1
|
Peña D, Cantillo-Barraza O, Cruz-Saavedra L, Velez G, Zuluaga S, Patiño LH, Garcia Redondo R, Ramirez JD, Paniz Mondolfi A. First evidence of human infection by the kinetoplastid flagellate Dimastigella trypaniformis in a patient with urinary tract infection. Int J Infect Dis 2025; 153:107797. [PMID: 39863077 DOI: 10.1016/j.ijid.2025.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES We report a unique case of an 88-year-old man presenting with symptoms consistent with a urinary tract infection, whose diagnostic evaluation led to the identification of a previously unrecognized motile flagellated protozoan. This case highlights the importance of considering emerging parasitic agents in cases of hematuria and complex urinary tract infections and underscores the role of molecular diagnostics in identifying atypical and rare pathogens. DESIGN This is a case report describing the clinical presentation, laboratory findings, and molecular identification of an unusual kinetoplastid organism in a patient's urine. The case is contextualized within the broader and expanding clinical spectrum of human trypanosomatid infections, emphasizing the significance of molecular techniques in detecting emerging and potentially pathogenic organisms. METHODS/RESULTS Urine microscopy revealed the presence of a motile flagellated protozoan, prompting further investigation. Molecular identification using PCR and sequencing confirmed the organism as Dimastigella trypaniformis, a free-living kinetoplastid from the Rhynchomonadidae family. Previously, D. trypaniformis had only been reported in soil samples from Scotland and termite gut contents in Australia and Germany, with no known associations with vertebrate hosts. This case represents the first potential documented instance of D. trypaniformis in human urine. CONCLUSIONS The identification of D. trypaniformis in a clinical specimen expands the spectrum of potential urinary pathogens and raises questions about its clinical significance and pathogenic potential. This report underscores the need for heightened awareness of rare and emerging parasitic infections, particularly in patients with atypical presentations. It also highlights the crucial role of molecular diagnostics in identifying novel organisms and guiding appropriate clinical management.
Collapse
Affiliation(s)
- Danael Peña
- Hospital Alma Mater de Antioquia, Medellín, Colombia
| | - Omar Cantillo-Barraza
- Grupo de Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Medellín, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMIBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Gabriel Velez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Sara Zuluaga
- Grupo de Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Medellín, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMIBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Ruth Garcia Redondo
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Juan David Ramirez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMIBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alberto Paniz Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
2
|
Li SJ, Zhang X, Lukeš J, Li BQ, Wang JF, Qu LH, Hide G, Lai DH, Lun ZR. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Res 2020; 48:9747-9761. [PMID: 32853372 PMCID: PMC7515712 DOI: 10.1093/nar/gkaa700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Kinetoplastid flagellates are known for several unusual features, one of which is their complex mitochondrial genome, known as kinetoplast (k) DNA, composed of mutually catenated maxi- and minicircles. Trypanosoma lewisi is a member of the Stercorarian group of trypanosomes which is, based on human infections and experimental data, now considered a zoonotic pathogen. By assembling a total of 58 minicircle classes, which fall into two distinct categories, we describe a novel type of kDNA organization in T. lewisi. RNA-seq approaches allowed us to map the details of uridine insertion and deletion editing events upon the kDNA transcriptome. Moreover, sequencing of small RNA molecules enabled the identification of 169 unique guide (g) RNA genes, with two differently organized minicircle categories both encoding essential gRNAs. The unprecedented organization of minicircles and gRNAs in T. lewisi broadens our knowledge of the structure and expression of the mitochondrial genomes of these human and animal pathogens. Finally, a scenario describing the evolution of minicircles is presented.
Collapse
Affiliation(s)
- Su-Jin Li
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Xuan Zhang
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis) 37005, Czech Republic
| | - Bi-Qi Li
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Ju-Feng Wang
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| |
Collapse
|
3
|
Abstract
The experimental approach to revealing the genetic information hidden in kinetoplastid cryptogenes and expressed through the posttranscriptional mRNA processing of U-insertion/deletion editing proceeds in reverse to the informational flow of the RNA editing process itself. While the editing integrates the informational content of maxicircle-encoded cryptogenes with that of minicircle-encoded gRNAs to produce functional edited mRNAs, the cryptogene analysis utilizes a comparison of the mature mRNA sequence with the cryptogene sequence to deduce the locations of edited sites and editing patterns, and a comparison of that mRNA sequence with the minicircle (or minicircle equivalent) sequences to identify the corresponding guide RNAs. Although a "direct" approach (prediction of a fully edited sequence pattern based on the analysis of cryptogene and minicircle sequences) seems to be theoretically possible, it proved to be not practically feasible. The major steps of the procedures utilized to decipher editing in a broad range of kinetoplastid species are presented in this chapter.
