1
|
Tak IR, Dar JS, Dar SA, Ganai BA, Chishti MZ, Ahmad F. A comparative analysis of various antigenic proteins found in Haemonchus contortus—a review. Mol Biol 2015. [DOI: 10.1134/s0026893315060217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Zhou QJ, Yang Y, Guo XL, Duan LJ, Chen XQ, Yan BL, Zhang HL, Du AF. Expression of Caenorhabditis elegans-expressed Trans-HPS, partial aminopeptidase H11 from Haemonchus contortus. Exp Parasitol 2014; 145:87-98. [PMID: 25128369 DOI: 10.1016/j.exppara.2014.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/29/2014] [Accepted: 08/04/2014] [Indexed: 01/26/2023]
Abstract
Aminopeptidase H11 present in the surface of intestine microvilli in Haemonchus contortus was identified as the most effective antigen candidate. However, its recombinant forms produced in Escherichiacoli, insect cells and yeast could not provide promising protection against H. contortus challenge, probably due to the inappropriate glycosylation and/or conformational folding. Herein, partial H11 containing the potential zinc-binding domain and two predicted glycosylation sites (nt 1 bp-1710 bp, Trans-HPS) was subcloned downstream of 5' flanking region of Caenorhabditis elegans cpr-1 gene in pPD95.77 vector, with the deletion of GFP gene. The recombinant was expressed in C. elegans and verified by blotting with anti-H11 and anti-Trans-HPS rabbit polyclonal antibodies and anti-His monoclonal antibody. Stably inherited Trans-HPS in worm descendants was achieved by integration using UV irradiation. Immunization with the crude Trans-HPS extracted from transgenic worms resulted in 37.71% reduction in faecal egg counts (FEC) (P<0.05) and 24.91% reduction in worm burden, but an upward curve with moderate rate of daily FEC in goats. These results suggested an apparent delay against H. contortus egg-laying in goats, which differed from that with bacteria-origin form of partial H11 (nt 670 bp-1710 bp, HPS) (26.04% reduction in FEC and 18.46% reduction in worm burden). These findings indicate the feasibility of sufficient C. elegans-expressed H11 for the immunological research and vaccine development.
Collapse
Affiliation(s)
- Qian-Jin Zhou
- School of Marine Science, Ningbo University, Ningbo 315211, China; Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Lu Guo
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Li-Jun Duan
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue-Qiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Bao-Long Yan
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hong-Li Zhang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ai-Fang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Ansell BRE, Schnyder M, Deplazes P, Korhonen PK, Young ND, Hall RS, Mangiola S, Boag PR, Hofmann A, Sternberg PW, Jex AR, Gasser RB. Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics--prospects for new interventions. Biotechnol Adv 2013; 31:1486-500. [PMID: 23895945 DOI: 10.1016/j.biotechadv.2013.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/28/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
Angiostrongylus vasorum is a metastrongyloid nematode of dogs and other canids of major clinical importance in many countries. In order to gain first insights into the molecular biology of this worm, we conducted the first large-scale exploration of its transcriptome, and predicted essential molecules linked to metabolic and biological processes as well as host immune responses. We also predicted and prioritized drug targets and drug candidates. Following Illumina sequencing (RNA-seq), 52.3 million sequence reads representing adult A. vasorum were assembled and annotated. The assembly yielded 20,033 contigs, which encoded proteins with 11,505 homologues in Caenorhabditis elegans, and additional 2252 homologues in various other parasitic helminths for which curated data sets were publicly available. Functional annotation was achieved for 11,752 (58.6%) proteins predicted for A. vasorum, including peptidases (4.5%) and peptidase inhibitors (1.6%), protein kinases (1.7%), G protein-coupled receptors (GPCRs) (1.5%) and phosphatases (1.2%). Contigs encoding excretory/secretory and immuno-modulatory proteins represented some of the most highly transcribed molecules, and encoded enzymes that digest haemoglobin were conserved between A. vasorum and other blood-feeding nematodes. Using an essentiality-based approach, drug targets, including neurotransmitter receptors, an important chemosensory ion channel and cysteine proteinase-3 were predicted in A. vasorum, as were associated small molecular inhibitors/activators. Future transcriptomic analyses of all developmental stages of A. vasorum should facilitate deep explorations of the molecular biology of this important parasitic nematode and support the sequencing of its genome. These advances will provide a foundation for exploring immuno-molecular aspects of angiostrongylosis and have the potential to underpin the discovery of new methods of intervention.
