1
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kim EY, Inoue N, Koh DH, Iwata H. The aryl hydrocarbon receptor 2 potentially mediates cytochrome P450 1A induction in the jungle crow (Corvus macrorhynchos). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:99-111. [PMID: 30597322 DOI: 10.1016/j.ecoenv.2018.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
To understand the role of aryl hydrocarbon receptor (AHR) isoforms in avian species, we investigated the functional characteristics of two AHR isoforms (designated as jcAHR1 and jcAHR2) of the jungle crow (Corvus macrorhynchos). Two amino acid residues corresponding to Ile324 and Ser380 (high sensitive type) in chicken AHR1 that are known to determine dioxin sensitivity were Ile325 and Ala381 (moderate sensitive type) in jcAHR1 and Val306 and Ala362 (low sensitive type) in jcAHR2. The quantitative comparison of the two jcAHR mRNA expression levels in a Tokyo jungle crow population showed that jcAHR2 accounted for 92.4% in the liver, while jcAHR1 accounted for only 7.6%. Both in vitro-expressed jcAHR1 and jcAHR2 proteins exhibited a specific binding to [3H]-labeled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Transactivation potencies for jcAHR1 and jcAHR2 in in vitro reporter gene assays were measured in jcAHR-expressed cells exposed to 16 dioxins and related compounds (DRCs). Both jcAHR1 and jcAHR2 were activated in a congener- and an isoform-specific manner. EC50 value of TCDD for jcAHR2 (0.61 nM) was six-fold higher than that for jcAHR1 (0.098 nM), but jcAHR2 had higher transactivation efficacy than jcAHR1 in terms of the magnitude of response. The high transactivation efficacy of jcAHR2 in DRCs is in contrast to that of AHR2s in other avian species with low transactivation efficacy. Molecular docking simulations of TCDD with in silico jcAHR1 and jcAHR2 homology models showed that the two sensitivity-decisive amino acids indirectly controlled TCDD-binding modes through their surrounding amino acids. Deletion assays of jcAHR2 revealed that 736-805 amino acid residues in the C-terminal region were critical for its transactivation. We suggest that jcAHR2 plays a critical role in regulating the AHR signaling pathway, at least in its highly expressed organs.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea.
| | - Naomi Inoue
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan
| | - Dong-Hee Koh
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan.
| |
Collapse
|
3
|
Fraccalvieri D, Soshilov AA, Karchner SI, Franks DG, Pandini A, Bonati L, Hahn ME, Denison MS. Comparative analysis of homology models of the AH receptor ligand binding domain: verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor. Biochemistry 2013; 52:714-25. [PMID: 23286227 DOI: 10.1021/bi301457f] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity, and response have been observed, the structural determinants responsible for those differences have not been determined, and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of 16 AHRs from 12 mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from those of mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, and His388) that reduce the amount of internal space available to TCDD. Mutagenesis of two of these residues in zfAHR1a to those present in zfAHR2 (Y296H and T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in-depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue for examining species-specific differences in AHR responsiveness.
