1
|
Sun LX, Wang M, Elsheikha HM, Xie SC, Fu BQ, Zhu XQ, Liu GH. AP2X-8 Is Important for Tachyzoite Growth and Bradyzoite Differentiation of Toxoplasma gondii. Animals (Basel) 2025; 15:1349. [PMID: 40362164 PMCID: PMC12070893 DOI: 10.3390/ani15091349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Toxoplasma gondii is a protozoan parasite capable of establishing chronic infections, with potential reactivation in immunocompromised individuals. However, the molecular mechanisms governing tachyzoite-to-bradyzoite differentiation remain incompletely understood. Previous studies have identified AP2 transcription factors as key regulators of this developmental switch. In this study, we investigated the role of the AP2 factor AP2X-8. Immunofluorescence analysis revealed that AP2X-8 is constitutively expressed in the nucleus of both tachyzoite and bradyzoite stages. Using CRISPR-Cas9-mediated homologous recombination, we successfully generated an ap2X-8 knockout strain. Phenotypic assays including plaque formation, invasion, replication, and egress, and bradyzoite differentiation assays, were then performed to assess the impact of ap2X-8 deletion. Our analyses showed that the loss of ap2X-8 significantly impaired plaque formation and intracellular replication, while invasion and egress were unaffected. Furthermore, ap2X-8 knockout enhanced bradyzoite differentiation in vitro. Despite these changes, deletion of ap2X-8 did not alter parasite virulence in a mouse infection model. These findings demonstrate that AP2X-8 is an important regulator of T. gondii tachyzoite growth and bradyzoite differentiation, offering new insights into the parasite's developmental regulation.
Collapse
Affiliation(s)
- Li-Xiu Sun
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.W.); (S.-C.X.); (B.-Q.F.)
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.W.); (S.-C.X.); (B.-Q.F.)
| | - Hany M. Elsheikha
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK;
| | - Shi-Chen Xie
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.W.); (S.-C.X.); (B.-Q.F.)
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.W.); (S.-C.X.); (B.-Q.F.)
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
2
|
Saldarriaga Cartagena AM, Arias AA, Cristaldi C, Ganuza A, Gonzalez MM, Corvi MM, Sullivan WJ, Vanagas L, Angel SO. Toxoplasma gondii RAD51 recombinase is required to overcome DNA replication stress and its inactivation leads to bradyzoite differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.08.647840. [PMID: 40291705 PMCID: PMC12027067 DOI: 10.1101/2025.04.08.647840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Toxoplasma gondii is an obligate intracellular parasite with a high replication rate that can lead to DNA replicative stress, in turn associated with the generation of DNA double-strand breaks (DSBs). Cells have two main pathways to repair DSBs: non-homologous end joining and homologous recombination repair (NHEJ and HRR respectively). RAD51 is the key recombinase in the HRR pathway. In this work, we achieved endogenous tagging of the RAD51 gene using the Auxin Inducible Degron (AID) system, to generate the clonal line RH RAD51 HA-AID . Here we demonstrate that RAD51 is expressed in replicative tachyzoites and establishes damage foci. Auxin-induced knock-down (KD) affects the correct replication of tachyzoites which show loss of synchronization. The use of the RAD51 inhibitor B02 also affects parasite growth, with an IC 50 of 4.8 µM. B02 produced alterations in tachyzoite replication and arrest in the S phase of the cell cycle. Additionally, B02 induced tachyzoite to bradyzoite differentiation showing small cyst-like structures. In conclusion, the HRR pathway is necessary for maintaining proper tachyzoite replication under normal growth conditions, supporting that replicative stress occurs during the cell cycle. Our findings also suggest that DNA replication stress can induce bradyzoite differentiation.
Collapse
|
3
|
Wu XJ, Wang M, Zhang NZ, Li TT, Gao J, Sun LX, Zhu XQ, Wang JL. AP2XII-9 is essential for parasite growth and suppresses bradyzoite differentiation in Toxoplasma gondii. FASEB J 2025; 39:e70476. [PMID: 40106192 DOI: 10.1096/fj.202402593rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Cyst formation, resulting from the differentiation of rapidly replicating tachyzoites into slowly growing bradyzoites, is the primary cause of chronic toxoplasmosis. Although the mechanisms governing bradyzoite differentiation have been partially elucidated, they remain incompletely understood. In this study, we show that the transcription factor AP2XII-9 is localized in the nucleus and exhibits periodic expression during the tachyzoite stage, with peak expression observed during the synthesis and mitosis phases. Conditional knockdown of AP2XII-9 in both the type I RH strain and type II cyst-forming Pru strain revealed that AP2XII-9 plays a critical role in the lytic cycle by regulating the formation of the inner membrane complex, proper apicoplast inheritance, and normal cell division, underscoring its essential role in T. gondii growth. Furthermore, depletion of AP2XII-9 induced bradyzoite differentiation even in the absence of alkaline stress. Transcriptomic analysis revealed that the deletion of AP2XII-9 resulted in the downregulation of tachyzoite growth-related genes and upregulation of a series of bradyzoite-specific genes. Taken together, these findings indicate that AP2XII-9 is essential for maintaining the rapid and normal replication of tachyzoites while actively repressing bradyzoite differentiation, reflecting the complexity of the mechanisms underlying bradyzoite differentiation.
Collapse
Affiliation(s)
- Xiao-Jing Wu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Nian-Zhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
4
|
Bhaskaran M, Mudiyam V, Mouveaux T, Roger E, Gissot M. Cascading expression of ApiAP2 transcription factors controls daughter cell assembly in Toxoplasma gondii. PLoS Pathog 2024; 20:e1012810. [PMID: 39774584 PMCID: PMC11723607 DOI: 10.1371/journal.ppat.1012810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/10/2025] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Pathogenesis of Toxoplasma gondii in the intermediate host is based on the tachyzoite ability to divide rapidly to produce significant amount of daughter cells in a reduce time frame. The regulation of the cell-cycle specific expression program is therefore key to their proliferation. Transcriptional regulation has a crucial role in establishing this expression program and transcription factors regulates many aspects of tachyzoite cell cycle. We explored the role of two ApiAP2 transcription factors, TgAP2XII-9 and TgAP2III-2, during the cell cycle of the tachyzoite form. While TgAP2III-2 has only a minor impact on the tachyzoite proliferation, we show that TgAP2XII-9 regulates many aspects of the cell cycle including the proper assembly of the daughter cells inner membrane complex and temporal expression of many virulence genes. Creation of a double mutant strain for TgAP2XII-9 and TgAP2III-2 shows that TgAP2XII-9 had a prominent role during daughter cell assembly. Using transcriptomics and Cut&Tag, we demonstrate that TgAP2XII-9 mainly acts through the transcriptional control of at least 300 genes promoters. Interestingly, TgAP2XII-9 plays a crucial role repressing the expression of genes necessary for budding initiation and activating genes necessary for microneme de novo formation. We also explored the importance of the AP2 domain of TgAP2XII-9 demonstrating its critical role to exert its function. Therefore, we showed that TgAP2XII-9 is a crucial transcription factor which is key to daughter cell assembly post budding initiation.
Collapse
Affiliation(s)
- Maanasa Bhaskaran
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Venkat Mudiyam
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Thomas Mouveaux
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Emmanuel Roger
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Mathieu Gissot
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
5
|
Xia J, Fu Y, Huang W, Uddin T, Sibley LD. Constitutive upregulation of transcription factors underlies permissive bradyzoite differentiation in a natural isolate of Toxoplasma gondii. mBio 2024; 15:e0064124. [PMID: 39150246 PMCID: PMC11389365 DOI: 10.1128/mbio.00641-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024] Open
Abstract
Toxoplasma gondii bradyzoites play a critical role in pathology due to their long-term persistence in intermediate hosts and their potential to reactivate, resulting in severe diseases in immunocompromised individuals. Currently, there is no effective treatment for eliminating bradyzoites. Hence, better in vitro models of T. gondii bradyzoite development would facilitate identification of therapeutic targets for bradyzoites. Herein, we characterized a natural isolate of T. gondii, called Tg68, which showed slower in vitro replication of tachyzoites, and permissive bradyzoite development under stress conditions in vitro. Transcriptional analysis revealed constitutive expression in Tg68 tachyzoites of the key regulators of bradyzoite development including BFD1, BFD2, and several AP2 factors. Consistent with this finding, Tg68 tachyzoites expressed high levels of bradyzoite-specific genes including BAG1, ENO1, and LDH2. Moreover, after stress-induced differentiation, Tg68 bradyzoites exhibited gene expression profiles of mature bradyzoites, even at early time points. These data suggest that Tg68 tachyzoites exist in a pre-bradyzoite stage primed to readily develop into mature bradyzoites under stress conditions in vitro. Tg68 presents a novel model for differentiation in vitro that will serve as a useful tool for the investigation of bradyzoite biology and the development of therapeutics. IMPORTANCE Toxoplasma gondii is a widespread protozoan that chronically infects ~30% of the world's population. T. gondii can differentiate between the fast-growing life stage that causes acute infection and the slow-growing stage that persists in the host for extended periods of time. The slow-growing stage cannot be eliminated by the host immune response or currently known antiparasitic drugs. Studies on the slow-growing stage have been limited due to the limitations of in vivo experiments and the challenges of in vitro manipulation. Here, we characterize a natural isolate of T. gondii, which constitutively expresses factors that drive development and that is permissive to convert to the slow-growing stage under stress conditions in vitro. The strain presents a novel in vitro model for studying the chronic phase of toxoplasmosis and identifying new therapeutic treatments for chronic infections.