Collapse
Affiliation(s)
- Brendan R E Ansell
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Crook M, Grant K, Grant WN. Failure of Parastrongyloides trichosuri daf-7 to complement a Caenorhabditis elegans daf-7 (e1372) mutant: Implications for the evolution of parasitism. Int J Parasitol 2010; 40:1675-83. [DOI: 10.1016/j.ijpara.2010.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
|
5
|
The gene structure and promoter region of the vaccine target aminopeptidase H11 from the blood-sucking nematode parasite of ruminants, Haemonchus contortus. Funct Integr Genomics 2010; 10:589-601. [DOI: 10.1007/s10142-010-0172-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 03/29/2010] [Accepted: 04/01/2010] [Indexed: 12/17/2022]
|
6
|
Stepek G, McCormack G, Page AP. The kunitz domain protein BLI-5 plays a functionally conserved role in cuticle formation in a diverse range of nematodes. Mol Biochem Parasitol 2010; 169:1-11. [DOI: 10.1016/j.molbiopara.2009.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 11/16/2022]
|
7
|
Stepek G, McCormack G, Page AP. Collagen processing and cuticle formation is catalysed by the astacin metalloprotease DPY-31 in free-living and parasitic nematodes. Int J Parasitol 2009; 40:533-42. [PMID: 19883650 DOI: 10.1016/j.ijpara.2009.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/05/2009] [Accepted: 10/08/2009] [Indexed: 11/24/2022]
Abstract
The exoskeleton or cuticle performs many key roles in the development and survival of all nematodes. This structure is predominantly collagenous in nature and requires numerous enzymes to properly fold, modify, process and cross-link these essential structural proteins. The cuticle structure and its collagen components are conserved throughout the nematode phylum but differ from the collagenous matrices found in vertebrates. This structure, its formation and the enzymology of nematode cuticle collagen biogenesis have been elucidated in the free-living nematode Caenorhabditis elegans. The dpy-31 gene in C. elegans encodes a procollagen C-terminal processing enzyme of the astacin metalloprotease or bone morphogenetic protein class that, when mutated, results in a temperature-sensitive lethal phenotype associated with cuticle defects. In this study, orthologues of this essential gene have been identified in the phylogenetically diverse parasitic nematodes Haemonchus contortus and Brugia malayi. The DPY-31 protein is expressed in the gut and secretory system of C. elegans, a location also confirmed when a B. malayi transcriptional dpy-31 promoter-reporter gene fusion was expressed in C. elegans. Functional conservation between the nematode enzymes was supported by the fact that heterologous expression of the H. contortus dpy-31 orthologue in a C. elegans dpy-31 mutant resulted in the full rescue of the mutant body form. This interspecies conservation was further established when the recombinant nematode enzymes were found to have a similar range of inhibitable protease activities. In addition, the recombinant DPY-31 enzymes from both H. contortus and B. malayi were shown to efficiently process the C. elegans cuticle collagen SQT-3 at the correct C-terminal procollagen processing site.
Collapse
Affiliation(s)
- Gillian Stepek
- Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G611QH, UK
| | | | | |
Collapse
|
8
|
Abstract
There is increasing interest in the use of the free-living nematode Caenorhabditis elegans as a tool for parasitic nematode research and there are now a number of compelling examples of its successful application. C. elegans has the potential to become a standard tool for molecular helminthology researchers, just as yeast is routinely used by molecular biologists to study vertebrate biology. However, in order to exploit C. elegans in a meaningful manner, we need a detailed understanding of the extent to which different aspects of C. elegans biology have been conserved with particular groups of parasitic nematodes. This review first considers the current state of knowledge regarding the conservation of genome organisation across the nematode phylum and then discusses some recent evolutionary development studies in free-living nematodes. The aim is to provide some important concepts that are relevant to the extrapolation of information from C. elegans to parasitic nematodes and also to the interpretation of experiments that use C. elegans as a surrogate expression system. In general, examples have been specifically chosen because they highlight the importance of careful experimentation and interpretation of data. Consequently, the focus is on the differences that have been found between nematode species rather than the similarities. Finally, there is a detailed discussion of the current status of C. elegans as a heterologous expression system to study parasite gene function and regulation using successful examples from the literature.