Collapse
Affiliation(s)
- Domenico Fraccalvieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Kim EY, Suda T, Tanabe S, Batoev VB, Petrov EA, Iwata H. Evaluation of relative potencies for in vitro transactivation of the baikal seal aryl hydrocarbon receptor by dioxin-like compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:1652-1658. [PMID: 21204517 DOI: 10.1021/es102991s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To evaluate the sensitivity and responses to dioxins and related compounds (DRCs) via aryl hydrocarbon receptor (AHR) in Baikal seals (Pusa sibirica), we constructed an in vitro reporter gene assay system. Baikal seal AHR (BS AHR) expression plasmid and a reporter plasmid containing CYP1A1 promoter were transfected in COS-7 cells. The cells were treated with six representative congeners, and dose-dependent responses were obtained for all the congeners. EC50 values of 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 2,3,7,8-TCDF, 2,3,4,7,8-PeCDF, and PCB126 were found to be 0.021, 1.8, 0.16, 2.4, and 2.5 nM, respectively. As the response did not reach the maximal plateau, EC50 value for PCB118 could not be obtained. The TCDD-EC50 for BS AHR was as high as that for dioxin sensitive C57BL/6 mouse AHR. The in vitro dose responses were further analyzed following an established systematic framework and multiple (20, 50, and 80%) relative potencies (REPs) to the maximum TCDD response. The estimates revealed lower REP ranges (20-80%) of PeCDD and PeCDF for BS AHR than for mouse AHR. Average of the 20, 50, and 80% REPs was designated as Baikal seal specific TCDD induction equivalency factor (BS IEF). The BS IEFs of PeCDD, TCDF, PeCDF, PCB126, and PCB118 were estimated as 0.010, 0.018, 0.0078, 0.0059, and 0.00010, respectively. Total TCDD induction equivalents (IEQs) that were calculated using BS IEFs and hepatic concentrations in wild Baikal seals corresponded to only 12-31% of 2005 WHO TEF-derived TEQs. Nevertheless, about 50% of Baikal seals accumulated IEQs over the TCDD-EC50 obtained in this study. This assessment was supported by the enhanced CYP1A1 mRNA expression found in 50% of the specimens contaminated over the TCDD-EC50. These findings suggest that the IEFs proposed from this in vitro assay could be used to predict AHR-mediated responses in wild seals.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| | | | | | | | | | | |
Collapse
|
5
|
Liu N, Pan L, Miao J, Xu C, Zhang L. Molecular cloning and sequence analysis and the response of a aryl hydrocarbon receptor homologue gene in the clam Ruditapes philippinarum exposed to benzo(a)pyrene. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:279-87. [PMID: 20624694 DOI: 10.1016/j.cbpc.2010.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 11/25/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) family of transcription factors. In the present study, a cDNA encoding an AhR homologue was initially cloned and sequenced from the clam, Ruditapes philippinarum. The predicted amino acid sequences contain regions characteristic of AhRs from other species including basic helix-loop-helix (bHLH) and Per-ARNT-Sim (PAS) domains, but it does not contain distinct Q-rich domain as found in the mammalian AhRs. The clam AhR homologue cDNA coded for a 765 amino acids protein and phylogenetic analysis demonstrated that it was clustered within the invertebrate AhRs branch. The clam AhR homologue mRNA expression was detected in all the adult tissues tested (gill, digestive gland, adductor muscle and mantle) and highest transcription level were observed in gill compared to other tissues. Quantitative real-time RT-PCR analysis revealed that the clam AhR homologue mRNA expression levels in gill and digestive gland of R. philippinarum were induced by benzo(a)pyrene (BaP) and the absolute expression levels of the gene showed temporal and dose-dependent response.
Collapse
Affiliation(s)
- Na Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | | | | | | | | |
Collapse
|
6
|
Pandini A, Soshilov AA, Song Y, Zhao J, Bonati L, Denison MS. Detection of the TCDD binding-fingerprint within the Ah receptor ligand binding domain by structurally driven mutagenesis and functional analysis. Biochemistry 2009; 48:5972-83. [PMID: 19456125 PMCID: PMC2859071 DOI: 10.1021/bi900259z] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent, basic helix-loop-helix Per-Arnt-Sim (PAS)-containing transcription factor that can bind and be activated by structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Our previous three-dimensional homology model of the mouse AhR (mAhR) PAS B ligand binding domain allowed identification of the binding site and its experimental validation. We have extended this analysis by conducting comparative structural modeling studies of the ligand binding domains of six additional high-affinity mammalian AhRs. These results, coupled with site-directed mutagenesis and AhR functional analysis, have allowed detection of the "TCDD binding-fingerprint" of conserved residues within the ligand binding cavity necessary for high-affinity TCDD binding and TCDD-dependent AhR transformation DNA binding. The essential role of selected residues was further evaluated using molecular docking simulations of TCDD with both wild-type and mutant mAhRs. Taken together, our results dramatically improve our understanding of the molecular determinants of TCDD binding and provide a basis for future studies directed toward rationalizing the observed species differences in AhR sensitivity to TCDD and understanding the mechanistic basis for the dramatic diversity in AhR ligand structure.