Collapse
Affiliation(s)
- Jing Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wanyi Huang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Taher Uddin
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Herneisen AL, Peters ML, Smith TA, Shortt E, Lourido S. SPARK regulates AGC kinases central to the Toxoplasma gondii asexual cycle. eLife 2024; 13:RP93877. [PMID: 39136687 PMCID: PMC11321763 DOI: 10.7554/elife.93877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Apicomplexan parasites balance proliferation, persistence, and spread in their metazoan hosts. AGC kinases, such as PKG, PKA, and the PDK1 ortholog SPARK, integrate environmental signals to toggle parasites between replicative and motile life stages. Recent studies have cataloged pathways downstream of apicomplexan PKG and PKA; however, less is known about the global integration of AGC kinase signaling cascades. Here, conditional genetics coupled to unbiased proteomics demonstrates that SPARK complexes with an elongin-like protein to regulate the stability of PKA and PKG in the model apicomplexan Toxoplasma gondii. Defects attributed to SPARK depletion develop after PKG and PKA are down-regulated. Parasites lacking SPARK differentiate into the chronic form of infection, which may arise from reduced activity of a coccidian-specific PKA ortholog. This work delineates the signaling topology of AGC kinases that together control transitions within the asexual cycle of this important family of parasites.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Michelle L Peters
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tyler A Smith
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Emily Shortt
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
7
|
Herneisen AL, Peters ML, Smith TA, Shortt E, Lourido S. SPARK regulates AGC kinases central to the Toxoplasma gondii asexual cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564746. [PMID: 37961644 PMCID: PMC10634940 DOI: 10.1101/2023.10.30.564746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Apicomplexan parasites balance proliferation, persistence, and spread in their metazoan hosts. AGC kinases, such as PKG, PKA, and the PDK1 ortholog SPARK, integrate environmental signals to toggle parasites between replicative and motile life stages. Recent studies have cataloged pathways downstream of apicomplexan PKG and PKA; however, less is known about the global integration of AGC kinase signaling cascades. Here, conditional genetics coupled to unbiased proteomics demonstrates that SPARK complexes with an elongin-like protein to regulate the stability of PKA and PKG in the model apicomplexan Toxoplasma gondii. Defects attributed to SPARK depletion develop after PKG and PKA are down-regulated. Parasites lacking SPARK differentiate into the chronic form of infection, which may arise from reduced activity of a coccidian-specific PKA ortholog. This work delineates the signaling topology of AGC kinases that together control transitions within the asexual cycle of this important family of parasites.
Collapse
Affiliation(s)
- Alice L. Herneisen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Michelle L. Peters
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Tyler A. Smith
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
8
|
Xia J, Fu Y, Huang W, Sibley LD. Constitutive upregulation of transcription factors underlies permissive bradyzoite differentiation in a natural isolate of Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582596. [PMID: 38464000 PMCID: PMC10925318 DOI: 10.1101/2024.02.28.582596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Toxoplasma gondii bradyzoites play a critical role in pathology due to their long-term persistence in intermediate hosts and their potential to reactivate, resulting in severe diseases in immunocompromised individuals. Currently there is no effective treatment for eliminating bradyzoites. Hence, better in vitro models of T. gondii cyst development would facilitate identification of therapeutic targets for bradyzoites. Herein we characterized a natural isolate of T. gondii, called Tg68, which showed slower in vitro replication of tachyzoites, and permissive bradyzoite development under stress conditions in vitro. Transcriptional analysis revealed constitutive expression in Tg68 tachyzoites of the key regulators of bradyzoite development including BFD1, BFD2, and several AP2 factors. Consistent with this finding, Tg68 tachyzoites expressed high levels of bradyzoite-specific genes including BAG1, ENO1, and LDH2. Moreover, after stress induced differentiation, Tg68 bradyzoites exhibited gene expression profiles of mature bradyzoites, even at early time points. These data suggest that Tg68 tachyzoites exist in a pre-bradyzoite stage primed to readily develop into mature bradyzoites under stress conditions in vitro. Tg68 presents a novel model for differentiation in vitro that will serve as a useful tool for investigation of bradyzoite biology and development of therapeutics.
Collapse
Affiliation(s)
- Jing Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Wanyi Huang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
9
|
Zarringhalam K, Ye S, Lou J, Rezvani Y, Gubbels MJ. Cell cycle-regulated ApiAP2s and parasite development: the Toxoplasma paradigm. Curr Opin Microbiol 2023; 76:102383. [PMID: 37898053 PMCID: PMC10840917 DOI: 10.1016/j.mib.2023.102383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 10/30/2023]
Abstract
The cell division cycle of T. gondii is driven by cyclically expressed ApiAP2 transcription factors (AP2s) that promote gene sets (regulons) associated with specific biological functions. AP2s drive other AP2s, thereby propelling the progressive gene expression waves defining the lytic cycle. AP2s can act as dimers by themselves, in combination with other AP2s (constitutive or cyclical) or in complexes with epigenetic factors. Exit from the cell cycle into either the extracellular state or differentiation into bradyzoites results in major changes in gene expression. Surprisingly, both transitions lead to expression of a shared set of unique AP2s that suggest a shared stress response that, governed by the specific conditions, leads to different outcomes.
Collapse
Affiliation(s)
- Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA; Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA.
| | - Sida Ye
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA; Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Jingjing Lou
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Yasaman Rezvani
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA; Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | | |
Collapse
|
10
|
Dupont D, Robert M, Brenier-Pinchart M, Lefevre A, Wallon M, Pelloux H. Toxoplasma gondii, a plea for a thorough investigation of its oncogenic potential. Heliyon 2023; 9:e22147. [PMID: 38034818 PMCID: PMC10685377 DOI: 10.1016/j.heliyon.2023.e22147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
It is estimated that 30 % of the world's population harbours the parasite Toxoplasma gondii, particularly in the brain. Beyond its implication in potentially severe opportunistic or congenital infections, this persistence has long been considered as without consequence. However, certain data in animals and humans suggest that this carriage may be linked to various neuropsychiatric or neurodegenerative disorders. The hypothesis of a potential cerebral oncogenicity of the parasite is also emerging. In this personal view, we will present the epidemiological arguments in favour of an association between toxoplasmosis and cerebral malignancy, before considering the points that could underlie a potential causal link. More specifically, we will focus on the brain as the preferred location for T. gondii persistence and the propensity of this parasite to interfere with the apoptosis and cell cycle signalling pathways of their host cell.
Collapse
Affiliation(s)
- D. Dupont
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
- Physiologie intégrée du système d’éveil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Faculté de Médecine, Université Claude Bernard Lyon 1, Bron, 69500, France
| | - M.G. Robert
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| | - M.P. Brenier-Pinchart
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| | - A. Lefevre
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
| | - M. Wallon
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
- Physiologie intégrée du système d’éveil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Faculté de Médecine, Université Claude Bernard Lyon 1, Bron, 69500, France
| | - H. Pelloux
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| |
Collapse
|
11
|
Vizcarra EA, Goerner AL, Ulu A, Hong DD, Bergersen KV, Talavera MA, Le Roch K, Wilson EH, White MW. An ex vivo model of Toxoplasma recrudescence reveals developmental plasticity of the bradyzoite stage. mBio 2023; 14:e0183623. [PMID: 37675999 PMCID: PMC10653814 DOI: 10.1128/mbio.01836-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE The classical depiction of the Toxoplasma lifecycle is bradyzoite excystation conversion to tachyzoites, cell lysis, and immune control, followed by the reestablishment of bradyzoites and cysts. In contrast, we show that tachyzoite growth slows independent of the host immune response at a predictable time point following excystation. Furthermore, we demonstrate a host cell-dependent pathway of continuous amplification of the cyst-forming bradyzoite population. The developmental plasticity of the excysted bradyzoites further underlines the critical role the cyst plays in the flexibility of the lifecycle of this ubiquitous parasite. This revised model of Toxoplasma recrudescence uncovers previously unknown complexity in the clinically important bradyzoite stage of the parasite, which opens the door to further study these novel developmental features of the Toxoplasma intermediate life cycle.
Collapse
Affiliation(s)
- Edward A. Vizcarra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Amber L. Goerner
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - David D. Hong
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kristina V. Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Michael A. Talavera
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, USA
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Michael W. White
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
12
|
Keroack CD, Duraisingh MT. Molecular mechanisms of cellular quiescence in apicomplexan parasites. Curr Opin Microbiol 2022; 70:102223. [PMID: 36274498 DOI: 10.1016/j.mib.2022.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Quiescence is a reversible nonproliferative cellular state that allows organisms to persist through unfavorable conditions. Quiescence can be stimulated by a wide range of external or intrinsic factors. Cells undergo a coordinated molecular program to enter and exit from the quiescent state, which is governed by signaling, transcriptional and translational changes, epigenetic mechanisms, metabolic switches, and changes in cellular architecture. These mechanisms have been extensively studied in model organisms, and a growing number of studies have identified conserved mechanisms in apicomplexan parasites. Quiescence in the context of a parasitic infection has significant clinical impact: quiescent forms may underlie treatment failures, relapsing infections, and stress tolerance. Here, we review the latest understanding of quiescence in apicomplexa, synthesizing these studies to highlight conserved mechanisms, and identifying technologies to assist in further characterization of quiescence. Understanding conserved mechanisms of quiescence in apicomplexans will provide avenues for transmission prevention and radical cure of infections.
Collapse
|
13
|
Yang J, Yang X, Liu A, Li Y, Niu Z, Lyu C, Liang X, Xia N, Cui J, Li M, Wu P, Peng C, Shen B. The beta subunit of AMP-activated protein kinase is critical for cell cycle progression and parasite development in Toxoplasma gondii. Cell Mol Life Sci 2022; 79:532. [PMID: 36205781 PMCID: PMC11802946 DOI: 10.1007/s00018-022-04556-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/10/2022] [Indexed: 11/03/2022]
Abstract
Toxoplasma gondii is a widespread eukaryotic pathogen that causes life-threatening diseases in humans and diverse animals. It has a complex life cycle with multiple developmental stages, which are timely adjusted according to growth conditions. But the regulatory mechanisms are largely unknown. Here we show that the AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis in eukaryotes, plays crucial roles in controlling the cell cycle progression and bradyzoite development in Toxoplasma. Deleting the β regulatory subunit of AMPK in the type II strain ME49 caused massive DNA damage and increased spontaneous conversion to bradyzoites (parasites at chronic infection stage), leading to severe growth arrest and reduced virulence of the parasites. Under alkaline stress, all Δampkβ mutants converted to a bradyzoite-like state but the cell division pattern was significantly impaired, resulting in compromised parasite viability. Moreover, we found that phosphorylation of the catalytic subunit AMPKα was greatly increased in alkaline stressed parasites, whereas AMPKβ deletion mutants failed to do so. Phosphoproteomics found that many proteins with predicted roles in cell cycle and cell division regulation were differentially phosphorylated after AMPKβ deletion, under both normal and alkaline stress conditions. Together, these results suggest that the parasite AMPK has critical roles in safeguarding cell cycle progression, and guiding the proper exist of the cell cycle to form mature bradyzoites when the parasites are stressed. Consistent with this model, growth of parasites was not significantly altered when AMPKβ was deleted in a strain that was naturally reluctant to bradyzoite development.
