI: 10.1098/rspb.2006.3748] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/28/2006] [Indexed: 11/12/2022] Open
Abstract
In recent years, there have been over 50 comparative analyses carried out in which social or ecological variables have been used to explain variation in whole brain size, or a part thereof, in a range of vertebrate species. Here, we review this body of work, pointing out that there are a number of substantial problems with some of the assumptions that underpin the hypotheses (e.g. what brain size means), with the data collection and with the ways in which the data are combined in the analyses. These problems are particularly apparent in those analyses in which attempts are made to correlate complex behaviour with parts of the brain that carry out multiple functions. We conclude that now is the time to substantiate these results with data from experimental manipulations.
Collapse
Affiliation(s)
- Susan D Healy
- Institute of Evolutionary Biology, School of Biological Sciences, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|