1
|
Lovett B, Cahill P, Fletcher L, Cunningham S, Davidson I. Anthropogenic Vector Ecology and Management to Combat Disease Spread in Aquaculture. ENVIRONMENTAL MANAGEMENT 2024:10.1007/s00267-023-01932-8. [PMID: 38252133 DOI: 10.1007/s00267-023-01932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Anthropogenic vectors (transfer mechanisms) can facilitate the introduction and spread of aquatic disease in marine farming regions. Preventing or interrupting pathogen transfers associated with movements of these vectors is key to ensuring productivity and profitability of aquaculture operations. However, practical methods to identify and manage vector risks are lacking. We developed a risk analysis framework to identify disease risks and management gaps associated with anthropogenic vector movements in New Zealand's main aquaculture sectors - Chinook salmon (Oncorhynchus tshawytscha), green-lipped mussels (Perna canaliculus), and Pacific oysters (Crassostrea gigas). Vectors within each sector were identified and assigned categorical risk scores for (i) movement characteristics (size, frequency, likelihood of return to sea), (ii) biological association with pathogens (entrainment potential, contribution to previous aquaculture disease outbreaks) and (iii) available best practice biosecurity methods and tools, to inform unmitigated and mitigated risk rankings. Thirty-one vectors were identified to operate within the national network and association with livestock was found to be a primary driver of vector risk rankings. Movements of live growing stock and culture substrates (e.g., mussel ropes) in shellfish farming had high-risk vector profiles that are logistically challenging to address, while vessel vectors were identified as the salmon farming sector's priority. The framework and rankings can be used to inform both research and management priorities in aquaculture and other primary production systems, including risk validation, vector roles in disease epidemiology, compliance with permit conditions, policy development, and treatment options.
Collapse
Affiliation(s)
- Bailey Lovett
- Biosecurity Group, Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand.
| | - Patrick Cahill
- Biosecurity Group, Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Lauren Fletcher
- Biosecurity Group, Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Shaun Cunningham
- Biosecurity Group, Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ian Davidson
- Biosecurity Group, Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| |
Collapse
|
2
|
Vera-Villalobos H, Miranda-Peña Y, Fuentes-Santander F, Mata MT, Riquelme C. In-silico characterization of Δ4 and Δ5 desaturases in Symbiodinium microadriaticum and Perkinsus marinus, symbiont and parasitic organisms’ similarities. MARINE BIOLOGY 2024; 171:35. [DOI: 10.1007/s00227-023-04357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2025]
|
3
|
Gignoux-Wolfsohn SA, Newcomb MSR, Ruiz GM, Pagenkopp Lohan KM. Environmental factors drive the release of Perkinsus marinus from infected oysters. Parasitology 2021; 148:532-538. [PMID: 33353569 PMCID: PMC10950379 DOI: 10.1017/s0031182020002383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 11/07/2022]
Abstract
Since the discovery of Perkinsus marinus as the cause of dermo disease in Crassostrea virginica, salinity and temperature have been identified as the main environmental drivers of parasite prevalence. However, little is known about how these variables affect the movement of the parasite from host to water column. In order to elucidate how environmental factors can influence the abundance of this parasite in the water column, we conducted a series of experiments testing the effects of time of day, temperature and salinity on the release of P. marinus cells from infected oysters. We found that P. marinus cells were released on a diurnal cycle, with most cells released during the hottest and brightest period of the day (12:00-18:00). Temperature also had a strong and immediate effect on the number of cells released, but salinity did not, only influencing the intensity of infection over the course of several months. Taken together, our results demonstrate that (1) the number of parasites in the water column fluctuates according to a diurnal cycle, (2) temperature and salinity act on different timescales to influence parasite abundance, and (3) live infected oysters may substantially contribute to the abundance of transmissive parasites in the water column under particular environmental conditions.