Collapse
Affiliation(s)
- Jichao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xuke Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Anqi Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yaqiong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Zhipeng Niu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xiaohan Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ningbo Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jianmin Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Mingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, People's Republic of China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, People's Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
- Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, 430070, Hubei Province, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
14
|
Naumov AV, Wang C, Chaput D, Ting LM, Alvarez CA, Keller T, Ramadan A, White MW, Kim K, Suvorova ES. Restriction Checkpoint Controls Bradyzoite Development in Toxoplasma gondii. Microbiol Spectr 2022; 10:e0070222. [PMID: 35652638 PMCID: PMC9241953 DOI: 10.1128/spectrum.00702-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Human toxoplasmosis is a life-threatening disease caused by the apicomplexan parasite Toxoplasma gondii. Rapid replication of the tachyzoite is associated with symptomatic disease, while suppressed division of the bradyzoite is responsible for chronic disease. Here, we identified the T. gondii cell cycle mechanism, the G1 restriction checkpoint (R-point), that operates the switch between parasite growth and differentiation. Apicomplexans lack conventional R-point regulators, suggesting adaptation of alternative factors. We showed that Cdk-related G1 kinase TgCrk2 forms alternative complexes with atypical cyclins (TgCycP1, TgCycP2, and TgCyc5) in the rapidly dividing developmentally incompetent RH and slower dividing developmentally competent ME49 tachyzoites and bradyzoites. Examination of cyclins verified the correlation of cyclin expression with growth dependence and development capacity of RH and ME49 strains. We demonstrated that rapidly dividing RH tachyzoites were dependent on TgCycP1 expression, which interfered with bradyzoite differentiation. Using the conditional knockdown model, we established that TgCycP2 regulated G1 duration in the developmentally competent ME49 tachyzoites but not in the developmentally incompetent RH tachyzoites. We tested the functions of TgCycP2 and TgCyc5 in alkaline induced and spontaneous bradyzoite differentiation (rat embryonic brain cells) models. Based on functional and global gene expression analyses, we determined that TgCycP2 also regulated bradyzoite replication, while signal-induced TgCyc5 was critical for efficient tissue cyst maturation. In conclusion, we identified the central machinery of the T. gondii restriction checkpoint comprised of TgCrk2 kinase and three atypical T. gondii cyclins and demonstrated the independent roles of TgCycP1, TgCycP2, and TgCyc5 in parasite growth and development. IMPORTANCE Toxoplasma gondii is a virulent and abundant human pathogen that puts millions of silently infected people at risk of reactivation of the chronic disease. Encysted bradyzoites formed during the chronic stage are resistant to current therapies. Therefore, insights into the mechanism of tissue cyst formation and reactivation are major areas of investigation. The fact that rapidly dividing parasites differentiate poorly strongly suggests that there is a threshold of replication rate that must be crossed to be considered for differentiation. We discovered a cell cycle mechanism that controls the T. gondii growth-rest switch involved in the conversion of dividing tachyzoites into largely quiescent bradyzoites. This switch operates the T. gondii restriction checkpoint using a set of atypical and parasite-specific regulators. Importantly, the novel T. gondii R-point network was not present in the parasite's human and animal hosts, offering a wealth of new and parasite-specific drug targets to explore in the future.
Collapse
Affiliation(s)
- Anatoli V. Naumov
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Li-Min Ting
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Carmelo A. Alvarez
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Thomas Keller
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Ahmed Ramadan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael W. White
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elena S. Suvorova
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
15
|
Nardelli SC, Silmon de Monerri NC, Vanagas L, Wang X, Tampaki Z, Sullivan WJ, Angel SO, Kim K. Genome-wide localization of histone variants in Toxoplasma gondii implicates variant exchange in stage-specific gene expression. BMC Genomics 2022; 23:128. [PMID: 35164683 PMCID: PMC8842566 DOI: 10.1186/s12864-022-08338-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is a protozoan parasite that differentiates from acute tachyzoite stages to latent bradyzoite forms in response to environmental cues that modify the epigenome. We studied the distribution of the histone variants CenH3, H3.3, H2A.X, H2A.Z and H2B.Z, by genome-wide chromatin immunoprecipitation to understand the role of variant histones in developmental transitions of T. gondii parasites. RESULTS H3.3 and H2A.X were detected in telomere and telomere associated sequences, whereas H3.3, H2A.X and CenH3 were enriched in centromeres. Histones H2A.Z and H2B.Z colocalize with the transcriptional activation mark H3K4me3 in promoter regions surrounding the nucleosome-free region upstream of the transcription start site. The H2B.Z/H2A.Z histone pair also localizes to the gene bodies of genes that are silent but poised for activation, including bradyzoite stage-specific genes. The majority of H2A.X and H2A.Z/H2B.Z loci do not overlap, consistent with variant histones demarcating specific functional regions of chromatin. The extent of enrichment of H2A.Z/H2B.Z (and H3.3 and H2A.X) within the entire gene (5'UTR and gene body) reflects the timing of gene expression during the cell cycle, suggesting that dynamic turnover of H2B.Z/H2A.Z occurs during the tachyzoite cell cycle. Thus, the distribution of the variant histone H2A.Z/H2B.Z dimer defines active and developmentally silenced regions of the T. gondii epigenome including genes that are poised for expression. CONCLUSIONS Histone variants mark functional regions of parasite genomes with the dynamic placement of the H2A.Z/H2B.Z dimer implicated as an evolutionarily conserved regulator of parasite and eukaryotic differentiation.
Collapse
Affiliation(s)
- Sheila C Nardelli
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Present address: Instituto Carlos Chagas/Fiocruz-PR, Curitiba, PR, CEP 81.350-010, Brazil
| | - Natalie C Silmon de Monerri
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Present address: Pfizer Inc, Pearl River, NY, 10965, USA
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Xiaonan Wang
- Department of Pathology, University of Cambridge, Cambridge, UK
- Present address: School of Public Health, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Zoi Tampaki
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Kami Kim
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Internal Medicine, Division of Infectious Disease and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
16
|
Rahman MT, Swierzy IJ, Downie B, Salinas G, Blume M, McConville MJ, Lüder CGK. The Redox Homeostasis of Skeletal Muscle Cells Regulates Stage Differentiation of Toxoplasma gondii. Front Cell Infect Microbiol 2021; 11:798549. [PMID: 34881198 PMCID: PMC8646093 DOI: 10.3389/fcimb.2021.798549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii is an obligatory intracellular parasite that causes persistent infections in birds and mammals including ~30% of the world’s human population. Differentiation from proliferative and metabolically active tachyzoites to largely dormant bradyzoites initiates the chronic phase of infection and occurs predominantly in brain and muscle tissues. Here we used murine skeletal muscle cells (SkMCs) to decipher host cellular factors that favor T. gondii bradyzoite formation in terminally differentiated and syncytial myotubes, but not in proliferating myoblast precursors. Genome-wide transcriptome analyses of T. gondii-infected SkMCs and non-infected controls identified ~6,500 genes which were differentially expressed (DEGs) in myotubes compared to myoblasts, largely irrespective of infection. On the other hand, genes related to central carbohydrate metabolism, to redox homeostasis, and to the Nrf2-dependent stress response pathway were enriched in both infected myoblast precursors and myotubes. Stable isotope-resolved metabolite profiling indicated increased fluxes into the oxidative branch of the pentose phosphate pathway (OxPPP) in infected myoblasts and into the TCA cycle in infected myotubes. High OxPPP activity in infected myoblasts was associated with increased NADPH/NADP+ ratio while myotubes exhibited higher ROS levels and lower expression of anti-oxidants and detoxification enzymes. Pharmacological reduction of ROS levels in SkMCs inhibited bradyzoite differentiation, while increased ROS induced bradyzoite formation. Thus, we identified a novel host cell-dependent mechanism that triggers stage conversion of T. gondii into persistent tissue cysts in its natural host cell type.
Collapse
Affiliation(s)
- Md Taibur Rahman
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany.,Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Izabela J Swierzy
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Bryan Downie
- Transcriptome and Genome Analysis Laboratory, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Gabriela Salinas
- Transcriptome and Genome Analysis Laboratory, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Martin Blume
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia.,Junior Research Group 'Metabolism of Microbial Pathogens', Robert-Koch-Institute, Berlin, Germany
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
| | - Carsten G K Lüder
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| |
Collapse
|
17
|
Farhat DC, Hakimi MA. The developmental trajectories of Toxoplasma stem from an elaborate epigenetic rewiring. Trends Parasitol 2021; 38:37-53. [PMID: 34456144 DOI: 10.1016/j.pt.2021.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii is considered to be one of the most successful parasitic pathogens. It owes this success to its flexibility in responding to signals emanating from the different environments it encounters during its multihost life cycle. The adaptability of this unicellular organism relies on highly coordinated and evolutionarily optimized developmental abilities that allow it to adopt the forms best suited to the requirements of each environment. Here we discuss recent outstanding studies that have uncovered how master regulators epigenetically regulate the cryptic process of sexual development and the transition to chronicity. We also highlight the molecular and technical advances that allow the field to embark on a new journey of epigenetic reprogramming of T. gondii development.
Collapse
Affiliation(s)
- Dayana C Farhat
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France.
| | - Mohamed-Ali Hakimi
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France.
| |
Collapse
|
18
|
Augusto L, Wek RC, Sullivan WJ. Host sensing and signal transduction during Toxoplasma stage conversion. Mol Microbiol 2021; 115:839-848. [PMID: 33118234 PMCID: PMC9364677 DOI: 10.1111/mmi.14634] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
Abstract
The intracellular parasite Toxoplasma gondii infects nucleated cells in virtually all warm-blooded vertebrates, including one-third of the human population. While immunocompetent hosts do not typically show symptoms of acute infection, parasites are retained in latent tissue cysts that can be reactivated upon immune suppression, potentially damaging key organ systems. Toxoplasma has a multistage life cycle that is intimately linked to environmental stresses and host signals. As this protozoan pathogen is transmitted between multiple hosts and tissues, it evaluates these external signals to appropriately differentiate into distinct life cycle stages, such as the transition from its replicative stage (tachyzoite) to the latent stage (bradyzoite) that persists as tissue cysts. Additionally, in the gut of its definitive host, felines, Toxoplasma converts into gametocytes that produce infectious oocysts (sporozoites) that are expelled into the environment. In this review, we highlight recent advances that have illuminated the interfaces between Toxoplasma and host and how these interactions control parasite stage conversion. Mechanisms underlying these stage transitions are important targets for therapeutic intervention aimed at thwarting parasite transmission and pathogenesis.