Collapse
Affiliation(s)
- J S Gilleard
- Department of Veterinary Parasitology, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
9
|
Geldhof P, De Maere V, Vercruysse J, Claerebout E. Recombinant expression systems: the obstacle to helminth vaccines? Trends Parasitol 2007; 23:527-32. [DOI: 10.1016/j.pt.2007.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 01/06/2023]
|
10
|
Murray L, Geldhof P, Clark D, Knox DP, Britton C. Expression and purification of an active cysteine protease of Haemonchus contortus using Caenorhabditis elegans. Int J Parasitol 2007; 37:1117-25. [PMID: 17451718 DOI: 10.1016/j.ijpara.2007.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 02/27/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
Many proteolytic enzymes of parasitic nematodes have been identified as possible targets of control. Testing these as vaccine or drug targets is often difficult due to the problems of expressing proteases in a correctly folded, active form in standard expression systems. In an effort to overcome these difficulties we have tested Caenorhabditis elegans as an expression system for a Haemonchus contortus cathepsin L cysteine protease, Hc-CPL-1. Recombinant Hc-CPL-1 with a polyhistidine tag added to the C-terminal was expressed in an active and glycosylated form in C. elegans. Optimal expression was obtained expressing Hc-cpl-1 under control of the promoter of the homologous C. elegans cpl-1 gene. The recombinant protein was purified from liquid cultures by nickel chelation chromatography in sufficient amounts for vaccination studies to be carried out. This study provides proof of principle that active, post-translationally modified parasitic nematode proteases can be expressed in C. elegans and this approach can be extended for expression of known protective antigens.
Collapse
Affiliation(s)
- Linda Murray
- Division of Veterinary Infection and Immunity, University of Glasgow Veterinary School, Bearsden Road, Glasgow G61 1QH, UK
| | | | | | | | | |
Collapse
|
11
|
POKHAREL DR, RATHAUR S. Helminth proteases: the leading vaccine candidates against helminth infections. Parasite Immunol 2006. [DOI: 10.1111/j.1365-3024.2006.00855.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Newton-Howes J, Heath DD, Shoemaker CB, Grant WN. Characterisation and expression of an Hsp70 gene from Parastrongyloides trichosuri. Int J Parasitol 2006; 36:467-74. [PMID: 16469320 DOI: 10.1016/j.ijpara.2005.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 11/23/2022]
Abstract
Parastrongyloides trichosuri is a nematode parasite of Australian brushtail possums that has an alternative free-living life cycle which can be readily maintained indefinitely in a laboratory setting. The ability to maintain this parasite in a free-living cycle and induce it to parasitism at the free-living L1 stage makes this an excellent model for the study of genes associated with parasitism. A 70kD protein from infective larvae of P. trichosuri that appears to be immunogenic in infected possums has been identified as a heat shock protein (Hsp)70 homologue. The complete gene for Pt-Hsp70 was cloned and sequenced. The protein encoded by the Pt-Hsp70 gene is the likely orthologue of the Caenorhabditis elegans protein, Hsp70A, also known as hsp-1. Reverse transcriptase-PCR data indicate that Pt-Hsp70 (designated Pt-hsp-1) is expressed at readily detectable levels in all developmental stages of both the parasitic and free-living P. trichosuri life cycles and the promoter is mildly inducible by heat shock. Bioinformatic analysis of expressed sequence tag databases indicates that C. eleganshsp-1 homologues, together with C. eleganshsp-3 homologues, are the predominant members of the Hsp70 superfamily that are normally expressed in parasitic stages of the Strongyloididae family. Promoter fusions to a beta-galactosidase coding sequence were prepared and introduced into wild type C. elegans to produce transgenic nematodes. Reporter gene expression was clearly present within embryonic cells and within intestinal cells of larval and adult stages. Thus, the expression of the Pt-hsp-1 promoter within P. trichosuri and transgenic C. elegans appears similar to the known expression of C. elegans hsp-1. This promoter should be of value in efforts to develop genetic manipulation tools for P. trichosuri.