Collapse
Affiliation(s)
- Sarah A. Gignoux-Wolfsohn
- Marine Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD21037, USA
- Marine Invasions Research Laboratory, Smithsonian Environmental Research Center, Edgewater, MD21037, USA
| | - Matilda S. R. Newcomb
- Marine Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD21037, USA
| | - Gregory M. Ruiz
- Marine Invasions Research Laboratory, Smithsonian Environmental Research Center, Edgewater, MD21037, USA
| | | |
Collapse
|
4
|
Duarte SS, de Moura RO, da Silva PM. Effect of antiprotozoal molecules on hypnospores of Perkinsus spp. parasite. Exp Parasitol 2018; 192:25-35. [PMID: 30028986 DOI: 10.1016/j.exppara.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/30/2018] [Accepted: 07/15/2018] [Indexed: 11/19/2022]
Abstract
Perkinsus protozoan parasites have been associated with high mortality of bivalves worldwide, including Brazil. The use of antiproliferative drugs to treat the Perkinsosis is an unusual prophylactic strategy. However, because of their environment impact it could be used to control parasite proliferation in closed system, such as hatchery. This study evaluated the anti-Perkinsus activity potential of synthesized and commercial compounds. Viability of hypnospores of Perkinsus spp. was assessed in vitro. Cells were incubated with three 2-amino-thiophene (6AMD, 6CN, 5CN) and one acylhydrazone derivatives (AMZ-DCL), at the concentrations of 31.25; 62.5; 125; 250 and 500 μM and one commercial chlorinated phenoxy phenol derivative, triclosan (2, 5, 10 and 20 μM), for 24-48 h. Two synthetic molecules (6CN and AMZ-DCL) caused a significant decline (38 and 39%, respectively) in hypnospores viability, at the highest concentration (500 μM), after 48 h. Triclosan was the most cytotoxic compound, causing 100% of mortality at 20 μM after 24 h and at 10 μM after 48 h. Cytotoxic effects of the compounds 6CN, AMZ-DCL, and triclosan were investigated by measuring parasite's zoosporulation, morphological changes and metabolic activities (esterase activity, production of reactive oxygen species and lipid content). Results showed that zoosporulation occurred in few cell. Triclosan caused changes in the morphology of hypnospores. The 6CN and AMZ-DCL did not alter the metabolic activities studied whilst Triclosan significantly increased the production of reactive oxygen species and changed the amount and distribution of lipids in the hypnospores. These results suggest that three compounds had potential to be used as antiprotozoal drugs, although further investigation of their mechanism of action must be enlightened.
Collapse
Affiliation(s)
- Sâmia Sousa Duarte
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba -Campus I, 58051-900, João Pessoa, PB, Brazil.
| | - Ricardo Olímpio de Moura
- Laboratório de Síntese e Vetorização de Moléculas, Departamento de Farmácia, Universidade Estadual da Paraíba, 58070-450, João Pessoa, PB, Brazil.
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba -Campus I, 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
5
|
QUEIROGA FERNANDORAMOS, MARQUES-SANTOS LUISFERNANDO, DE MEDEIROS ISACALMEIDA, DA SILVA PATRÍCIAMIRELLA. Effects of salinity and temperature on in vitro cell cycle and proliferation of Perkinsus marinus from Brazil. Parasitology 2016; 143:475-87. [PMID: 26888407 PMCID: PMC4800715 DOI: 10.1017/s0031182015001602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022]
Abstract
Field and in vitro studies have shown that high salinities and temperatures promote the proliferation and dissemination of Perkinsus marinus in several environments. In Brazil, the parasite infects native oysters Crassostrea gasar and Crassostrea rhizophorae in the Northeast (NE), where the temperature is high throughout the year. Despite the high prevalence of Perkinsus spp. infection in oysters from the NE of Brazil, no mortality events were reported by oyster farmers to date. The present study evaluated the effects of salinity (5, 20 and 35 psu) and temperature (15, 25 and 35 °C) on in vitro proliferation of P. marinus isolated from a host (C. rhizophorae) in Brazil, for a period of up to 15 days and after the return to the control conditions (22 days; recovery). Different cellular parameters (changes of cell phase's composition, cell density, viability and production of reactive oxygen species) were analysed using flow cytometry. The results indicate that the P. marinus isolate was sensitive to the extreme salinities and temperatures analysed. Only the highest temperature caused lasting cell damage under prolonged exposure, impairing P. marinus recovery, which is likely to be associated with oxidative stress. These findings will contribute to the understanding of the dynamics of perkinsiosis in tropical regions.