Collapse
Affiliation(s)
- Leonardo Augusto
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Ronald C. Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - William J. Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| |
Collapse
|
19
|
Gubbels MJ, Coppens I, Zarringhalam K, Duraisingh MT, Engelberg K. The Modular Circuitry of Apicomplexan Cell Division Plasticity. Front Cell Infect Microbiol 2021; 11:670049. [PMID: 33912479 PMCID: PMC8072463 DOI: 10.3389/fcimb.2021.670049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
The close-knit group of apicomplexan parasites displays a wide variety of cell division modes, which differ between parasites as well as between different life stages within a single parasite species. The beginning and endpoint of the asexual replication cycles is a 'zoite' harboring the defining apical organelles required for host cell invasion. However, the number of zoites produced per division round varies dramatically and can unfold in several different ways. This plasticity of the cell division cycle originates from a combination of hard-wired developmental programs modulated by environmental triggers. Although the environmental triggers and sensors differ between species and developmental stages, widely conserved secondary messengers mediate the signal transduction pathways. These environmental and genetic input integrate in division-mode specific chromosome organization and chromatin modifications that set the stage for each division mode. Cell cycle progression is conveyed by a smorgasbord of positively and negatively acting transcription factors, often acting in concert with epigenetic reader complexes, that can vary dramatically between species as well as division modes. A unique set of cell cycle regulators with spatially distinct localization patterns insert discrete check points which permit individual control and can uncouple general cell cycle progression from nuclear amplification. Clusters of expressed genes are grouped into four functional modules seen in all division modes: 1. mother cytoskeleton disassembly; 2. DNA replication and segregation (D&S); 3. karyokinesis; 4. zoite assembly. A plug-and-play strategy results in the variety of extant division modes. The timing of mother cytoskeleton disassembly is hard-wired at the species level for asexual division modes: it is either the first step, or it is the last step. In the former scenario zoite assembly occurs at the plasma membrane (external budding), and in the latter scenario zoites are assembled in the cytoplasm (internal budding). The number of times each other module is repeated can vary regardless of this first decision, and defines the modes of cell division: schizogony, binary fission, endodyogeny, endopolygeny.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, United States
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
20
|
TgAP2IX-5 is a key transcriptional regulator of the asexual cell cycle division in Toxoplasma gondii. Nat Commun 2021; 12:116. [PMID: 33414462 PMCID: PMC7791101 DOI: 10.1038/s41467-020-20216-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/18/2020] [Indexed: 01/22/2023] Open
Abstract
Apicomplexan parasites have evolved efficient and distinctive strategies for intracellular replication where the timing of emergence of the daughter cells (budding) is a decisive element. However, the molecular mechanisms that provide the proper timing of parasite budding remain unknown. Using Toxoplasma gondii as a model Apicomplexan, we identified a master regulator that controls the timing of the budding process. We show that an ApiAP2 transcription factor, TgAP2IX-5, controls cell cycle events downstream of centrosome duplication. TgAP2IX-5 binds to the promoter of hundreds of genes and controls the activation of the budding-specific cell cycle expression program. TgAP2IX-5 regulates the expression of specific transcription factors that are necessary for the completion of the budding cycle. Moreover, TgAP2IX-5 acts as a limiting factor that ensures that asexual proliferation continues by promoting the inhibition of the differentiation pathway. Therefore, TgAP2IX-5 is a master regulator that controls both cell cycle and developmental pathways. The control of the proper timing of emergence of apicomplexan parasite daughter cells during replication is crucial for their proliferation. Here, Khelifa et al. identify a key transcriptional regulator in the model Apicomplexa Toxoplasma gondii, which regulates the expression of transcription factors necessary for completion of the budding cycle.
Collapse
|
21
|
Abstract
Toxoplasma gondii is a single-celled parasite that persists in its host by converting into a latent cyst stage. This work describes a new transcriptional factor called AP2XII-2 that plays a role in properly maintaining the growth rate of replicating parasites, which contributes to signals required for development into its dormant stage. Without AP2XII-2, Toxoplasma parasites experience a delay in their cell cycle that increases the frequency of latent cyst formation. In addition, we found that AP2XII-2 operates in a multisubunit complex with other AP2 factors and chromatin remodeling machinery that represses gene expression. These findings add to our understanding of how Toxoplasma parasites balance replication and dormancy, revealing novel points of potential therapeutic intervention to disrupt this clinically relevant process. Toxoplasma gondii is a protozoan parasite that causes lifelong chronic infection that can reactivate in immunocompromised individuals. Upon infection, the replicative stage (tachyzoite) converts into a latent tissue cyst stage (bradyzoite). Like other apicomplexans, T. gondii possesses an extensive lineage of proteins called ApiAP2s that contain DNA-binding domains first characterized in plants. The function of most ApiAP2s is unknown. We previously found that AP2IX-4 is a cell cycle-regulated ApiAP2 expressed only in dividing parasites as a putative transcriptional repressor. In this study, we purified proteins interacting with AP2IX-4, finding it to be a component of the recently characterized microrchidia (MORC) transcriptional repressor complex. We further analyzed AP2XII-2, another cell cycle-regulated factor that associates with AP2IX-4. We monitored parallel expression of AP2IX-4 and AP2XII-2 proteins in tachyzoites, detecting peak expression during S/M phase. Unlike AP2IX-4, which is dispensable in tachyzoites, loss of AP2XII-2 resulted in a slowed tachyzoite growth due to a delay in S-phase progression. We also found that AP2XII-2 depletion increased the frequency of bradyzoite differentiation in vitro. These results suggest that multiple AP2 factors collaborate to ensure proper cell cycle progression and tissue cyst formation in T. gondii. IMPORTANCEToxoplasma gondii is a single-celled parasite that persists in its host by converting into a latent cyst stage. This work describes a new transcriptional factor called AP2XII-2 that plays a role in properly maintaining the growth rate of replicating parasites, which contributes to signals required for development into its dormant stage. Without AP2XII-2, Toxoplasma parasites experience a delay in their cell cycle that increases the frequency of latent cyst formation. In addition, we found that AP2XII-2 operates in a multisubunit complex with other AP2 factors and chromatin remodeling machinery that represses gene expression. These findings add to our understanding of how Toxoplasma parasites balance replication and dormancy, revealing novel points of potential therapeutic intervention to disrupt this clinically relevant process.
Collapse
|
22
|
Sinai AP, Suvorova ES. The RESTRICTION checkpoint: a window of opportunity governing developmental transitions in Toxoplasma gondii. Curr Opin Microbiol 2020; 58:99-105. [PMID: 33065371 DOI: 10.1016/j.mib.2020.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/27/2023]
Abstract
The life cycle of Toxoplasma gondii is characterized by active replication alternating with periods of rest. Encysted dormant sporozoites and bradyzoites initiate active replication as tachyzoites and merozoites. Here we explore the role of the cell cycle with a focus on the canonical G1 RESTRICTION checkpoint (R-point) as the integrator governing developmental decisions in T. gondii. This surveillance mechanism, which licenses replication, creates a window of opportunity in G1 for cellular reorganization in the execution of developmental transitions. We also explore the unique status of the bradyzoite, the only life cycle stage executing both a forward (entry into the sexual cycle) and reverse (recrudescence) developmental transitions as a multipotent cell. These opposing decisions are executed through the common machinery of the RESTRICTION checkpoint.
Collapse
Affiliation(s)
- Anthony P Sinai
- Department of Microbiology Immunology and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | - Elena S Suvorova
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
23
|
The Bradyzoite: A Key Developmental Stage for the Persistence and Pathogenesis of Toxoplasmosis. Pathogens 2020; 9:pathogens9030234. [PMID: 32245165 PMCID: PMC7157559 DOI: 10.3390/pathogens9030234] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous parasitic protist found in a wide variety of hosts, including a large proportion of the human population. Beyond an acute phase which is generally self-limited in immunocompetent individuals, the ability of the parasite to persist as a dormant stage, called bradyzoite, is an important aspect of toxoplasmosis. Not only is this stage not eliminated by current treatments, but it can also reactivate in immunocompromised hosts, leading to a potentially fatal outcome. Yet, despite its critical role in the pathology, the bradyzoite stage is relatively understudied. One main explanation is that it is a considerably challenging model, which essentially has to be derived from in vivo sources. However, recent progress on genetic manipulation and in vitro differentiation models now offers interesting perspectives for tackling key biological questions related to this particularly important developmental stage.
Collapse
|
24
|
Xue Y, Theisen TC, Rastogi S, Ferrel A, Quake SR, Boothroyd JC. A single-parasite transcriptional atlas of Toxoplasma Gondii reveals novel control of antigen expression. eLife 2020; 9:e54129. [PMID: 32065584 PMCID: PMC7180058 DOI: 10.7554/elife.54129] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/16/2020] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii, a protozoan parasite, undergoes a complex and poorly understood developmental process that is critical for establishing a chronic infection in its intermediate hosts. Here, we applied single-cell RNA-sequencing (scRNA-seq) on >5,400 Toxoplasma in both tachyzoite and bradyzoite stages using three widely studied strains to construct a comprehensive atlas of cell-cycle and asexual development, revealing hidden states and transcriptional factors associated with each developmental stage. Analysis of SAG1-related sequence (SRS) antigenic repertoire reveals a highly heterogeneous, sporadic expression pattern unexplained by measurement noise, cell cycle, or asexual development. Furthermore, we identified AP2IX-1 as a transcription factor that controls the switching from the ubiquitous SAG1 to rare surface antigens not previously observed in tachyzoites. In addition, comparative analysis between Toxoplasma and Plasmodium scRNA-seq results reveals concerted expression of gene sets, despite fundamental differences in cell division. Lastly, we built an interactive data-browser for visualization of our atlas resource.
Collapse
Affiliation(s)
- Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Terence C Theisen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Suchita Rastogi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Abel Ferrel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, United States
- Department of Applied Physics, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
25
|
Boillat M, Hammoudi PM, Dogga SK, Pagès S, Goubran M, Rodriguez I, Soldati-Favre D. Neuroinflammation-Associated Aspecific Manipulation of Mouse Predator Fear by Toxoplasma gondii. Cell Rep 2020; 30:320-334.e6. [PMID: 31940479 PMCID: PMC6963786 DOI: 10.1016/j.celrep.2019.12.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/27/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
In rodents, the decrease of felid aversion induced by Toxoplasma gondii, a phenomenon termed fatal attraction, is interpreted as an adaptive manipulation by the neurotropic protozoan parasite. With the aim of understanding how the parasite induces such specific behavioral modifications, we performed a multiparametric analysis of T. gondii-induced changes on host behavior, physiology, and brain transcriptome as well as parasite cyst load and distribution. Using a set of complementary behavioral tests, we provide strong evidence that T. gondii lowers general anxiety in infected mice, increases explorative behaviors, and surprisingly alters predator aversion without selectivity toward felids. Furthermore, we show a positive correlation between the severity of the behavioral alterations and the cyst load, which indirectly reflects the level of inflammation during brain colonization. Taken together, these findings refute the myth of a selective loss of cat fear in T. gondii-infected mice and point toward widespread immune-related alterations of behaviors.