Collapse
Affiliation(s)
- J Newton-Howes
- AgResearch Ltd, Wallaceville Animal Research Centre, Ward Street, P.O. Box 40063, Upper Hutt, New Zealand
| | | | | | | |
Collapse
|
13
|
Sangster NC, Song J, Demeler J. Resistance as a tool for discovering and understanding targets in parasite neuromusculature. Parasitology 2006; 131 Suppl:S179-90. [PMID: 16569289 DOI: 10.1017/s0031182005008656] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The problem of anthelmintic resistance prevents efficient control of parasites of livestock and may soon compromise human parasite control. Research into the mechanisms of resistance and the quest for diagnostic tools to aid control has required research that focuses on field resistance. On the other hand, resistant worms, including those kept in the laboratory, provide useful tools for studying drug action, especially at neuromuscular targets in worms. While the needs and directions of these research aims overlap, this review concentrates on research on drug targets. In this context, resistance is a useful tool for site of action confirmation. For example, correlations between molecular expression studies and resistance assays conducted on whole worms can strengthen claims for sites of anthelmintic action. Model systems such as Caenorhabditis elegans have been very useful in understanding targets but give a limited picture as it is now clear that resistance mechanisms in this worm are different from those in parasites. Accordingly, research on parasites themselves must also be performed. Resistant isolates of the sheep nematode parasite Haemonchus contortus are the most widely used for this purpose as in vivo, in vitro, physiological and molecular studies can be performed with this species. Neuromuscular target sites for the anthelmintics levamisole and ivermectin are the best studied and have benefited most from the use of resistant worm isolates. Resistance to praziquantel and the newer chemical groups should provide new tools to explore targets in the future.
Collapse
Affiliation(s)
- N C Sangster
- Faculty of Veterinary Science, University of Sydney, 2006, Australia.
| | | | | |
Collapse
|
14
|
Pillai S, Kalinna BH, Liebau E, Hartmann S, Theuring F, Lucius R. Studies on Acanthocheilonema viteae cystatin: genomic organization, promoter studies and expression in Caenorhabditis elegans. FILARIA JOURNAL 2005; 4:9. [PMID: 16091144 PMCID: PMC1187909 DOI: 10.1186/1475-2883-4-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 08/09/2005] [Indexed: 01/12/2023]
Abstract
Cystatins are reversible, tightly binding inhibitors of cysteine proteases. Filarial cystatins have been ascribed immunomodulatory properties and have been implicated in protective immunity. To continue exploration of this potential, here we have determined the sequence, structure and genomic organization of the cystatin gene locus of A. viteae. The gene is composed of 4 exons separated by 3 introns and spans ~2 kb of genomic DNA. The upstream genomic sequence contains transcriptional factor binding sites such as AP-1 and NF-Y, an inverted CCAAT sequence, and a TATA box. To investigate sites of cystatin expression, Caenorhabditis elegans worms were transformed by microinjection with the putative promoter region and the first exon of the A. viteae cystatin gene fused to the reporter GFP. In transgenic worms fluorescence was observed in the pharyngeal and rectal gland cells suggesting that cystatin is secreted. Additionally, A. viteae cystatin was expressed in C. elegans to explore its potential as an expression system for filarial genes.
Collapse
Affiliation(s)
- Smitha Pillai
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Bernd H Kalinna
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Eva Liebau
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Susanne Hartmann
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Franz Theuring
- Institute for Pharmacology and Toxicology, Charitée, 10115 Berlin, Germany
| | - Richard Lucius
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
15
|
Knox DP. Technological advances and genomics in metazoan parasites. Int J Parasitol 2004; 34:139-52. [PMID: 15037101 DOI: 10.1016/j.ijpara.2003.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 10/24/2003] [Accepted: 10/31/2003] [Indexed: 10/26/2022]
Abstract
Molecular biology has provided the means to identify parasite proteins, to define their function, patterns of expression and the means to produce them in quantity for subsequent functional analyses. Whole genome and expressed sequence tag programmes, and the parallel development of powerful bioinformatics tools, allow the execution of genome-wide between stage or species comparisons and meaningful gene-expression profiling. The latter can be undertaken with several new technologies such as DNA microarray and serial analysis of gene expression. Proteome analysis has come to the fore in recent years providing a crucial link between the gene and its protein product. RNA interference and ballistic gene transfer are exciting developments which can provide the means to precisely define the function of individual genes and, of importance in devising novel parasite control strategies, the effect that gene knockdown will have on parasite survival.