Collapse
Affiliation(s)
- Alessandro Pandini
- Division of Mathematical Biology, National Institute for Medical Research, The Ridgeway, London NW7 1AA, U.K
| | - Anatoly A. Soshilov
- Department of Environmental Toxicology, Meyer Hall, University of California, Davis, California 95616
| | - Yujuan Song
- Department of Environmental Toxicology, Meyer Hall, University of California, Davis, California 95616
| | - Jing Zhao
- Department of Environmental Toxicology, Meyer Hall, University of California, Davis, California 95616
| | - Laura Bonati
- Dipartimento di Scienze dell’Ambiente e del Territorio, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 1, 20126 Milano, Italy
| | - Michael S. Denison
- Department of Environmental Toxicology, Meyer Hall, University of California, Davis, California 95616
| |
Collapse
|
7
|
Tabuchi M, Veldhoen N, Dangerfield N, Jeffries S, Helbing CC, Ross PS. PCB-related alteration of thyroid hormones and thyroid hormone receptor gene expression in free-ranging harbor seals (Phoca vitulina). ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1024-31. [PMID: 16835054 PMCID: PMC1513321 DOI: 10.1289/ehp.8661] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Persistent organic pollutants are environmental contaminants that, because of their lipophilic properties and long half-lives, bioaccumulate within aquatic food webs and often reach high concentrations in marine mammals, such as harbor seals (Phoca vitulina). Exposure to these contaminants has been associated with developmental abnormalities, immunotoxicity, and reproductive impairment in marine mammals and other high-trophic-level wildlife, mediated via a disruption of endocrine processes. The highly conserved thyroid hormones (THs) represent one vulnerable endocrine end point that is critical for metabolism, growth, and development in vertebrates. We characterized the relationship between contaminants and specific TH receptor (TR) gene expression in skin/blubber biopsy samples, as well as serum THs, from free-ranging harbor seal pups (n = 39) in British Columbia, Canada, and Washington State, USA. We observed a contaminant-related increase in blubber TR-alpha gene expression [total polychlorinated biphenyls (capital sigmaPCBs); r = 0.679; p < 0.001] and a concomitant decrease in circulating total thyroxine concentrations (capital sigmaPCBs; r = -0.711; p < 0.001) . Consistent with results observed in carefully controlled laboratory and captive feeding studies, our findings suggest that the TH system in harbor seals is highly sensitive to disruption by environmental contaminants. Such a disruption not only may lead to adverse effects on growth and development but also could have important ramifications for lipid metabolism and energetics in marine mammals.
Collapse
Affiliation(s)
- Maki Tabuchi
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Cooper EL, Kvell K, Engelmann P, Nemeth P. Still waiting for the toll? Immunol Lett 2006; 104:18-28. [PMID: 16368151 DOI: 10.1016/j.imlet.2005.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 11/09/2005] [Accepted: 11/09/2005] [Indexed: 01/08/2023]
Abstract
Multicellular organisms including invertebrates and vertebrates live in various habitats that may be aquatic or terrestrial where they are constantly exposed to deleterious pathogens. These include viruses, bacteria, fungi, and parasites. They have evolved various immunodefense mechanisms that may protect them from infection by these microorganisms. These include cellular and humoral responses and the level of differentiation of the response parallels the evolutionary development of the species. The first line of innate immunity in earthworms is the body wall that prevents the entrance of microbes into the coelomic cavity that contains fluid in which there are numerous leukocyte effectors of immune responses. When this first barrier is broken, a series of host responses is set into motion activating the leukocytes and the coelomic fluid. The responses are classified as innate, natural, non-specific, non-anticipatory, non-clonal (germ line) in contrast to the vertebrate capacity that is considered adaptive, induced, specific, anticipatory and clonal (somatic). Specific memory is associated with the vertebrate response and there is information that the innate response of invertebrates may under certain conditions possess specific memory. The invertebrate system when challenged affects phagocytosis, encapsulation, agglutination, opsonization, clotting and lysis. At least two major leukocytes, small and large mediate lytic reactions against several tumor cell targets. Destruction of tumor cells in vitro shows that phagocytosis and natural killer cell responses are distinct properties of these leukocytes. This has prompted newer searches for immune function and regulation in other systems. The innate immune system of the earthworm has been analyzed for more than 40 years with every aspect examined. However, there are no known entire sequences of the earthworm as exists in these other invertebrates. Because the earthworm lives in soil and has been utilized as a successful monitor for pollution, there are studies that reveal up and down regulation of responses in the immune system after exposure to a variety of environmental pollutants. Moreover, there are partial sequences that appear in earthworms after exposure to environmental pollutants such as cadmium and copper. There are now attempts to define the AHR receptor crucial for intracellular signaling after exposure to pollutants, but without linking the signals to changes in the immune system. There are several pathways for signal transduction, including JAK/STAT, TOLL, TRAF PIP3, known in invertebrates and vertebrates. For resistance to pathogens, conserved signal transduction components are required and these include a Toll/IL-1 receptor domain adaptor protein that functions upstream of a conserved p38 MAP kinase pathway. This pathway may be an ancestral innate immune signaling pathway found in a putative common ancestor of nematodes, arthropods and even vertebrates. It could also help us to link pollution, innate immunity and transduction in earthworms.