Collapse
Affiliation(s)
- Madlaina Boillat
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva CMU, 1 rue Michel-Servet 1211 Geneva 4, Switzerland
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva CMU, 1 rue Michel-Servet 1211 Geneva 4, Switzerland
| | - Stéphane Pagès
- Wyss Center for Bio- and Neuroengineering, Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Maged Goubran
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Ivan Rodriguez
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva CMU, 1 rue Michel-Servet 1211 Geneva 4, Switzerland.
| |
Collapse
|
26
|
Ribeiro-Andrade M, de Crasto Souza Carvalho J, Amorim da Silva R, da Conceição Carvalho M, Nascimento Porto WJ, Mota RA. Inter- and intra-genotype differences in induced cystogenesis of recombinant strains of Toxoplasma gondii isolated from chicken and pigs. Exp Parasitol 2019; 207:107775. [PMID: 31628896 DOI: 10.1016/j.exppara.2019.107775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 11/17/2022]
Abstract
The ability to differentiate from the proliferative (tachyzoite) to the latent (bradyzoite) stage of isolates of Toxoplasma gondii recombinant genotypes (I/II/III and I/III) and reference strains from a clonal line (RH and ME49) was investigated in this study. Two isolates from chicken (#114 and #277; ToxoDB) and 3 from pigs (#114; ToxoDB) were the subjects for evaluation. The isolates were grown in cell culture under 2 different conditions: culture medium at pH 7.0 (neutral, without stress induction) or pH 8.0 (alkaline, stress inducing). After 4 days, the cultures were fixed and the events resulting from infection and induction were labeled. T. gondii cysts were labeled using Dolichos biflorus-FITC lectin (DBL-cysts) and free tachyzoites or vacuolar were labeled using an anti-T. gondii polyclonal antibody followed by an Alexa 594-conjugated secondary antibody (DBL-negative structures compatible with parasite structures - lysis plaques or vacuole). Differences in DBL-cysts formation in vitro in response to exogenous stress were observed between recombinant genotype isolates and the typical genotypes. The differences in conversion rates and the patterns of lysis plate production between genotype I/III isolates (#114) indicate that care should be taken when extrapolating the in vitro phenotypic characteristics of parasites from the same genotype.
Collapse
Affiliation(s)
- Müller Ribeiro-Andrade
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil; Department of Veterinary Medicine, Federal University of Roraima, Boa Vista, RR, Brazil.
| | - Jéssica de Crasto Souza Carvalho
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Renato Amorim da Silva
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Maria da Conceição Carvalho
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Rinaldo Aparecido Mota
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
27
|
Stelzer S, Basso W, Benavides Silván J, Ortega-Mora L, Maksimov P, Gethmann J, Conraths F, Schares G. Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food Waterborne Parasitol 2019; 15:e00037. [PMID: 32095611 PMCID: PMC7033994 DOI: 10.1016/j.fawpar.2019.e00037] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
The protozoan parasite Toxoplasma gondii is a zoonotic parasite that can be transmitted from animals to humans. Felids, including domestic cats, are definitive hosts that can shed oocysts with their feces. In addition to infections that occur by accidental oral uptake of food or water contaminated with oocysts, it is assumed that a large proportion of affected humans may have become infected by consuming meat or other animal products that contained infective parasitic stages of T. gondii. Since farm animals represent a direct source of infection for humans, but also a possible reservoir for the parasite, it is important to control T. gondii infections in livestock. Moreover, T. gondii may also be pathogenic to livestock where it could be responsible for considerable economic losses in some regions and particular farming systems, e.g. in areas where the small ruminant industry is relevant. This review aims to summarize actual knowledge on the prevalence and effects of infections with T. gondii in the most important livestock species and on the effects of toxoplasmosis on livestock. It also provides an overview on potential risk factors favoring infections of livestock with T. gondii. Knowledge on potential risk factors is prerequisite to implement effective biosecurity measures on farms to prevent T. gondii infections. Risk factors identified by many studies are cat-related, but also those associated with a potential contamination of fodder or water, and with access to a potentially contaminated environment. Published information on the costs T. gondii infections cause in livestock production, is scarce. The most recent peer reviewed reports from Great Britain and Uruguay suggest annual cost of about 5-15 million US $ per country. Since these estimates are outdated, future studies are needed to estimate the present costs due to toxoplasmosis in livestock. Further, the fact that T. gondii infections in livestock may affect human health needs to be considered and the respective costs should also be estimated, but this is beyond the scope of this article.
Collapse
Affiliation(s)
- S. Stelzer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - W. Basso
- Institute of Parasitology, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - J. Benavides Silván
- Instituto de Ganadería de Montaña (CSIC-Universidad de León) Grulleros, 24346 León, Spain
| | - L.M. Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - P. Maksimov
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - J. Gethmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - F.J. Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - G. Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
28
|
Tu V, Yakubu R, Weiss LM. Observations on bradyzoite biology. Microbes Infect 2018; 20:466-476. [PMID: 29287987 PMCID: PMC6019562 DOI: 10.1016/j.micinf.2017.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023]
Abstract
Tachyzoites of the Apicomplexan Toxoplasma gondii cause acute infection, disseminate widely in their host, and eventually differentiate into a latent encysted form called bradyzoites that are found within tissue cysts. During latent infection, whenever transformation to tachyzoites occurs, any tachyzoites that develop are removed by the immune system. In contrast, cysts containing bradyzoites are sequestered from the immune system. In the absence of an effective immune response released organisms that differentiate into tachyzoites cause acute infection. Tissue cysts, therefore, serve as a reservoir for the reactivation of toxoplasmosis when the host becomes immunocompromised by conditions such as HIV infection, organ transplantation, or due to the impaired immune response that occurs when pathogens are acquired in utero. While tachyzoites and bradyzoites are well defined morphologically, there is no clear consensus on how interconversion occurs or what exact signal(s) mediate this transformation. Advances in research methods have facilitated studies on T. gondii bradyzoites providing important new insights into the biology of latent infection.
Collapse
Affiliation(s)
- Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rama Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
29
|
Jeffers V, Tampaki Z, Kim K, Sullivan WJ. A latent ability to persist: differentiation in Toxoplasma gondii. Cell Mol Life Sci 2018; 75:2355-2373. [PMID: 29602951 PMCID: PMC5988958 DOI: 10.1007/s00018-018-2808-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 01/08/2023]
Abstract
A critical factor in the transmission and pathogenesis of Toxoplasma gondii is the ability to convert from an acute disease-causing, proliferative stage (tachyzoite), to a chronic, dormant stage (bradyzoite). The conversion of the tachyzoite-containing parasitophorous vacuole membrane into the less permeable bradyzoite cyst wall allows the parasite to persist for years within the host to maximize transmissibility to both primary (felids) and secondary (virtually all other warm-blooded vertebrates) hosts. This review presents our current understanding of the latent stage, including the factors that are important in bradyzoite induction and maintenance. Also discussed are the recent studies that have begun to unravel the mechanisms behind stage switching.
Collapse
Affiliation(s)
- Victoria Jeffers
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Zoi Tampaki
- Departments of Medicine, Microbiology and Immunology, and Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Kami Kim
- Departments of Medicine, Microbiology and Immunology, and Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
30
|
Sokol SL, Primack AS, Nair SC, Wong ZS, Tembo M, Verma SK, Cerqueira-Cezar CK, Dubey JP, Boyle JP. Dissection of the in vitro developmental program of Hammondia hammondi reveals a link between stress sensitivity and life cycle flexibility in Toxoplasma gondii. eLife 2018; 7:36491. [PMID: 29785929 PMCID: PMC5963921 DOI: 10.7554/elife.36491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022] Open
Abstract
Most eukaryotic parasites are obligately heteroxenous, requiring sequential infection of different host species in order to survive. Toxoplasma gondii is a rare exception to this rule, having a uniquely facultative heteroxenous life cycle. To understand the origins of this phenomenon, we compared development and stress responses in T. gondii to those of its its obligately heteroxenous relative, Hammondia hammondi and have identified multiple H. hammondi growth states that are distinct from those in T. gondii. Of these, the most dramatic difference was that H. hammondi was refractory to stressors that robustly induce cyst formation in T. gondii, and this was reflected most dramatically in its unchanging transcriptome after stress exposure. We also found that H. hammondi could be propagated in vitro for up to 8 days post-excystation, and we exploited this to generate the first ever transgenic H. hammondi line. Overall our data show that H. hammondi zoites grow as stringently regulated, unique life stages that are distinct from T. gondii tachyzoites, and implicate stress sensitivity as a potential developmental innovation that increased the flexibility of the T. gondii life cycle.
Collapse
Affiliation(s)
- Sarah L Sokol
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Abby S Primack
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Sethu C Nair
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Zhee S Wong
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Maiwase Tembo
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Shiv K Verma
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - Camila K Cerqueira-Cezar
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - J P Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - Jon P Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
31
|
Radke JB, Worth D, Hong D, Huang S, Sullivan WJ, Wilson EH, White MW. Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis. PLoS Pathog 2018; 14:e1007035. [PMID: 29718996 PMCID: PMC5951591 DOI: 10.1371/journal.ppat.1007035] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/14/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host. The Toxoplasma biology that underlies the establishment of a chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite-tissue cyst stage. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control formation of the tissue cyst is still poorly understood. A fundamental feature of tissue cyst formation is the expression of bradyzoite-specific genes. Here we show the transcription factor AP2IV-4 directly silences bradyzoite mRNA and protein expression in the acute tachyzoite stage demonstrating that developmental control of tissue cyst formation is as much about when not to express bradyzoite genes as it is about when to activate them. Losing the suppression of bradyzoite gene expression in the acute tachyzoite stage caused by deleting AP2IV-4 blocked the establishment of chronic disease in healthy animals via increased protective immunity suggesting a possible strategy for preventing chronic Toxoplasma infections.
Collapse
Affiliation(s)
- Joshua B. Radke
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - David Hong
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Sherri Huang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - William J. Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - Michael W. White
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
32
|
Use of Human Neurons Derived via Cellular Reprogramming Methods to Study Host-Parasite Interactions of Toxoplasma gondii in Neurons. Cells 2017; 6:cells6040032. [PMID: 28946615 PMCID: PMC5755492 DOI: 10.3390/cells6040032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is an intracellular protozoan parasite, with approximately one-third of the worlds' population chronically infected. In chronically infected individuals, the parasite resides in tissue cysts in neurons in the brain. The chronic infection in immunocompetant individuals has traditionally been considered to be asymptomatic, but increasing evidence indicates that chronic infection is associated with diverse neurological disorders such as schizophrenia, cryptogenic epilepsy, and Parkinson's Disease. The mechanisms by which the parasite exerts affects on behavior and other neuronal functions are not understood. Human neurons derived from cellular reprogramming methods offer the opportunity to develop better human neuronal models to study T. gondii in neurons. Results from two studies using human neurons derived via cellular reprogramming methods indicate these human neuronal models provide better in vitro models to study the effects of T. gondii on neurons and neurological functions. In this review, an overview of the current neural reprogramming methods will be given, followed by a summary of the studies using human induced pluripotent stem cell (hiPSC)-derived neurons and induced neurons (iNs) to study T. gondii in neurons. The potential of these neural reprogramming methods for further study of the host-parasite interactions of T. gondii in neurons will be discussed.