Collapse
Affiliation(s)
- D P Knox
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland EH26 0PZ, UK.
| |
Collapse
|
16
|
Knox DP, Redmond DL, Newlands GF, Skuce PJ, Pettit D, Smith WD. The nature and prospects for gut membrane proteins as vaccine candidates for Haemonchus contortus and other ruminant trichostrongyloids. Int J Parasitol 2004; 33:1129-37. [PMID: 13678629 DOI: 10.1016/s0020-7519(03)00167-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Substantial progress has been made in the last decade in identifying several antigens from Haemonchus contortus which, in their native form, stimulate useful levels of protective immunity (70-95% reductions in faecal egg output) in the ovine host. Much work has focussed on proteins/protein complexes expressed on the surface of the worm gut which are exposed to the blood meal, and, hence, antibody ingested with it. The antigens generally, but not in all cases, show protease activity and antibody is thought to mediate protective immunity by blocking the activity of enzymes involved in digestion within the worm. This review summarises the protective efficacy, as well as the biochemical and molecular properties, of the principal candidate antigens which are expressed in the gut of these parasites. Of course, such antigens will have to be expressed as recombinant proteins to be sufficiently cost-effective for use in a commercial vaccine and the current status of recombinant antigen expression is discussed with particular reference to conformation and glycosylation. There is a need for continued antigen definition even in the confines of gut antigens and potential targets can be selected from the rapidly expanding genome/EST datasets on the basis of predicted functional homology. Gene knockout technologies such as RNA interference have the potential to provide high throughput, rapid and inexpensive methods to define whether the protein product of a particular gene would be a suitable vaccine candidate.
Collapse
Affiliation(s)
- David P Knox
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH 26 0PZ, Midlothian, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
In light of recent growth in available DNA sequence information for a number of parasitic helminths, it is crucial that suitable gene manipulation technologies are developed to facilitate functional genomic studies in these organisms. In this review we discuss recent progress in the development of these technologies in nematode and platyhelminth parasites of medical and veterinary importance. Specifically, the current status of transient transfection, double-stranded RNA interference and antisense RNA as viable techniques for the manipulation of parasitic helminth gene expression is presented. In addition, the potential for the development of stable, or germ-line, transformation methods in these organisms is also discussed.
Collapse
Affiliation(s)
- Jon P Boyle
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2115 Observatory Drive, Madison, WI 53706, USA
| | | |
Collapse
|
18
|
Dalton JP, Brindley PJ, Knox DP, Brady CP, Hotez PJ, Donnelly S, O'Neill SM, Mulcahy G, Loukas A. Helminth vaccines: from mining genomic information for vaccine targets to systems used for protein expression. Int J Parasitol 2003; 33:621-40. [PMID: 12782060 DOI: 10.1016/s0020-7519(03)00057-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The control of helminth diseases of people and livestock continues to rely on the widespread use of anti-helminthic drugs. However, concerns with the appearance of drug resistant parasites and the presence of pesticide residues in food and the environment, has given further incentive to the goal of discovering molecular vaccines against these pathogens. The exponential rate at which gene and protein sequence information is accruing for many helminth parasites requires new methods for the assimilation and analysis of the data and for the identification of molecules capable of inducing immunological protection. Some promising vaccine candidates have been discovered, in particular cathepsin L proteases from Fasciola hepatica, aminopeptidases from Haemonchus contortus, and aspartic proteases from schistosomes and hookworms, all of which are secreted into the host tissues or into the parasite intestine where they play important roles in host-parasite interactions. Since secreted proteins, in general, are exposed to the immune system of the host they represent obvious candidates at which vaccines could be targeted. Therefore, in this article, we consider the potential values and uses of algorithms for characterising cDNAs amongst the collated helminth genomic information that encode secreted proteins, and methods for their selective isolation and cloning. We also review the variety of prokaryotic and eukaryotic cell expression systems that have been employed for the production and downstream purification of recombinant proteins in functionally active form, and provide an overview of the parameters that must be considered if these recombinant proteins are to be commercialised as vaccine therapeutics in humans and/or animals.