Collapse
Affiliation(s)
- Dmitri A Maslov
- Department of Biology, University of California, Riverside, California, USA
| | | |
Collapse
|
4
|
Marande W, Lukes J, Burger G. Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. EUKARYOTIC CELL 2005; 4:1137-46. [PMID: 15947205 PMCID: PMC1151984 DOI: 10.1128/ec.4.6.1137-1146.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 04/19/2005] [Indexed: 11/20/2022]
Abstract
Kinetoplastid flagellates are characterized by uniquely massed mitochondrial DNAs (mtDNAs), the kinetoplasts. Kinetoplastids of the trypanosomatid group possess two types of mtDNA molecules: maxicircles bearing protein and mitoribosomal genes and minicircles specifying guide RNAs, which mediate uridine insertion/deletion RNA editing. These circles are interlocked with one another to form dense networks. Whether these peculiar mtDNA features are restricted to kinetoplastids or prevail throughout Euglenozoa (euglenids, diplonemids, and kinetoplastids) is unknown. Here, we describe the mitochondrial genome and the mitochondrial ultrastructure of Diplonema papillatum, a member of the diplonemid flagellates, the sister group of kinetoplastids. Fluorescence and electron microscopy show a single mitochondrion per cell with an ultrastructure atypical for Euglenozoa. In addition, DNA is evenly distributed throughout the organelle rather than compacted. Molecular and electron microscopy studies distinguish numerous 6- and 7-kbp-sized mitochondrial chromosomes of monomeric circular topology and relaxed conformation in vivo. Remarkably, the cox1 gene (and probably other mitochondrial genes) is fragmented, with separate gene pieces encoded on different chromosomes. Generation of the contiguous cox1 mRNA requires trans-splicing, the precise mechanism of which remains to be determined. Taken together, the mitochondrial gene/genome structure of Diplonema is not only different from that of kinetoplastids but unique among eukaryotes as a whole.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/ultrastructure
- Electrophoresis, Agar Gel
- Euglenida/genetics
- Euglenida/ultrastructure
- Evolution, Molecular
- Genes, rRNA
- Genome, Protozoan
- Kinetoplastida/classification
- Kinetoplastida/genetics
- Kinetoplastida/ultrastructure
- Microscopy, Electron
- Microscopy, Fluorescence
- Mitochondria/genetics
- Mitochondria/ultrastructure
- Phylogeny
- RNA Editing
- RNA Splicing
- RNA, Guide, Kinetoplastida/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- William Marande
- Université de Montréal, Robert-Cedergren Centre for Bioinformatics and Genomics, Department of Biochemistry, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec H3T 1J4, Canada
| | | | | |
Collapse
|
5
|
Moreira D, López-García P, Vickerman K. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. Int J Syst Evol Microbiol 2005; 54:1861-1875. [PMID: 15388756 DOI: 10.1099/ijs.0.63081-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Given their ecological and medical importance, the classification of the kinetoplastid protists (class Kinetoplastea) has attracted much scientific attention for a long time. Morphology-based taxonomic schemes distinguished two major kinetoplastid groups: the strictly parasitic, uniflagellate trypanosomatids and the biflagellate bodonids. Molecular phylogenetic analyses based on 18S rRNA sequence comparison suggested that the trypanosomatids emerged from within the bodonids. However, these analyses revealed a huge evolutionary distance between the kinetoplastids and their closest relatives (euglenids and diplonemids) that makes very difficult the correct inference of the phylogenetic relationships between the different kinetoplastid groups. Using direct PCR amplification of 18S rRNA genes from hydrothermal vent samples, several new kinetoplastid-like sequences have been reported recently. Three of them emerge robustly at the base of the kinetoplastids, breaking the long branch leading to the euglenids and diplonemids. One of these sequences belongs to a close relative of Ichthyobodo necator (a fish parasite) and of the 'Perkinsiella amoebae'-like endosymbiont of Neoparamoeba spp. amoebae. The authors have studied the reliability of their basal position and used all these slow-evolving basal-emerging sequences as a close outgroup to analyse the phylogeny of the apical kinetoplastids. They thus find a much more stable and resolved kinetoplastid phylogeny, which supports the monophyly of groups that very often emerged as polyphyletic in the trees rooted using the traditional, distant outgroup sequences. A new classification of the class Kinetoplastea is proposed based on the results of the phylogenetic analysis presented. This class is now subdivided into two new subclasses, Prokinetoplastina (accommodating the basal species I. necator and 'Perkinsiella amoebae') and Metakinetoplastina (containing the Trypanosomatida together with three additional new orders: Eubodonida, Parabodonida and Neobodonida). The classification of the species formerly included in the genus Bodo is also revised, with the amendment of this genus and the genus Parabodo and the creation of a new genus, Neobodo.