Collapse
Affiliation(s)
- E L Cooper
- Laboratory of Comparative Neuroimmunology, Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, LA 90095-1763, USA
| | | | | | | |
Collapse
|
9
|
Mortensen AS, Tolfsen CC, Arukwe A. Gene expression patterns in estrogen (nonylphenol) and aryl hydrocarbon receptor agonists (PCB-77) interaction using rainbow trout (Oncorhynchus Mykiss) primary hepatocyte culture. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:1-19. [PMID: 16291559 DOI: 10.1080/15287390500257792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It was previously reported that in vivo exposure of fish to combined aryl hydrocarbon receptor agonist (AhR; 3,3',4,4'-tetrachlorobiphenyl, PCB-77) and estrogen receptor agonist (ER; nonylphenol, NP) resulted in potentiation and inhibition (depending on dose ratio, sequential order of exposure, and seasonal changes) of NP-induced responses by PCB-77. The experiments described in this report extend this study by testing whether the effects of PCB-77 on NP-induced ER signaling are mediated through AhR-induced transcriptional suppression of target genes. Trout hepatocytes were isolated by a two-step collagenase perfusion method. After 48-h culture, hepatocytes were exposed to 5 or 10 microM nonylphenol (NP) singly and in combination with PCB-77 at 0.1, 1, and 10 microM. Cells were harvested after 96-h exposure and processed for RNA isolation. Gene expression patterns were quantified using real-time polymerase chain reaction (PCR) with specific primer sets and by Northern blot. Exposure of cells to NP caused significant elevation of ERalpha, ERbeta, Vtg, and Zrp mRNA expressions, while combined exposure with PCB-77 concentration inhibited NP-induced ERs and their target gene expressions. Exposure of trout hepatocytes to PCB-77 alone caused a rapid induction of cytochrome P-450 (CYP) 1A1 mRNA, and combined exposure with NP caused significant reduction in PCB-77 induced CYP1A1 gene expression. Exposure of cells to PCB-77 concentrations induced significant reduction in AhRalpha mRNA (except 1 microM PCB-77, which caused the induction of AhRalpha mRNA levels). AhRbeta mRNA levels in the cells were inhibited after 96-h exposure to PCB-77, while combined exposure with 5 microM NP restored the PCB-77-inhibited AhRbeta mRNA levels to baseline. Taken together, the overall results in this study show that PCB-77 suppresses the gene expression of the ERs and their target genes by transcription mechanism(s). The roles of AhRs in mediating these responses seem to involve the ligand-activated AhR transcriptional induction of CYP1A1. In addition to their frequently described functions as activators of metabolic potentiation and detoxification of various foreign chemicals, data presented in the present study point to other endogenous functions of AhRs that need to be studied further.