Collapse
Affiliation(s)
- John P Dalton
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Newton SE, Meeusen ENT. Progress and new technologies for developing vaccines against gastrointestinal nematode parasites of sheep. Parasite Immunol 2003; 25:283-96. [PMID: 12969446 DOI: 10.1046/j.1365-3024.2003.00631.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the identification of highly effective native antigens for vaccination against Haemonchus contortus, particularly 'hidden' antigens derived from the intestine of adult worms, to date similar efficacy has not been shown with recombinant antigens. In addition, progress towards identification of protective antigens from other sheep gastrointestinal (GI) nematode species is limited. Coupled with this is an incomplete understanding of the mechanism of natural immunity to GI nematodes, making selection of appropriate immunization strategies and adjuvants for evaluation of candidate 'natural' antigens problematic. The current explosion in new high-throughput technologies, arising from human studies, for analysis of the genome, transcriptome, proteome and glycome offers the opportunity to gain a better understanding of the molecular pathways underlying pathogen biology, the host immune system and the host-pathogen interaction. An overview is provided on how these technologies can be applied to parasite research and how they may aid in overcoming some of the current problems in development of commercial vaccines against GI nematode parasites.
Collapse
Affiliation(s)
- S E Newton
- Victorian Institute of Animal Science, 475 Mickleham Road, Attwood, Victoria, 3049, Australia
| | | |
Collapse
|
20
|
Kampkötter A, Volkmann TE, de Castro SH, Leiers B, Klotz LO, Johnson TE, Link CD, Henkle-Dührsen K. Functional analysis of the glutathione S-transferase 3 from Onchocerca volvulus (Ov-GST-3): a parasite GST confers increased resistance to oxidative stress in Caenorhabditis elegans. J Mol Biol 2003; 325:25-37. [PMID: 12473450 DOI: 10.1016/s0022-2836(02)01174-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study examined the genomic organisation of the coding region of the glutathione S-transferase 3 (Ov-GST-3) from the human parasitic nematode Onchocerca volvulus; alternative splicing leads to three different transcripts (Ov-GST-3/1; Ov-GST-3/2 and Ov-GST-3/3). Since the expression of Ov-GST-3 is inducible by oxidative stress, it is assumed that it is involved in the defense against reactive oxygen species (ROS) resulting from cellular metabolism. Furthermore, we suggest that Ov-GST-3 plays an important role in the protection of the parasite against ROS derived from the host's immune system. To experimentally investigate these speculations, we generated Caenorhabditis elegans lines transgenic for Ov-GST-3 (AK1) and examined their resistance to artificially generated ROS. The AK1 worms (extrachromosomal and integrated lines) were found to be much more resistant to internal (juglone) and external (hypoxanthine/xanthine oxidase) oxidative stress than wild-type C.elegans worms. RNA interference experiments targeted to the Ov-GST-3 transcripts resulted in decreased resistance, confirming that this effect is due to the transgenic expression of Ov-GST-3. These results clearly demonstrate that the Ov-GST-3 gene confers an increased resistance to oxidative stress. This study also shows the applicability of C.elegans as a model organism for the functional characterization of genes from (parasitic) nematode species which are not accessible to genetic manipulations.
Collapse
Affiliation(s)
- Andreas Kampkötter
- Institut für Genetik, Heinrich-Heine-Universitat, Universitätsstrasse 1, 40225 Dusseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The study of gene function in parasitic worms is technically demanding due to difficulties associated with life-cycle propagation and, hence, molecular genetics. Exploitation of the free-living nematode, Caenorhabditis elegans, coupled with recent major advances in molecular studies of parasitic nematodes, have opened up new avenues for understanding the biology of these parasites and present opportunities for novel strategies of therapeutic intervention and control.