Collapse
Affiliation(s)
- David Moreira
- UMR CNRS 8079, Ecologie, Systématique et Evolution, Université Paris-Sud, bâtiment 360, 91405 Orsay Cedex, France
| | - Purificación López-García
- UMR CNRS 8079, Ecologie, Systématique et Evolution, Université Paris-Sud, bâtiment 360, 91405 Orsay Cedex, France
| | - Keith Vickerman
- Division of Environmental & Evolutionary Biology, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
6
|
Zíková A, Vancová M, Jirků M, Lukes J. Cruzella marina (Bodonina, Kinetoplastida): non-catenated structure of poly-kinetoplast DNA. Exp Parasitol 2003; 104:159-61. [PMID: 14552863 DOI: 10.1016/j.exppara.2003.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Czech Academy of Sciences, and Faculty of Biology, University of South Bohemia, Branisovská 31, 37005 Ceské Budejovice, Czech Republic
| | | | | | | |
Collapse
|
7
|
Gaziová I, Lukes J. Mitochondrial and nuclear localization of topoisomerase II in the flagellate Bodo saltans (Kinetoplastida), a species with non-catenated kinetoplast DNA. J Biol Chem 2003; 278:10900-7. [PMID: 12533517 DOI: 10.1074/jbc.m202347200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied topoisomerase II (topo II) in the cells of Bodo saltans, a free-living bodonid (Kinetoplastida). Phylogenetic analysis based on the sequence of the entire topo II gene, which is a single-copy gene, confirmed that B. saltans is a predecessor of parasitic trypanosomatids. Antibodies generated against either an overexpressed unique C-terminal region of topo II or a synthetic oligopeptide derived from the same region did not cross-react with cell lysates of related trypanosomatids, while they recognized a single specific band in the B. saltans lysate. Immunolocalization experiments using both antibodies showed that topo II is evenly dispersed throughout the kinetoplast. This is in striking difference from the localization of topo II in other flagellates, where it occurs in two antipodal centers flanking the kinetoplast disk. Moreover, the same topo II has a distinct localization in multiple loci at the periphery of the nucleus of B. saltans. With a minicircle probe derived from the conserved region we have shown that all relaxed non-catenated minicircles are confined to the globular kinetoplast DNA bundle. Therefore, in the mitochondrion of this primitive eukaryote topo II does not catenate relaxed DNA circles into a network in vivo, while a decatenating activity is present in partially purified cell lysates.
Collapse
Affiliation(s)
- Ivana Gaziová
- Institute of Parasitology, Czech Academy of Sciences and Faculty of Biology, University of South Bohemia, 37005 Ceské Budejovice, Czech Republic
| | | |
Collapse
|
8
|
Abstract
Despite extensive phylogenetic analysis of small subunit ribosomal RNA (SSUrRNA) genes, the deep-level relationships among kinetoplastids remain poorly understood, limiting our grasp of their evolutionary history, especially the origins of their bizarre mitochondrial genome organizations. In this study we examine the SSUrRNA data in the light of a new marker--cytoplasmic heat shock protein 90 (hsp90) sequences. Our phylogenetic analyses divide kinetoplastids into four main clades. Clades 1-3 include the various bodonid kinetoplastids. Trypanosomatids comprise the fourth clade. SSUrRNA analyses give vastly different and poorly supported positions for the root of the kinetoplastid tree, depending on the out-group and analysis method. This is probably due to the extraordinary length of the branch between kinetoplastids and any out-group. In contrast, almost all hsp90 analyses place the root between clade 1 (including Dimastigella, Rhynchomonas, several Bodo spp., and probably Rhynchobodo) and all other kinetoplastids. Maximum likelihood and maximum likelihood distance analyses of hsp90 protein and second codon-position nucleotides place trypanosomatids adjacent to Bodo saltans and Bodo cf. uncinatus (clade 3), as (weakly) do SSUrRNA analyses. Hsp90 first codon- plus second codon-position nucleotide analyses return a slightly different topology. We show that this may be an artifact caused, in part, by the different evolutionary behavior of first- and second-codon positions. This study provides the most robust evidence to date that trypanosomatids are descended from within bodonids and that B. saltans is a close relative of trypanosomatids. A total reevaluation of the high-level systematics within kinetoplastids is needed. We confirm that the interlocking network organization of kinetoplast DNA seen in trypanosomatids is a derived condition within kinetoplastids but suggest that open-conformation minicircles may have arisen early in kinetoplastid evolution. Further understanding of the evolution of kinetoplast structure and RNA editing is hampered by a paucity of data from basal (i.e., clade 1) bodonids.
Collapse
Affiliation(s)
- Alastair G B Simpson
- Department of Biochemistry, Canadian Institute for Advanced Research, Program in Evolutionary Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| | | | | |
Collapse
|
9
|
Dacks JB, Simpson AGB. Meeting report: XIVth meeting of the International Society for Evolutionary Protistology, Vancouver, Canada, June 19-24, 2002. Protist 2002; 153:337-42. [PMID: 12627863 DOI: 10.1078/14344610260450064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Lukes J, Guilbride DL, Votýpka J, Zíková A, Benne R, Englund PT. Kinetoplast DNA network: evolution of an improbable structure. EUKARYOTIC CELL 2002; 1:495-502. [PMID: 12455998 PMCID: PMC117999 DOI: 10.1128/ec.1.4.495-502.2002] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Julius Lukes
- Institute of Parasitology, Czech Academy of Sciences, Ceské Budejovice.
| | | | | | | | | | | |
Collapse
|