Collapse
|
10
|
Kim EY, Iwata H, Suda T, Tanabe S, Amano M, Miyazaki N, Petrov EA. Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) expression in Baikal seal (Pusa sibirica) and association with 2,3,7,8-TCDD toxic equivalents and CYP1 expression levels. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:281-91. [PMID: 16111922 DOI: 10.1016/j.cca.2005.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 06/28/2005] [Accepted: 07/06/2005] [Indexed: 11/19/2022]
Abstract
Most toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) are mediated by ligand-activated aryl hydrocarbon receptor (AHR) signaling pathway. To understand the regulation mechanism of AHR and AHR nuclear translocator (ARNT) expression in wild Baikal seal (Pusa sibirica) population contaminated by PHAHs, the present study investigated hepatic mRNA expression levels of AHR and its heterodimer, ARNT genes, in association with biological index (age, gender and body weight), PHAH accumulation and expression levels of cytochrome P450 (CYP) 1A and 1B. While there was no gender difference, the AHR mRNA expression levels were increased with ages (p = 0.014) and body weights (p = 0.015), indicating that AHR expression might be affected by these biological factors. The AHR mRNA expression levels exhibited significant positive correlations with total TEQs and most of individual congener TEQs derived from polychorinated dibenzo-p-dioxins, dibenzofurans and non-ortho coplanar polychorinated biphenyls (PCBs), indicating the transcriptional up-regulation of AHR expression by these congeners. On the other hand, there was no significant correlation between individual TEQs from mono-ortho coplanar PCBs and AHR expression. These results imply the structure-related transcriptional activity of AHR among PHAHs congeners. AHR mRNA levels showed positive correlations with both CYP1A protein (p = 0.039) and CYP1A1 mRNA expression levels (p = 0.046). In contrast to AHR expression, neither the total nor individual congener TEQs influenced ARNT at the transcriptional level. ARNT mRNA showed significant negative correlations with CYP1A/1B protein (p = 0.027 and p = 0.006) and CYP1A1 mRNA expression levels (p = 0.039), implying the existence of different transcriptional regulation between AHR and ARNT genes and negative regulation by CYP1A/1B-mediated signaling pathways. The present findings may render significant insight on the basic mechanisms underlying regulation of AHR and ARNT expressions associated with biological factors and PHAH exposure in wild mammalian populations.
Collapse
Affiliation(s)
- Eun-Young Kim
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama 790-0003, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Barron MG, Heintz R, Krahn MM. Contaminant exposure and effects in pinnipeds: implications for Steller sea lion declines in Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2003; 311:111-133. [PMID: 12826388 DOI: 10.1016/s0048-9697(03)00140-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
After nearly 3 decades of decline, the western stock of Steller sea lions (SSL; Eumetopias jubatus) was listed as an endangered species in 1997. While the cause of the decline in the 1970s and 1980s has been attributed to nutritional stress, recent declines are unexplained and may result from other factors including the presence of environmental contaminants. SSL tissues show accumulation of butyltins, mercury, PCBs, DDTs, chlordanes and hexachlorobenzene. SSL habitats and prey are contaminated with additional chemicals including mirex, endrin, dieldrin, hexachlorocyclohexanes, tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, cadmium and lead. In addition, many SSL haulouts and rookeries are located near other hazards including radioactivity, solvents, ordnance and chemical weapon dumps. PCB and DDT concentrations measured in a few SSL during the 1980s were the highest recorded for any Alaskan pinniped. Some contaminant exposures in SSL appear to be elevated in the Gulf of Alaska and Bering Sea compared to southeast Alaska, but there are insufficient data to evaluate geospatial relationships with any certainty. Based on very limited blubber data, current levels of PCBs may not pose a risk to SSL based on comparison to immunotoxicity tissue benchmarks, but SSL may have been at risk from pre-1990 PCB exposures. While exposure to PCBs and DDTs may be declining, SSL are likely exposed to a multitude of other contaminants that have not been monitored. The impacts of these exposures on SSL remain unknown because causal effects have not been established. Field studies with SSL have been limited in scope and have not yet linked contaminant exposures to adverse animal health or population effects. Several biomarkers may prove useful for monitoring exposure and additional research is needed to evaluate their utility in SSL. We conclude that there are insufficient data to reject the hypothesis that contaminants play a role in the continued decline of SSL, and suggest that a coordinated monitoring program be developed which can be related to key biological, ecological and laboratory toxicity data.