Collapse
Affiliation(s)
- FERNANDO RAMOS QUEIROGA
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, CEP 58051-900, João Pessoa, PB, Brazil
| | - LUIS FERNANDO MARQUES-SANTOS
- Laboratório de Biologia Celular e do Desenvolvimento, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, CEP 58051–900, João Pessoa, PB, Brazil
| | - ISAC ALMEIDA DE MEDEIROS
- Laboratório de Farmacologia Cardiovascular, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, CEP 58051–900, João Pessoa, PB, Brazil
| | - PATRÍCIA MIRELLA DA SILVA
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, CEP 58051-900, João Pessoa, PB, Brazil
| |
Collapse
|
6
|
|
7
|
Fernández Robledo JA, Vasta GR, Record NR. Protozoan parasites of bivalve molluscs: literature follows culture. PLoS One 2014; 9:e100872. [PMID: 24955977 PMCID: PMC4067406 DOI: 10.1371/journal.pone.0100872] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/30/2014] [Indexed: 11/18/2022] Open
Abstract
Bivalve molluscs are key components of the estuarine environments as contributors to the trophic chain, and as filter -feeders, for maintaining ecosystem integrity. Further, clams, oysters, and scallops are commercially exploited around the world both as traditional local shellfisheries, and as intensive or semi-intensive farming systems. During the past decades, populations of those species deemed of environmental or commercial interest have been subject to close monitoring given the realization that these can suffer significant decline, sometimes irreversible, due to overharvesting, environmental pollution, or disease. Protozoans of the genera Perkinsus, Haplosporidium, Marteilia, and Bonamia are currently recognized as major threats for natural and farmed bivalve populations. Since their identification, however, the variable publication rates of research studies addressing these parasitic diseases do not always appear to reflect their highly significant environmental and economic impact. Here we analyzed the peer- reviewed literature since the initial description of these parasites with the goal of identifying potential milestone discoveries or achievements that may have driven the intensity of the research in subsequent years, and significantly increased publication rates. Our analysis revealed that after initial description of the parasite as the etiological agent of a given disease, there is a time lag before a maximal number of yearly publications are reached. This has already taken place for most of them and has been followed by a decrease in publication rates over the last decade (20- to 30- year lifetime in the literature). Autocorrelation analyses, however, suggested that advances in parasite purification and culture methodologies positively drive publication rates, most likely because they usually lead to novel molecular tools and resources, promoting mechanistic studies. Understanding these trends should help researchers in prioritizing research efforts for these and other protozoan parasites, together with their development as model systems for further basic and translational research in parasitic diseases.
Collapse
Affiliation(s)
| | - Gerardo R. Vasta
- Department of Microbiology and Immunology, University of Maryland Baltimore, School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, United States of America
| | - Nicholas R. Record
- Bigelow Laboratory for Ocean Sciences, Boothbay, Maine, United States of America
| |
Collapse
|
8
|
Host–parasite interactions: Marine bivalve molluscs and protozoan parasites, Perkinsus species. J Invertebr Pathol 2013; 114:196-216. [DOI: 10.1016/j.jip.2013.06.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/05/2013] [Accepted: 06/09/2013] [Indexed: 01/08/2023]
|
9
|
Identifying factors inducing trophozoite differentiation into hypnospores in Perkinsus species. Eur J Protistol 2013; 49:201-9. [DOI: 10.1016/j.ejop.2012.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/29/2012] [Accepted: 07/23/2012] [Indexed: 11/15/2022]
|
10
|
Vrinten P, Mavraganis I, Qiu X, Senger T. Biosynthesis of long chain polyunsaturated fatty acids in the marine ichthyosporean Sphaeroforma arctica. Lipids 2012; 48:263-74. [PMID: 23239113 DOI: 10.1007/s11745-012-3738-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 10/22/2012] [Indexed: 01/16/2023]
Abstract
Sphaeroforma arctica is a unique, recently discovered marine protist belonging to a group falling close to the yeast/animal border. S. arctica is found in cold environments, and accordingly has a fatty acid composition containing a high proportion of very long chain polyunsaturated fatty acids, including the ω3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA). Two elongases and five desaturases, representing the complete set of enzymes necessary for the synthesis of DHA from oleic acid, were isolated from this species and characterized in yeast. One elongase showed high conversion rates on a wide range of 18 and 20 carbon substrates, and was capable of sequential elongation reactions. The second elongase had a strong preference for the 20-carbon fatty acids EPA and arachidonic acid, with over 80 % of EPA converted to docosapentaenoic acid (DPA) in the heterologous yeast host. The isolation of a Δ8-desaturase, along with the detection of eicosadienoic acid in S. arctica cultures indicated that this species uses the alternate Δ8-pathway for the synthesis of long-chain polyunsaturated fatty acids. S. arctica also carried a Δ4-desaturase that proved to be very active in the production of DHA from DPA. Finally, a long chain acyl-CoA synthetase from S. arctica improved DHA uptake in the heterologous yeast host and led to an improvement in desaturation and elongation efficiencies.