Collapse
|
33
|
Swierzy IJ, Händel U, Kaever A, Jarek M, Scharfe M, Schlüter D, Lüder CGK. Divergent co-transcriptomes of different host cells infected with Toxoplasma gondii reveal cell type-specific host-parasite interactions. Sci Rep 2017; 7:7229. [PMID: 28775382 PMCID: PMC5543063 DOI: 10.1038/s41598-017-07838-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
The apicomplexan parasite Toxoplasma gondii infects various cell types in avian and mammalian hosts including humans. Infection of immunocompetent hosts is mostly asymptomatic or benign, but leads to development of largely dormant bradyzoites that persist predominantly within neurons and muscle cells. Here we have analyzed the impact of the host cell type on the co-transcriptomes of host and parasite using high-throughput RNA sequencing. Murine cortical neurons and astrocytes, skeletal muscle cells (SkMCs) and fibroblasts differed by more than 16,200 differentially expressed genes (DEGs) before and after infection with T. gondii. However, only a few hundred of them were regulated by infection and these largely diverged in neurons, SkMCs, astrocytes and fibroblasts indicating host cell type-specific transcriptional responses after infection. The heterogeneous transcriptomes of host cells before and during infection coincided with ~5,400 DEGs in T. gondii residing in different cell types. Finally, we identified gene clusters in both T. gondii and its host, which correlated with the predominant parasite persistence in neurons or SkMCs as compared to astrocytes or fibroblasts. Thus, heterogeneous expression profiles of different host cell types and the parasites’ ability to adapting to them may govern the parasite-host cell interaction during toxoplasmosis.
Collapse
Affiliation(s)
- Izabela J Swierzy
- Institute for Medical Microbiology, University Medical Center, Georg-August-University, 37075, Göttingen, Germany
| | - Ulrike Händel
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Alexander Kaever
- Institute of Microbiology and Genetics, Department of Bioinformatics, Georg-August-University, 37077, Göttingen, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Maren Scharfe
- Genome Analytics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke-University, 39120, Magdeburg, Germany.,Organ-Specific Immune Regulation, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Carsten G K Lüder
- Institute for Medical Microbiology, University Medical Center, Georg-August-University, 37075, Göttingen, Germany.
| |
Collapse
|
34
|
Alvarez CA, Suvorova ES. Checkpoints of apicomplexan cell division identified in Toxoplasma gondii. PLoS Pathog 2017; 13:e1006483. [PMID: 28671988 PMCID: PMC5510908 DOI: 10.1371/journal.ppat.1006483] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/14/2017] [Accepted: 06/20/2017] [Indexed: 11/18/2022] Open
Abstract
The unusual cell cycles of Apicomplexa parasites are remarkably flexible with the ability to complete cytokinesis and karyokinesis coordinately or postpone cytokinesis for several rounds of chromosome replication, and are well recognized. Despite this surprising biology, the molecular machinery required to achieve this flexibility is largely unknown. In this study, we provide comprehensive experimental evidence that apicomplexan parasites utilize multiple Cdk-related kinases (Crks) to coordinate cell division. We determined that Toxoplasma gondii encodes seven atypical P-, H-, Y- and L- type cyclins and ten Crks to regulate cellular processes. We generated and analyzed conditional tet-OFF mutants for seven TgCrks and four TgCyclins that are expressed in the tachyzoite stage. These experiments demonstrated that TgCrk1, TgCrk2, TgCrk4 and TgCrk6, were required or essential for tachyzoite growth revealing a remarkable number of Crk factors that are necessary for parasite replication. G1 phase arrest resulted from the loss of cytoplasmic TgCrk2 that interacted with a P-type cyclin demonstrating that an atypical mechanism controls half the T. gondii cell cycle. We showed that T. gondii employs at least three TgCrks to complete mitosis. Novel kinases, TgCrk6 and TgCrk4 were required for spindle function and centrosome duplication, respectively, while TgCrk1 and its partner TgCycL were essential for daughter bud assembly. Intriguingly, mitotic kinases TgCrk4 and TgCrk6 did not interact with any cyclin tested and were instead dynamically expressed during mitosis indicating they may not require a cyclin timing mechanism. Altogether, our findings demonstrate that apicomplexan parasites utilize distinctive and complex mechanisms to coordinate their novel replicative cycles. Apicomplexan parasites are unicellular eukaryotes that replicate in unusual ways different from their multicellular hosts. From a single infection, different apicomplexans can produce as few as two or up to many hundreds of progeny. How these flexible division cycles are regulated is poorly understood. In the current study we have defined the major mechanisms controlling the growth of the Toxoplasma gondii acute pathogenic stage called the tachyzoite. We show that T. gondii tachyzoites require not only multiple protein kinases to coordinate chromosome replication and the assembly of new daughter parasites, but also each kinase has unique responsibilities. By contrast, the mammalian cell that T. gondii infects requires far fewer kinase regulators to complete cell division, which suggests that these parasites have unique vulnerabilities. The increased complexity in parasite cell cycle controls likely evolved from the need to adapt to different hosts and the need to construct the specialized invasion apparatus in order to invade those hosts.
Collapse
Affiliation(s)
- Carmelo A. Alvarez
- Department of Global Health and the Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
| | - Elena S. Suvorova
- Department of Global Health and the Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
The unicellular parasite Toxoplasma gondii infects warm-blooded animals and humans, and it is highly prevalent throughout the world. Infection of immunocompetent hosts is usually asymptomatic or benign but leads to long-term parasite persistence mainly within neural and muscular tissues. The transition from acute primary infection towards chronic toxoplasmosis is accompanied by a developmental switch from fast replicating and metabolically highly active tachyzoites to slow replicating and largely dormant bradyzoites within tissue cysts. Such developmental differentiation is critical for T. gondii in order to complete its life cycle and for pathogenesis. Herein, we summarize accumulating evidence indicating a major impact of the host cell physiology on stage conversion between the tachyzoite and the bradyzoite stage of the parasite. Withdrawal from cell cycle progression, proinflammatory responses, reduced availability of nutrients and extracellular adenosine can indeed induce tachyzoite-to-bradyzoite differentiation and tissue cyst formation. In contrast, high glycolytic activity as indicated by increased lactate secretion can inhibit bradyzoite formation. These examples argue for the intriguing possibility that after dissemination within its host, T. gondii can sense its cellular microenvironment to initiate the developmental program towards the bradyzoite stage in distinct cells. This may also explain the predominant localization of T. gondii in neural and muscular tissues during chronic toxoplasmosis.
Collapse
Affiliation(s)
- Carsten G K Lüder
- Institute for Medical Microbiology, University Medical Center Goettingen, Goettingen, Germany
| | - Taibur Rahman
- Institute for Medical Microbiology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
36
|
Sun H, Zhuo X, Zhao X, Yang Y, Chen X, Yao C, Du A. The heat shock protein 90 of Toxoplasma gondii is essential for invasion of host cells and tachyzoite growth. ACTA ACUST UNITED AC 2017. [PMID: 28627357 PMCID: PMC5479401 DOI: 10.1051/parasite/2017023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects almost all warm-blooded vertebrates. Heat shock proteins (HSP) regulate key signal transduction events in many organisms, and heat shock protein 90 (Hsp90) plays an important role in growth, development, and virulence in several parasitic protozoa. Here, we discovered increased transcription of the Hsp90 gene under conditions for bradyzoite differentiation, i.e. alkaline and heat shock conditions in vitro, suggesting that Hsp90 may be connected with bradyzoite development in T. gondii. A knockout of the TgHsp90 strain (ΔHsp90) and a complementation strain were constructed. The TgHsp90 knockout cells were found to be defective in host-cell invasion, were not able to proliferate in vitro in Vero cells, and did not show long-time survival in mice in vivo. These inabilities of the knockout parasites were restored upon complementation of TgHsp90. These data unequivocally show that TgHsp90 contributes to bradyzoite development, and to invasion and replication of T. gondii in host cells.
Collapse
Affiliation(s)
- Hongchao Sun
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xunhui Zhuo
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xianfeng Zhao
- Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen 518045, PR China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| | - Aifang Du
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
37
|
Toxoplasma gondii AP2IX-4 Regulates Gene Expression during Bradyzoite Development. mSphere 2017; 2:mSphere00054-17. [PMID: 28317026 PMCID: PMC5352832 DOI: 10.1128/msphere.00054-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/24/2017] [Indexed: 11/21/2022] Open
Abstract
Toxoplasma gondii is a single-celled parasite that persists in its host as a transmissible tissue cyst. How the parasite converts from its replicative form to the bradyzoites housed in tissue cysts is not well understood, but the process clearly involves changes in gene expression. Here we report that parasites lacking a cell cycle-regulated transcription factor called AP2IX-4 display reduced frequencies of tissue cyst formation in culture and in a mouse model of infection. Parasites missing AP2IX-4 lose the ability to regulate bradyzoite genes during tissue cyst development. Expressed in developing bradyzoites still undergoing division, AP2IX-4 may serve as a useful marker in the study of transitional forms of the parasite. Toxoplasma gondii is a protozoan parasite of great importance to human and animal health. In the host, this obligate intracellular parasite persists as a tissue cyst that is imperceptible to the immune response and unaffected by current therapies. The tissue cysts facilitate transmission through predation and give rise to chronic cycles of toxoplasmosis in immunocompromised patients. Transcriptional changes accompany conversion of the rapidly replicating tachyzoites into the encysted bradyzoites, and yet the mechanisms underlying these alterations in gene expression are not well defined. Here we show that AP2IX-4 is a nuclear protein exclusively expressed in tachyzoites and bradyzoites undergoing division. Knockout of AP2IX-4 had no discernible effect on tachyzoite replication but resulted in a reduced frequency of tissue cyst formation following alkaline stress induction—a defect that is reversible by complementation. AP2IX-4 has a complex role in regulating bradyzoite gene expression, as the levels of many bradyzoite mRNAs dramatically increased beyond those seen under conditions of normal stress induction in AP2IX-4 knockout parasites exposed to alkaline media. The loss of AP2IX-4 also resulted in a modest virulence defect and reduced cyst burden in chronically infected mice, which was reversed by complementation. These findings illustrate that the transcriptional mechanisms responsible for tissue cyst development operate across the intermediate life cycle from the dividing tachyzoite to the dormant bradyzoite. IMPORTANCEToxoplasma gondii is a single-celled parasite that persists in its host as a transmissible tissue cyst. How the parasite converts from its replicative form to the bradyzoites housed in tissue cysts is not well understood, but the process clearly involves changes in gene expression. Here we report that parasites lacking a cell cycle-regulated transcription factor called AP2IX-4 display reduced frequencies of tissue cyst formation in culture and in a mouse model of infection. Parasites missing AP2IX-4 lose the ability to regulate bradyzoite genes during tissue cyst development. Expressed in developing bradyzoites still undergoing division, AP2IX-4 may serve as a useful marker in the study of transitional forms of the parasite.