Collapse
Affiliation(s)
- Darren R Brooks
- Faculty of Biological Sciences, University of Leeds, West Yorkshire, Leeds LS2 9JT, UK.
| | | |
Collapse
|
22
|
Abstract
The organism about which most is known on a molecular level is a nematode, the free-living organism Caenorhabditis elegans. This organism has served as a reasonable model for the discovery of anthelmintic drugs and for research on the mechanism of action of anthelmintics. Useful information on mechanisms of anthelmintic resistance has also been obtained from studies on C. elegans. Unfortunately, there has not been a large-scale extension of genetic techniques developed in C. elegans to research on parasitic species of veterinary (or human) parasites. Much can be learned about the essentials of nematode biology by studying C. elegans, but discovering the basic biology of nematode parasitism can only be gained through comparative studies on multiple parasitic species.
Collapse
Affiliation(s)
- T G Geary
- Discovery Research, Pharmacia Animal Health, 7923-25-111, 7000 Portage Road, Kalamazoo, MI 49001-0199, USA.
| | | |
Collapse
|
23
|
Knox DP, Redmond DL, Skuce PJ, Newlands GF. The contribution of molecular biology to the development of vaccines against nematode and trematode parasites of domestic ruminants. Vet Parasitol 2001; 101:311-35. [PMID: 11707304 DOI: 10.1016/s0304-4017(01)00558-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rapid developments in molecular biology have had an enormous impact on the prospects for the development of vaccines to control the major nematode and trematode infestations of livestock. Vaccine candidates are purified using conventional protein chemistry techniques but the limitations imposed by the scarcity of parasite material provide an insurmountable barrier for commercial vaccine production by this means. The ability to purify mRNA from different parasite life-cycle stages and to prepare cDNA expression libraries from it has proven central to the identification of immunogenic parasite proteins. Potentially, protective parasite antigens can now be produced in recombinant form in a variety of vectors and this represents a key breakthrough on the road to commercial vaccine production. The contribution of molecular biology to this process is discussed using several examples, particularly in vaccine development against the pathogenic abomasal nematode of sheep and goats, Haemonchus contortus, and the liver fluke of sheep and cattle, Fasciola hepatica. The difficulties of producing recombinant proteins in the correct form, with appropriate post-translational modification and conformation, are discussed as well as emerging means of antigen delivery including DNA vaccination. The opportunities offered by genome and expressed sequence tag analyses programmes for antigen targeting are discussed in association with developing microarray and proteomics technologies which offer the prospect of large scale, rapid antigen screening and identification.
Collapse
Affiliation(s)
- D P Knox
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK.
| | | | | | | |
Collapse
|
24
|
Coombs GH, Goldberg DE, Klemba M, Berry C, Kay J, Mottram JC. Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol 2001; 17:532-7. [PMID: 11872398 DOI: 10.1016/s1471-4922(01)02037-2] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All parasitic protozoa contain multiple proteases, some of which are attracting attention as drug targets. Aspartic proteases are already the targets of some clinically useful drugs (e.g. chemotherapy of HIV infection) and a variety of factors make these enzymes appealing to those seeking novel antiparasite therapies. This review provides a critical analysis of the current knowledge on Plasmodium aspartic proteases termed plasmepsins, proposes a definitive nomenclature for this group of enzymes, and compares these enzymes with aspartic proteases of humans and other parasitic protozoa. The present status of attempts to obtain specific inhibitors of the parasite enzymes that will be useful as drugs is outlined and suggestions for future research priorities are proposed.
Collapse
Affiliation(s)
- G H Coombs
- University of Glasgow, G12 8QQ, Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Knox DP, Smith WD. Vaccination against gastrointestinal nematode parasites of ruminants using gut-expressed antigens. Vet Parasitol 2001; 100:21-32. [PMID: 11522403 DOI: 10.1016/s0304-4017(01)00480-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To date, proteins isolated from the surface of the gut of gastrointestinal nematodes, particularly Haemonchus contortus, have generally proved to be useful protective antigens and several are being progressed towards recombinant protein-based vaccines. This paper describes the properties of some of the most promising antigens and summarises their performance in laboratory and field based trials. The antigens described include contortin, H11, H-gal-GP, GPI and cysteine proteinases. In addition, the discussion addresses the utility of selected antigens to protect against co-infecting nematode species such as Teladorsagia circumcincta and against related nematode infections such as Ostertagia ostertagi in cattle.