Collapse
|
11
|
Fernández Robledo JA, Caler E, Matsuzaki M, Keeling PJ, Shanmugam D, Roos DS, Vasta GR. The search for the missing link: a relic plastid in Perkinsus? Int J Parasitol 2011; 41:1217-29. [PMID: 21889509 DOI: 10.1016/j.ijpara.2011.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/11/2022]
Abstract
Perkinsus marinus (Phylum Perkinsozoa) is a protozoan parasite that has devastated natural and farmed oyster populations in the USA, significantly affecting the shellfish industry and the estuarine environment. The other two genera in the phylum, Parvilucifera and Rastrimonas, are parasites of microeukaryotes. The Perkinsozoa occupies a key position at the base of the dinoflagellate branch, close to its divergence from the Apicomplexa, a clade that includes parasitic protista, many harbouring a relic plastid. Thus, as a taxon that has also evolved toward parasitism, the Perkinsozoa has attracted the attention of biologists interested in the evolution of this organelle, both in its ultrastructure and the conservation, loss or transfer of its genes. A review of the recent literature reveals mounting evidence in support of the presence of a relic plastid in P. marinus, including the presence of multimembrane structures, characteristic metabolic pathways and proteins with a bipartite N-terminal extension. Further, these findings raise intriguing questions regarding the potential functions and unique adaptation of the putative plastid and/or plastid genes in the Perkinsozoa. In this review we analyse the above-mentioned evidence and evaluate the potential future directions and expected benefits of addressing such questions. Given the rapidly expanding molecular/genetic resources and methodological toolbox for Perkinsus spp., these organisms should complement the currently established models for investigating plastid evolution within the Chromalveolata.
Collapse
Affiliation(s)
- José A Fernández Robledo
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, IMET, Baltimore, MD 21202-3101, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Joseph SJ, Fernández-Robledo JA, Gardner MJ, El-Sayed NM, Kuo CH, Schott EJ, Wang H, Kissinger JC, Vasta GR. The Alveolate Perkinsus marinus: biological insights from EST gene discovery. BMC Genomics 2010; 11:228. [PMID: 20374649 PMCID: PMC2868825 DOI: 10.1186/1471-2164-11-228] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/07/2010] [Indexed: 12/05/2022] Open
Abstract
Background Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica, has devastated natural and farmed oyster populations along the Atlantic and Gulf coasts of the United States. It is classified as a member of the Perkinsozoa, a recently established phylum considered close to the ancestor of ciliates, dinoflagellates, and apicomplexans, and a key taxon for understanding unique adaptations (e.g. parasitism) within the Alveolata. Despite intense parasite pressure, no disease-resistant oysters have been identified and no effective therapies have been developed to date. Results To gain insight into the biological basis of the parasite's virulence and pathogenesis mechanisms, and to identify genes encoding potential targets for intervention, we generated >31,000 5' expressed sequence tags (ESTs) derived from four trophozoite libraries generated from two P. marinus strains. Trimming and clustering of the sequence tags yielded 7,863 unique sequences, some of which carry a spliced leader. Similarity searches revealed that 55% of these had hits in protein sequence databases, of which 1,729 had their best hit with proteins from the chromalveolates (E-value ≤ 1e-5). Some sequences are similar to those proven to be targets for effective intervention in other protozoan parasites, and include not only proteases, antioxidant enzymes, and heat shock proteins, but also those associated with relict plastids, such as acetyl-CoA carboxylase and methyl erythrithol phosphate pathway components, and those involved in glycan assembly, protein folding/secretion, and parasite-host interactions. Conclusions Our transcriptome analysis of P. marinus, the first for any member of the Perkinsozoa, contributes new insight into its biology and taxonomic position. It provides a very informative, albeit preliminary, glimpse into the expression of genes encoding functionally relevant proteins as potential targets for chemotherapy, and evidence for the presence of a relict plastid. Further, although P. marinus sequences display significant similarity to those from both apicomplexans and dinoflagellates, the presence of trans-spliced transcripts confirms the previously established affinities with the latter. The EST analysis reported herein, together with the recently completed sequence of the P. marinus genome and the development of transfection methodology, should result in improved intervention strategies against dermo disease.