Collapse
|
38
|
Opposing Transcriptional Mechanisms Regulate Toxoplasma Development. mSphere 2017; 2:mSphere00347-16. [PMID: 28251183 PMCID: PMC5322347 DOI: 10.1128/msphere.00347-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/01/2017] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue cyst formation is still poorly understood. Significant changes in gene expression are associated with tissue cyst development, and ApiAP2 transcription factors are an important mechanism regulating this developmental transcriptome. However, the molecular composition of these ApiAP2 complexes and the operating principles of ApiAP2 mechanisms are not well defined. Here we establish that competing ApiAP2 transcriptional mechanisms operate to regulate this clinically important developmental pathway. The Toxoplasma biology that underlies human chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite stage. We investigated the roles of two alkaline-stress-induced ApiAP2 transcription factors, AP2IV-3 and AP2IX-9, in bradyzoite development. These factors were expressed in two overlapping waves during bradyzoite development, with AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene decreased, tissue cyst formation, demonstrating that these factors have opposite functions in bradyzoite development. Conversely, conditional overexpression of FKBP-modified AP2IX-9 or AP2IV-3 with the small molecule Shield 1 had a reciprocal effect on tissue cyst formation, confirming the conclusions of the knockout experiments. The AP2IX-9 repressor and AP2IV-3 activator tissue cyst phenotypes were borne out in gene expression studies that determined that many of the same bradyzoite genes were regulated in an opposite manner by these transcription factors. A common gene target was the canonical bradyzoite marker BAG1, and mechanistic experiments determined that, like AP2IX-9, AP2IV-3 regulates a BAG1 promoter-luciferase reporter and specifically binds the BAG1 promoter in parasite chromatin. Altogether, these results suggest that the AP2IX-9 transcriptional repressor and the AP2IV-3 transcriptional activator likely compete to control bradyzoite gene expression, which may permit Toxoplasma to better adapt to different tissue environments and select a suitable host cell for long-term survival of the dormant tissue cyst. IMPORTANCEToxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue cyst formation is still poorly understood. Significant changes in gene expression are associated with tissue cyst development, and ApiAP2 transcription factors are an important mechanism regulating this developmental transcriptome. However, the molecular composition of these ApiAP2 complexes and the operating principles of ApiAP2 mechanisms are not well defined. Here we establish that competing ApiAP2 transcriptional mechanisms operate to regulate this clinically important developmental pathway.
Collapse
|
39
|
Khan A, Grigg ME. Toxoplasma gondii: Laboratory Maintenance and Growth. ACTA ACUST UNITED AC 2017; 44:20C.1.1-20C.1.17. [PMID: 28166387 DOI: 10.1002/cpmc.26] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Toxoplasma gondii is a highly successful apicomplexan protozoan capable of infecting any warm-blooded animal worldwide. In humans, Toxoplasma infections are life-long, with approximately one-third of the world's population chronically infected. Although normally controlled by the host immune system, T. gondii infection can lead to a variety of clinical outcomes in individuals with immature or suppressed immune systems. After penetrating the intestine, parasites rapidly disseminate throughout the body and stimulate production of the cytokines interleukin (IL)-12, IL-18, and interferon (IFN)-γ by immune cells. These cytokines play a key role in host resistance to T. gondii by promoting a strong Th1 response. Recent reports show that gut commensal bacteria can act as molecular adjuvants during T. gondii infection. Thus, T. gondii is an excellent model system to study host-pathogen interactions. This unit outlines the protocols for in vitro and in vivo maintenance and growth of T. gondii. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Asis Khan
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
40
|
Toxoplasma gondii Cyclic AMP-Dependent Protein Kinase Subunit 3 Is Involved in the Switch from Tachyzoite to Bradyzoite Development. mBio 2016; 7:mBio.00755-16. [PMID: 27247232 PMCID: PMC4895117 DOI: 10.1128/mbio.00755-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects warm-blooded vertebrates, including humans. Asexual reproduction in T. gondii allows it to switch between the rapidly replicating tachyzoite and quiescent bradyzoite life cycle stages. A transient cyclic AMP (cAMP) pulse promotes bradyzoite differentiation, whereas a prolonged elevation of cAMP inhibits this process. We investigated the mechanism(s) by which differential modulation of cAMP exerts a bidirectional effect on parasite differentiation. There are three protein kinase A (PKA) catalytic subunits (TgPKAc1 to -3) expressed in T. gondii. Unlike TgPKAc1 and TgPKAc2, which are conserved in the phylum Apicomplexa, TgPKAc3 appears evolutionarily divergent and specific to coccidian parasites. TgPKAc1 and TgPKAc2 are distributed in the cytomembranes, whereas TgPKAc3 resides in the cytosol. TgPKAc3 was genetically ablated in a type II cyst-forming strain of T. gondii (PruΔku80Δhxgprt) and in a type I strain (RHΔku80Δhxgprt), which typically does not form cysts. The Δpkac3 mutant exhibited slower growth than the parental and complemented strains, which correlated with a higher basal rate of tachyzoite-to-bradyzoite differentiation. 3-Isobutyl-1-methylxanthine (IBMX) treatment, which elevates cAMP levels, maintained wild-type parasites as tachyzoites under bradyzoite induction culture conditions (pH 8.2/low CO2), whereas the Δpkac3 mutant failed to respond to the treatment. This suggests that TgPKAc3 is the factor responsible for the cAMP-dependent tachyzoite maintenance. In addition, the Δpkac3 mutant had a defect in the production of brain cysts in vivo, suggesting that a substrate of TgPKAc3 is probably involved in the persistence of this parasite in the intermediate host animals. Toxoplasma gondii is one of the most prevalent eukaryotic parasites in mammals, including humans. Parasites can switch from rapidly replicating tachyzoites responsible for acute infection to slowly replicating bradyzoites that persist as a latent infection. Previous studies have demonstrated that T. gondii cAMP signaling can induce or suppress bradyzoite differentiation, depending on the strength and duration of cAMP signal. Here, we report that TgPKAc3 is responsible for cAMP-dependent tachyzoite maintenance while suppressing differentiation into bradyzoites, revealing one mechanism underlying how this parasite transduces cAMP signals during differentiation.
Collapse
|
41
|
Pieszko M, Weir W, Goodhead I, Kinnaird J, Shiels B. ApiAP2 Factors as Candidate Regulators of Stochastic Commitment to Merozoite Production in Theileria annulata. PLoS Negl Trop Dis 2015; 9:e0003933. [PMID: 26273826 PMCID: PMC4537280 DOI: 10.1371/journal.pntd.0003933] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/25/2015] [Indexed: 02/05/2023] Open
Abstract
Background Differentiation of one life-cycle stage to the next is critical for survival and transmission of apicomplexan parasites. A number of studies have shown that stage differentiation is a stochastic process and is associated with a point that commits the cell to a change over in the pattern of gene expression. Studies on differentiation to merozoite production (merogony) in T. annulata postulated that commitment involves a concentration threshold of DNA binding proteins and an auto-regulatory loop. Principal Findings In this study ApiAP2 DNA binding proteins that show changes in expression level during merogony of T. annulata have been identified. DNA motifs bound by orthologous domains in Plasmodium were found to be enriched in upstream regions of stage-regulated T. annulata genes and validated as targets for the T. annulata AP2 domains by electrophoretic mobility shift assay (EMSA). Two findings were of particular note: the gene in T. annulata encoding the orthologue of the ApiAP2 domain in the AP2-G factor that commits Plasmodium to gametocyte production, has an expression profile indicating involvement in transmission of T. annulata to the tick vector; genes encoding related domains that bind, or are predicted to bind, sequence motifs of the type 5'-(A)CACAC(A) are implicated in differential regulation of gene expression, with one gene (TA11145) likely to be preferentially up-regulated via auto-regulation as the cell progresses to merogony. Conclusions We postulate that the Theileria factor possessing the AP2 domain orthologous to that of Plasmodium AP2-G may regulate gametocytogenesis in a similar manner to AP2-G. In addition, paralogous ApiAP2 factors that recognise 5'-(A)CACAC(A) type motifs could operate in a competitive manner to promote reversible progression towards the point that commits the cell to undergo merogony. Factors possessing AP2 domains that bind (or are predicted to bind) this motif are present in the vector-borne genera Theileria, Babesia and Plasmodium, and other Apicomplexa; leading to the proposal that the mechanisms that control stage differentiation will show a degree of conservation. The ability of vector-borne Apicomplexan parasites (Babesia, Plasmodium and Theileria) to change from one life-cycle stage to the next is critical for establishment of infection and transmission to new hosts. Stage differentiation steps of both Plasmodium and Theileria are known to involve stochastic transition through an intermediate form to a point that commits the cell to generate the next stage in the life-cycle. In this study we have identified genes encoding ApiAP2 DNA binding proteins in Theileria annulata that are differentially expressed during differentiation from the macroschizont stage, through merozoite production (merogony) to the piroplasm stage. The results provide evidence that the ApiAp2 factor in Theileria that possesses the orthologue of the Plasmodium AP2-G domain may also operate to regulate gametocytogenesis, and that progression to merogony is promoted by the ability of a merozoite DNA binding protein to preferentially up-regulate its own production. In addition, identification of multiple ApiAP2 DNA binding domains that bind related motifs within and across vector-borne Apicomplexan genera lead to the proposal that the mechanisms that promote the transition from asexual to sexual replication will show a degree of conservation.