Collapse
Affiliation(s)
- D P Knox
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland EH26 0PZ, UK.
| | | |
Collapse
|
26
|
Jasmer DP, Roth J, Myler PJ. Cathepsin B-like cysteine proteases and Caenorhabditis elegans homologues dominate gene products expressed in adult Haemonchus contortus intestine. Mol Biochem Parasitol 2001; 116:159-69. [PMID: 11522349 DOI: 10.1016/s0166-6851(01)00312-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteins expressed by nematode intestinal cells are potential targets for parasite control by immune or chemical based strategies. To expand our knowledge on nematode intestinal proteins, expressed sequence tags were generated for 131 cDNA clones from the intestine of adult female Haemonchus contortus. An estimated 55 distinct protein genes or gene families were identified. Predicted proteins represented diverse functions. Several predicted polypeptides were related to H. contortus proteins implicated in inducing protective immunity against challenge infections of this parasite. The dominant intestinal transcripts were represented by cathepsin B-like cysteine protease genes (cbl) (17% of protein coding expressed sequence tags (ESTs) analyzed). An estimated 11 previously undescribed cbl genes were identified, doubling the recognized members of this gene family. Multiple C-type lectin sequences were identified. Other notable sequences included a predicted Y-box binding protein, serine/threonine kinases and a cyclin E-like sequence. Predicted protein homologues were found in Caenorhabditis elegans for all but one H. contortus sequence (99%), while fewer homologues from other parasitic nematodes were found. Many of the proteases, lipase and C-type lectin homologues in C. elegans had apparent signal peptides, suggesting that they are secreted. Several gene products had no obvious similarity outside the phylum Nematoda. The ESTs identified intestinal genes with potential application to immune control, understanding of basic intestinal regulatory processes and refinement of nematode genomic resources.
Collapse
Affiliation(s)
- D P Jasmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | |
Collapse
|
27
|
Abstract
The free-living nematode Caenorhabditis elegans is a tractable experimental model system for the study of both vertebrate and invertebrate biology. Its most significant advantages are its simplicity, both in anatomy and in genomic organization, and the elaborate methods that have been developed to attribute function to previously uncharacterized genes. Importantly, > 40% of parasitic nematode genes exhibit high levels of homology to genes within the C. elegans genome. Studying such genes using the C. elegans model should yield new insights into key molecules and their possible implications in parasite survival, leading to the discovery of new drug targets and vaccine candidates.
Collapse
Affiliation(s)
- S Hashmi
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67th Street, New York, NY 10021, USA
| | | | | |
Collapse
|
28
|
Abstract
Over the last decade, the anti-parasitics market has been the fastest growing sector of the overall $18 billion animal health market. While drugs for the treatment of parasites of livestock still dominate this sector and will continue to be developed or re-formulated, because of consumer demands for chemical-free food and of concerns regarding the environment and animal welfare there is a growing interest in the development of safe and effective vaccines. There is also a call for vaccines in the lucrative $3 billion-plus companion animal market. These demands for vaccines will add a greater impetus to an area that has seen tremendous success in the last 15 years. A number of anti-parasite vaccines have been developed, e.g. the recombinant 45w and EG95 oncosphere proteins against Taenia ovis and Echinococcus granulosis, respectively, and the Bm86 vaccine against Boophilus microplus. In addition, the cathepsin L vaccines against the liver fluke, Fasciola hepatica, and the H11 vaccine against Haemonchus contortus are progressing well. There are also many additional vaccine candidates for H. contortus and for other nematodes such as Ostertagia and Trichostrongylus spp. that may ultimately lead to broad-spectrum gastrointestinal worm vaccines. Live or attenuated-live vaccines are available for the control of avian coccidiosis, toxplasmosis in sheep and anaplasmosis in cattle, although molecular vaccines against protozoans are still proving elusive. The wealth of information in genomics, proteomics and immunology that has been forthcoming together will new methods of vaccine production and delivery should see many new vaccines reach the marketplace in the near future.
Collapse
Affiliation(s)
- J P Dalton
- School of Biotechnology, Dublin City University, Dublin 9, Ireland.
| | | |
Collapse
|