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Venegas-Calerón M, Beaudoin F, Sayanova O, Napier JA. Co-transcribed genes for long chain polyunsaturated fatty acid biosynthesis in the protozoon Perkinsus marinus include a plant-like FAE1 3-ketoacyl coenzyme A synthase. J Biol Chem 2007; 282:2996-3003. [PMID: 17092943 DOI: 10.1074/jbc.m607051200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The marine parasitic protozoon Perkinus marinus synthesizes the polyunsaturated fatty acid arachidonic acid via the unusual alternative Delta8 pathway in which elongation of C18 fatty acids generates substrate for two sequential desaturations. Here we have shown that genes encoding the three P. marinus activities responsible for arachidonic acid biosynthesis (C18 Delta9-elongating activity, C20 Delta8 desaturase, C20 Delta5 desaturase) are genomically clustered and co-transcribed as an operon. The acyl elongation reaction, which underpins this pathway, is catalyzed by a FAE1 (fatty acid elongation 1)-like 3-ketoacyl-CoA synthase class of condensing enzyme previously only reported in higher plants and algae. This is the first example of an elongating activity involved in the biosynthesis of a polyunsaturated fatty acid that is not a member of the ELO/SUR4 family. The P. marinus FAE1-like elongating activity is sensitive to the herbicide flufenacet, similar to some higher plant 3-ketoacyl-CoA synthases, but unable to rescue the yeast elo2Delta/elo3Delta mutant consistent with a role in the elongation of polyunsaturated fatty acids. P. marinus represents a key organism in the taxonomic separation of the single-celled eukaryotes collectively known as the alveolates, and our data imply a lineage in which ancestral acquisition of plant-like genes, such as FAE1-like 3-ketoacyl-CoA synthases, occurred via endosymbiosis. The P. marinus FAE1-like elongating activity is also indicative of the independent evolution of the alternative Delta8 pathway, distinct from ELO/SUR4-dependent examples.
Collapse
Affiliation(s)
- Mónica Venegas-Calerón
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | | | | | | |
Collapse
|
14
|
Lund ED, Chu FLE, Soudant P, Harvey E. Perkinsus marinus, a protozoan parasite of the eastern oyster, has a requirement for dietary sterols. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:141-7. [PMID: 17112755 DOI: 10.1016/j.cbpa.2006.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Perkinsus marinus, a protozoan parasite of the eastern oyster, Crassostrea virginica, causes high mortality in its host along the Atlantic and Gulf coasts of North America. P. marinus meronts cultured in vitro in medium containing complete lipid supplement (cod liver oil, cholesterol and alpha tocopherol acetate in detergent) are able to synthesize a wide variety of lipids, yet cultures cannot be maintained in lipid-free medium. To determine P. marinus lipid requirements meronts were inoculated into media containing different combinations of lipid components in detergent. Treatments included complete lipid supplement (positive control), detergent only (negative control), cholesterol in detergent, alpha tocopherol acetate in detergent and cholesterol+alpha tocopherol acetate in detergent. Meronts proliferated in the positive control medium and media containing cholesterol or cholesterol+alpha tocopherol acetate, but failed to proliferate in the negative control medium and the medium containing just alpha tocopherol acetate. Gas chromatography analysis of P. marinus meronts grown in medium with added (13)C sodium acetate (0.5 mg mL(-1)) revealed the presence of fatty acids containing (13)C, but the only sterol present was cholesterol containing no (13)C. These results suggest that P. marinus cannot synthesize sterols and must sequester them from its host.