Collapse
Affiliation(s)
- Mace G Barron
- P.E.A.K. Research, 1134 Avon Lane, Longmont, CO 80501, USA.
| | | | | |
Collapse
|
12
|
Song J, Clagett-Dame M, Peterson RE, Hahn ME, Westler WM, Sicinski RR, DeLuca HF. A ligand for the aryl hydrocarbon receptor isolated from lung. Proc Natl Acad Sci U S A 2002; 99:14694-9. [PMID: 12409613 PMCID: PMC137481 DOI: 10.1073/pnas.232562899] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that is best known because it mediates the actions of polycyclic and halogenated aromatic hydrocarbon environmental toxicants such as 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We report here the successful identification of an endogenous ligand for this receptor; approximately 20 microg was isolated in pure form from 35 kg of porcine lung. Its structure was deduced as 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester from extensive physical measurements and quantum mechanical calculations. In a reporter gene assay, this ligand activates the AHR with a potency five times greater than that of beta-naphthoflavone, a prototypical synthetic AHR ligand. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester competes with 2,3,7,8-[(3)H]tetrachlorodibenzo-p-dioxin for binding to human, murine, and fish AHRs, thus showing that AHR activation is caused by direct receptor binding, and that recognition of this endogenous ligand is conserved from early vertebrates (fish) to humans.
Collapse
Affiliation(s)
- Jiasheng Song
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Animals have evolved inducible enzymatic defenses to facilitate the biotransformation and elimination of toxic compounds encountered in the environment. The sensory component of this system consists of soluble receptors that regulate the expression of certain isoforms of cytochrome P450, other enzymes, and transporters in response to environmental chemicals. These receptors include several members of the steroid/nuclear receptor superfamily as well as the aryl hydrocarbon receptor (AHR), a member of the bHLH-PAS gene superfamily. In addition to its adaptive functions, the AHR serves poorly understood physiological roles; interference with those roles by dioxins and related chemicals causes toxicity. One approach to understanding the physiological significance of the AHR is to characterize its structure, function, and regulation in diverse species, including mammals, birds, fish, and invertebrates. These animal groups include model species with unique features that can be exploited to broaden our understanding of AHR function. Studies carried out in diverse species also provide phylogenetic information that allows inferences about the evolutionary history of the AHR. This review summarizes the current understanding of AHR diversity among animal species and the evolution of the AHR signaling pathway, as inferred from molecular studies in vertebrate and invertebrate animals. The AHR gene has undergone duplication and diversification in vertebrate animals, resulting in at least three members of an AHR gene family: AHR1, AHR2, and AHR repressor. The inability of invertebrate AHR homologs to bind dioxins and related chemicals, along with other evidence, suggests that the adaptive role of the AHR as a regulator of xenobiotic metabolizing enzymes may have been a vertebrate innovation. The physiological functions of the AHR during development appear to be ancestral to the adaptive functions. Sensitivity to the developmental toxicity of dioxins and related chemicals may have had its origin in the evolution of dioxin-binding capacity of the AHR in the vertebrate lineage.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Redfield 340, MS 32, 45 Water Street, MA 02543-1049, USA.
| |
Collapse
|
14
|
Kim EY, Hahn ME, Iwata H, Tanabe S, Miyazaki N. cDNA cloning of an aryl hydrocarbon receptor from Baikal seals (Phoca sibirica). MARINE ENVIRONMENTAL RESEARCH 2002; 54:285-289. [PMID: 12408578 DOI: 10.1016/s0141-1136(02)00180-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Species differences in sensitivity to related planar halogenated aromatic hydrocarbons (PHAH) add significant uncertainty in assessing the ecological risk to aquatic mammals. To investigate mechanisms of PHAH sensitivity in aquatic mammals, we cloned and sequenced the cDNA of Baikal seal aryl hydrocarbon receptor (AHR), an intracellular protein that initiates PHAH-mediated effects. The Baikal seal AHR cDNA has an open reading frame of 843 amino acid residues with a predicted molecular mass of 94.6 kDa. Comparison of AHR amino acid sequences indicated a high degree of sequence conservation (98%) between Baikal and harbor seals. The high conservation of AHRs between Baikal and harbor seals indicates that these seals express AHR proteins closely related structurally. In our previous report (Kim & Hahn, 2002), the dioxin-binding affinity of the harbor seal AHR was at least as high as that of the AHR from a dioxin-sensitive strain of mice, suggesting that this seal species may be sensitive to PHAH effects. This implies that Baikal seal may also be sensitive to dioxin effects.
Collapse
Affiliation(s)
- Eun-Young Kim
- Environmental Chemistry and Ecotoxicology, Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan.
| | | | | | | | | |
Collapse
|