Collapse
Affiliation(s)
- Marta Pieszko
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - William Weir
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Ian Goodhead
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, United Kingdom
| | - Jane Kinnaird
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Brian Shiels
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Odell AV, Tran F, Foderaro JE, Poupart S, Pathak R, Westwood NJ, Ward GE. Yeast three-hybrid screen identifies TgBRADIN/GRA24 as a negative regulator of Toxoplasma gondii bradyzoite differentiation. PLoS One 2015; 10:e0120331. [PMID: 25789621 PMCID: PMC4366382 DOI: 10.1371/journal.pone.0120331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/06/2015] [Indexed: 12/17/2022] Open
Abstract
Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite's life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.
Collapse
Affiliation(s)
- Anahi V Odell
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Fanny Tran
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Jenna E Foderaro
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Séverine Poupart
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Ravi Pathak
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Nicholas J Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
43
|
Croken MM, Ma Y, Markillie LM, Taylor RC, Orr G, Weiss LM, Kim K. Distinct Strains of Toxoplasma gondii Feature Divergent Transcriptomes Regardless of Developmental Stage. PLoS One 2014; 9:e111297. [PMID: 25393307 PMCID: PMC4230917 DOI: 10.1371/journal.pone.0111297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022] Open
Affiliation(s)
- Matthew McKnight Croken
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yanfen Ma
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ronald C. Taylor
- Computational Biology and Bioinformatics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (LMW); (KK)
| | - Kami Kim
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (LMW); (KK)
| |
Collapse
|
44
|
Swierzy IJ, Lüder CGK. Withdrawal of skeletal muscle cells from cell cycle progression triggers differentiation ofToxoplasma gondiitowards the bradyzoite stage. Cell Microbiol 2014; 17:2-17. [DOI: 10.1111/cmi.12342] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/03/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Izabela J. Swierzy
- Institute for Medical Microbiology; University Medical Center; Georg-August-University; Kreuzbergring 57 D-37075 Göttingen Germany
| | - Carsten G. K. Lüder
- Institute for Medical Microbiology; University Medical Center; Georg-August-University; Kreuzbergring 57 D-37075 Göttingen Germany
| |
Collapse
|
45
|
Schlüter D, Däubener W, Schares G, Groß U, Pleyer U, Lüder C. Animals are key to human toxoplasmosis. Int J Med Microbiol 2014; 304:917-29. [PMID: 25240467 DOI: 10.1016/j.ijmm.2014.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is an extremely sucessfull protozoal parasite which infects almost all mamalian species including humans. Approximately 30% of the human population worldwide is chronically infected with T. gondii. In general, human infection is asymptomatic but the parasite may induce severe disease in fetuses and immunocompromised patients. In addition, T. gondii may cause sight-threatening posterior uveitis in immunocompetent patients. Apart from few exceptions, humans acquire T. gondii from animals. Both, the oral uptake of T. gondii oocysts released by specific hosts, i.e. felidae, and of cysts persisting in muscle cells of animals result in human toxoplasmosis. In the present review, we discuss recent new data on the cell biology of T. gondii and parasite diversity in animals. In addition, we focus on the impact of these various parasite strains and their different virulence on the clinical outcome of human congenital toxoplasmosis and T. gondii uveitis.
Collapse
Affiliation(s)
- Dirk Schlüter
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke-University, Magdeburg, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Walter Däubener
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gereon Schares
- Institute of Epidemiology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | - Uwe Groß
- Institute for Medical Microbiology, University Medical Center, Göttingen, Germany
| | - Uwe Pleyer
- Eye Clinic, Charité Universitätsmedizin, Berlin, Germany
| | - Carsten Lüder
- Institute for Medical Microbiology, University Medical Center, Göttingen, Germany
| |
Collapse
|
46
|
Croken MM, Qiu W, White MW, Kim K. Gene Set Enrichment Analysis (GSEA) of Toxoplasma gondii expression datasets links cell cycle progression and the bradyzoite developmental program. BMC Genomics 2014; 15:515. [PMID: 24962434 PMCID: PMC4092224 DOI: 10.1186/1471-2164-15-515] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/17/2014] [Indexed: 11/10/2022] Open
Abstract
Background Large amounts of microarray expression data have been generated for the Apicomplexan parasite Toxoplasma gondii in an effort to identify genes critical for virulence or developmental transitions. However, researchers’ ability to analyze this data is limited by the large number of unannotated genes, including many that appear to be conserved hypothetical proteins restricted to Apicomplexa. Further, differential expression of individual genes is not always informative and often relies on investigators to draw big-picture inferences without the benefit of context. We hypothesized that customization of gene set enrichment analysis (GSEA) to T. gondii would enable us to rigorously test whether groups of genes serving a common biological function are co-regulated during the developmental transition to the latent bradyzoite form. Results Using publicly available T. gondii expression microarray data, we created Toxoplasma gene sets related to bradyzoite differentiation, oocyst sporulation, and the cell cycle. We supplemented these with lists of genes derived from community annotation efforts that identified contents of the parasite-specific organelles, rhoptries, micronemes, dense granules, and the apicoplast. Finally, we created gene sets based on metabolic pathways annotated in the KEGG database and Gene Ontology terms associated with gene annotations available at http://www.toxodb.org. These gene sets were used to perform GSEA analysis using two sets of published T. gondii expression data that characterized T. gondii stress response and differentiation to the latent bradyzoite form. Conclusions GSEA provides evidence that cell cycle regulation and bradyzoite differentiation are coupled. Δgcn5A mutants unable to induce bradyzoite-associated genes in response to alkaline stress have different patterns of cell cycle and bradyzoite gene expression from stressed wild-type parasites. Extracellular tachyzoites resemble a transitional state that differs in gene expression from both replicating intracellular tachyzoites and in vitro bradyzoites by expressing genes that are enriched in bradyzoites as well as genes that are associated with the G1 phase of the cell cycle. The gene sets we have created are readily modified to reflect ongoing research and will aid researchers’ ability to use a knowledge-based approach to data analysis facilitating the development of new insights into the intricate biology of Toxoplasma gondii. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-515) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Kami Kim
- Departments of Medicine, Microbiology & Immunology and Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA.
| |
Collapse
|
47
|
Brown KM, Suvorova E, Farrell A, McLain A, Dittmar A, Wiley GB, Marth G, Gaffney PM, Gubbels MJ, White M, Blader IJ. Forward genetic screening identifies a small molecule that blocks Toxoplasma gondii growth by inhibiting both host- and parasite-encoded kinases. PLoS Pathog 2014; 10:e1004180. [PMID: 24945800 PMCID: PMC4055737 DOI: 10.1371/journal.ppat.1004180] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 04/28/2014] [Indexed: 02/02/2023] Open
Abstract
The simultaneous targeting of host and pathogen processes represents an untapped approach for the treatment of intracellular infections. Hypoxia-inducible factor-1 (HIF-1) is a host cell transcription factor that is activated by and required for the growth of the intracellular protozoan parasite Toxoplasma gondii at physiological oxygen levels. Parasite activation of HIF-1 is blocked by inhibiting the family of closely related Activin-Like Kinase (ALK) host cell receptors ALK4, ALK5, and ALK7, which was determined in part by use of an ALK4,5,7 inhibitor named SB505124. Besides inhibiting HIF-1 activation, SB505124 also potently blocks parasite replication under normoxic conditions. To determine whether SB505124 inhibition of parasite growth was exclusively due to inhibition of ALK4,5,7 or because the drug inhibited a second kinase, SB505124-resistant parasites were isolated by chemical mutagenesis. Whole-genome sequencing of these mutants revealed mutations in the Toxoplasma MAP kinase, TgMAPK1. Allelic replacement of mutant TgMAPK1 alleles into wild-type parasites was sufficient to confer SB505124 resistance. SB505124 independently impacts TgMAPK1 and ALK4,5,7 signaling since drug resistant parasites could not activate HIF-1 in the presence of SB505124 or grow in HIF-1 deficient cells. In addition, TgMAPK1 kinase activity is inhibited by SB505124. Finally, mice treated with SB505124 had significantly lower tissue burdens following Toxoplasma infection. These data therefore identify SB505124 as a novel small molecule inhibitor that acts by inhibiting two distinct targets, host HIF-1 and TgMAPK1. Understanding how a compound blocks growth of an intracellular pathogen is important not only for developing these compounds into drugs that can be prescribed to patients, but also because these data will likely provide novel insight into the biology of these pathogens. Forward genetic screens are one established approach towards defining these mechanisms. But performing these screens with intracellular parasites has been limited not only because of technical limitations but also because the compounds may have off-target effects in either the host or parasite. Here, we report the first compound that kills a pathogen by simultaneously inhibiting distinct host- and parasite-encoded targets. Because developing drug resistance simultaneously to two targets is less likely, this work may highlight a new approach to antimicrobial drug discovery.
Collapse
Affiliation(s)
- Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Elena Suvorova
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Andrew Farrell
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Aaron McLain
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Ashley Dittmar
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Graham B Wiley
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Gabor Marth
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Marc Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michael White
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Ira J Blader
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America; Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
48
|
Toxoplasma gondii Hsp90: potential roles in essential cellular processes of the parasite. Parasitology 2014; 141:1138-47. [PMID: 24560345 DOI: 10.1017/s0031182014000055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hsp90 is a widely distributed and highly conserved molecular chaperone that is ubiquitously expressed throughout nature, being one of the most abundant proteins within non-stressed cells. This chaperone is up-regulated following stressful events and has been involved in many cellular processes. In Toxoplasma gondii, Hsp90 could be linked with many essential processes of the parasite such as host cell invasion, replication and tachyzoite-bradyzoite interconversion. A Protein-Protein Interaction (PPI) network approach of TgHsp90 has allowed inferring how these processes may be altered. In addition, data mining of T. gondii phosphoproteome and acetylome has allowed the generation of the phosphorylation and acetylation map of TgHsp90. This review focuses on the potential roles of TgHsp90 in parasite biology and the analysis of experimental data in comparison with its counterparts in yeast and humans.
Collapse
|
49
|
White MW, Radke JR, Radke JB. Toxoplasmadevelopment - turn the switch on or off? Cell Microbiol 2014; 16:466-72. [DOI: 10.1111/cmi.12267] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Michael W. White
- Department of Global Health; University of South Florida; Tampa FL 33612 USA
| | - Jay R. Radke
- Department of Veterinary Molecular Biology; Montana State University; Bozeman MT USA
| | - Joshua B. Radke
- Department of Global Health; University of South Florida; Tampa FL 33612 USA
| |
Collapse
|
50
|
Toxoplasma gondii within skeletal muscle cells: a critical interplay for food-borne parasite transmission. Int J Parasitol 2014; 44:91-8. [DOI: 10.1016/j.ijpara.2013.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/12/2013] [Accepted: 10/03/2013] [Indexed: 01/30/2023]
|