Collapse
Affiliation(s)
- Eric D Lund
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062, USA
| | | | | | | |
Collapse
|
15
|
Soudant P, Chu FLE, Lund ED. Assessment of the Cell Viability of CulturedPerkinsus marinus(Perkinsea), a Parasitic Protozoan of the Eastern Oyster,Crassostrea virginica, Using SYBRgreen-Propidium Iodide Double Staining and Flow Cytometry. J Eukaryot Microbiol 2005; 52:492-9. [PMID: 16313441 DOI: 10.1111/j.1550-7408.2005.00058.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A flow cytometry (FCM) assay using SYBRgreen and propidium iodide double staining was tested to assess viability and morphological parameters of Perkinsus marinus under different cold- and heat-shock treatments and at different growth phases. P. marinus meront cells, cultivated at 28 degrees C, were incubated in triplicate for 30 min at -80 degrees C, -20 degrees C, 5 degrees C, and 20 degrees C for cold-shock treatments and at 32 degrees C, 36 degrees C, 40 degrees C, 44 degrees C, 48 degrees C, 52 degrees C, and 60 degrees C for heat-shock treatments. A slight and significant decrease in percentage of viable cells (PVC), from 93.6% to 92.7%, was observed at -20 degrees C and the lowest PVC was obtained at -80 degrees C (54.0%). After 30 min of heat shocks at 40 degrees C and 44 degrees C, PVC decreased slightly but significantly compared to cells maintained at 28 degrees C. When cells were heat shocked at 48 degrees C, 52 degrees C, and 60 degrees C heavy mortality occurred and PVC decreased to 33.8%, 8.0%, and 3.4%, respectively. No change in cell complexity and size was noted until cells were heat shocked at >or=44 degrees C. High cell mortality was detected at stationary phase of P. marinus cell culture. Cell viability dropped below 40% in 28-day-old cultures and ranged 11-25% in 38 to 47-day-old cultures. Results suggest that FCM could be a useful tool for determining viability of cultured P. marinus cells.
Collapse
Affiliation(s)
- Philippe Soudant
- LEMAR, UMR 6539, IUEM-UBO, Technopole Brest-Iroise, Place Nicolas Copernic, 29280 Plouzané, France
| | | | | |
Collapse
|
16
|
Kawashima H, Ohnishi M. Identification of minor fatty acids and various nonmethylene-interrupted diene isomers in mantle, muscle, and viscera of the marine bivalve Megangulus zyonoensis. Lipids 2005; 39:265-71. [PMID: 15233406 DOI: 10.1007/s11745-004-1229-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To clarify the occurrence of nonmethylene-interrupted (NMI) FA in the marine bivalve Megangulus zyonoensis, methyl esters of unsaturated FA were fractionated according to the degree of their unsaturation by using argentation TLC. Their structures were elucidated by using GC-MS of their FAME and 2-alkenyl-4,4-dimethyloxazoline derivatives. Seventy-two unsaturated FA, including the novel 7,15-21 and 20:4n-1, were identified. The unusual tetraenoic acids 20:4n-4, 20:4n-1, 21:4n-6, and 21:4n-5 were found in M. zyonoensis. This bivalve was extremely rich in the positional isomers of 19:1, 20:2, and 20:3. The distribution of NMI and positional isomers of unusual FA in the bivalve tissues was also discussed.
Collapse
Affiliation(s)
- H Kawashima
- Bioscience Laboratory, Miyako College Division, Iwate Prefectural University, Iwate 027-0039, Japan.
| | | |
Collapse
|
17
|
Chu FLE, Soudant P, Lund ED. Perkinsus marinus, a protozoan parasite of the Eastern oyster (Crassostrea virginica): effects of temperature on the uptake and metabolism of fluorescent lipid analogs and lipase activities. Exp Parasitol 2003; 105:121-30. [PMID: 14969689 DOI: 10.1016/j.exppara.2003.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 09/08/2003] [Accepted: 11/11/2003] [Indexed: 11/24/2022]
Abstract
The effects of temperature on the uptake and metabolism of fluorescent labeled palmitic acid (FLC16) and phosphatidylcholine (FLPC) and lipase activities in the oyster protozoan parasite, Perkinsus marinus, meront stage were tested at 10, 18, and 28 degrees C. Temperature significantly affected not only the uptake, assimilation, and metabolism of both FLC16 and FLPC in P. marinus, but also its triacylglycerol (TAG) lipase activities. The incorporation of both FLC16 and FLPC increased with temperature and paralleled the increase in the amount of total fatty acids in P. marinus meront cultures. The incorporation of FLC16 was higher than FLPC at all temperatures. The percentage of FLC16 metabolized to TAG was significantly higher at higher temperatures. Trace amounts of incorporated FLC16 were detected in monoacylglycerol (MAG) and PC at 18 and 28 degrees C. P. marinus meronts metabolized FLPC to TAG, diacylglycerol (DAG), monoacylglycerol (MAG), free fatty acids (FFA), phosphatidylethanolamine (PE), and cardiolipin (CL). The conversion of FLPC to TAG and PE was highest at 28 degrees C. The relative proportions of individual fatty acids and total saturated, monounsaturated and polyunsaturated fatty acids changed with temperatures. While total saturated fatty acids (SAFAs) increased with temperature, total monounsaturated fatty acids (MUFAs) decreased with temperature. Total polyunsaturated fatty acids (PUFAs) increased from 28 to 18 degrees C. The findings of increase of total SAFAs and decrease of total MUFAs with the increase of temperatures and upward shift of total PUFAs from 28 to 18 degrees C suggest that, as in other organisms, P. marinus is capable of adapting to changes in environmental temperatures by modifying its lipid metabolism. Generally, higher lipase activities were noted at higher cultivation temperatures. Both TAG lipase and phospholipase activities were detected in P. marinus cells and their extra cellular products (ECP), but phospholipase activities in both the cell pellets and ECP were very low. Also, lipase activities were much lower in ECP than in the cells. The observations of low metabolism, bioconversion of incorporated fluorescent lipid analogs and lipase activities at low temperatures are consistent with the low in vitro growth rate and low infectivity of P. marinus at low temperatures.
Collapse
Affiliation(s)
- Fu-Lin E Chu
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062, USA.
| | | | | |
Collapse
|
18
|
Lund ED, Chu FLE. Phospholipid biosynthesis in the oyster protozoan parasite, Perkinsus marinus. Mol Biochem Parasitol 2002; 121:245-53. [PMID: 12034458 DOI: 10.1016/s0166-6851(02)00046-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perkinsus marinus is a protozoan parasite that causes high mortality in its commercially and ecologically important host, the Eastern oyster Crassostrea virginica. In order to understand the host-parasite relationship in lipid metabolism, the ability of P. marinus to synthesize phospholipids from polar headgroup precursors was investigated. Pulse/chase experiments were conducted using radiolabled serine, choline, ethanolamine and inositol. Timecourse incubations revealed that in vitro cultured P. marinus meronts can utilize the cytidine diphosphate-diacylglycerol (CDP-DAG) pathway to synthesize phosphatidylinositol (PI) from inositol and phosphatidylserine (PS) from serine. Serine label was also incorporated into phosphatidylethanolamine (PE), phosphatidylcholine (PC) and lysophosphatidylcholine (LPC). Incubations of P. marinus cells with increasing concentrations of radiolabeled serine resulted in more radioactivity recovered in neutral lipids than in polar lipids at the highest substrate concentration tested (344 microM). This suggests that excess serine label was being utilized for fatty acid synthesis and stored as triacylglycerols. Additional incubations were conducted with radiolabeled choline and ethanolamine at concentrations equimolar to the highest serine concentration tested. Ethanolamine label was also incorporated into PE, PS, PC and LPC. Choline label was incorporated into PC. These results suggest the presence of three pathways for de novo synthesis of phospholipids in P. marinus: CDP-choline, CDP-ethanolamine and CDP-DAG. At equivalent substrate concentrations (344 microM) the highest incorporation of labeled substrate into total phospholipids was with serine followed by ethanolamine and choline, respectively. P. marinus phospholipid biosynthetic capabilities appear to be similar to those of Plasmodium and Trypanosoma species.
Collapse
Affiliation(s)
- Eric D Lund
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA
| | | |
Collapse
|