1
|
Piersanti A, Juganson K, Mozzicafreddo M, Wei W, Zhang J, Zhao K, Ballarini P, Mortimer M, Pucciarelli S, Miao W, Miceli C. Transcriptomic responses to silver nanoparticles in the freshwater unicellular eukaryote Tetrahymena thermophila. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:115965. [PMID: 33213949 DOI: 10.1016/j.envpol.2020.115965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Currently, silver nanoparticles (AgNPs) are being increasingly used as biocides in various consumer products and if released in the environment they can affect non-target organisms. Therefore, understanding the toxicity mechanism is crucial for both the design of more efficient nano-antimicrobials and for the design of nanomaterials that are biologically and environmentally benign throughout their life-cycle. Here, the ciliate Tetrahymena thermophila was used to elucidate the mechanisms of action of AgNPs by analysing the gene expression profile by RNA-seq and the transcriptomic effects of AgNPs were compared to those induced by soluble silver salt, AgNO3. Exposure to AgNPs at sublethal concentrations for 24 h induced phagocytosis, transport pathways, response to oxidative stress, glutathione peroxidase activity, response to stimulus, oxidation-reduction, proteolysis, and nitrogen metabolism process. Based on gene set enrichment analysis (GSEA), some biological processes appeared targets of both toxicants. In addition to many similarities in affected genes, some effects were triggered only by NPs, like phagocytosis, glutathione peroxidase activity, response to stimulus, protein phosphorylation and nitrogen metabolism process. This research provides evidence that AgNPs compared to AgNO3 at the same concentration of dissolved silver ions dysregulate a higher number of cellular pathways. These findings confirm that AgNPs can induce toxicity not only due to soluble silver ions released from the particles but also to particle intrinsic features.
Collapse
Affiliation(s)
- Angela Piersanti
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | - Wei Wei
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kangping Zhao
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Patrizia Ballarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Monika Mortimer
- China Jiliang University, Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, Hangzhou, Zhejiang, 310018, China
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy.
| |
Collapse
|
2
|
Santos HJ, Imai K, Makiuchi T, Tomii K, Horton P, Nozawa A, Okada K, Tozawa Y, Nozaki T. Novel lineage-specific transmembrane β-barrel proteins in the endoplasmic reticulum of Entamoeba histolytica. FEBS J 2019; 286:3416-3432. [PMID: 31045303 DOI: 10.1111/febs.14870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
β-barrel outer membrane proteins (BOMPs) are essential components of outer membranes of Gram-negative bacteria and endosymbiotic organelles, usually involved in the transport of proteins and substrates across the membrane. Based on the analysis of our in silico BOMP predictor data for the Entamoeba histolytica genome, we detected a new transmembrane β-barrel domain-containing protein, EHI_192610. Sequence analysis revealed that this protein is unique to Entamoeba species, and it exclusively clusters with a homolog, EHI_099780, which is similarly lineage specific. Both proteins possess an N-terminal signal peptide sequence as well as multiple repeats that contain dyad hydrophobic periodicities. Data from immunofluorescence assay of trophozoites expressing the respective candidates showed the absence of colocalization with mitosomal marker, and interestingly demonstrated partial colocalization with endoplasmic reticulum (ER) proteins instead. Integration to organellar membrane was supported by carbonate fractionation assay and immunoelectron microscopy. CD analysis of reconstituted proteoliposomes containing EHI_192610 showed a spectrum demonstrating a predominant β-sheet structure, suggesting that this protein is β-strand rich. Furthermore, the presence of repeat regions with predicted transmembrane β-strand pairs in both EHI_192610 and EHI_099780, is consistent with the hypothesis that BOMPs originated from the amplification of ββ-hairpin modules, suggesting that the two Entamoeba-specific proteins are novel β-barrels, intriguingly localized partially to the ER membrane.
Collapse
Affiliation(s)
- Herbert J Santos
- Graduate School of Medicine, The University of Tokyo, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kenichiro Imai
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Paul Horton
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Kenta Okada
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Zamorano A, López-Camarillo C, Orozco E, Weber C, Guillen N, Marchat LA. In silico analysis of EST and genomic sequences allowed the prediction of cis-regulatory elements for Entamoeba histolytica mRNA polyadenylation. Comput Biol Chem 2008; 32:256-263. [PMID: 18514032 DOI: 10.1016/j.compbiolchem.2008.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 03/24/2008] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
In most eukaryotic cells, the poly(A) tail at the 3'-end of messenger RNA (mRNA) is essential for nuclear export, translatability, stability and transcription termination. Poly(A) tail formation involves multi-protein complexes that interact with specific sequences in 3'-untranslated region (3'-UTR) of precursor mRNA (pre-mRNA). Here we have performed a computational analysis of a large EST and genomic sequences collection from Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, to identify conserved elements that could be involved in pre-mRNA polyadenylation. Results evidenced the presence of an AU-rich domain corresponding to the consensus UA(A/U)UU polyadenylation signal or variants, the cleavage and polyadenylation site that is generally denoted by U residue and flanked by two U-rich tracts, and a novel A-rich element. This predicted array was validated through the analysis of genomic sequences and predicted mRNA folding of genes with known polyadenylation site. The molecular organization of pre-mRNA 3'-UTR cis-regulatory elements appears to be roughly conserved through evolutionary scale, whereas the polyadenylation signal seems to be species-specific in protozoan parasites and the novel A-rich element is unique for the primitive eukaryote E. histolytica. To our knowledge, this paper is the first work about the identification of potential pre-mRNA 3'-UTR cis-regulatory sequences through in silico analysis of large sets of cDNA and genomic sequences in a protozoan parasite.
Collapse
Affiliation(s)
- Absalom Zamorano
- ENMH-IPN, Programa Institucional de Biomedicina Molecular, Guillermo Massieu Heguera #239, Ticoman, CP 07320, México, D.F., Mexico
| | | | | | | | | | | |
Collapse
|
4
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Salgado M, Villagómez-Castro JC, Rocha-Rodríguez R, Sabanero-López M, Ramos MA, Alagón A, López-Romero E, Sánchez-López R. Entamoeba histolytica: biochemical and molecular insights into the activities within microsomal fractions. Exp Parasitol 2005; 110:363-73. [PMID: 15913610 DOI: 10.1016/j.exppara.2005.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 03/30/2005] [Accepted: 04/02/2005] [Indexed: 11/22/2022]
Abstract
One of the most fascinating aspects of the Entamoeba histolytica trophozoite ultrastructure is the lack of a typical secretory pathway, particularly of rough endoplasmic reticulum and Golgi system, in a cell with such a high secretory activity. Here, we describe the isolation of amoeba cell structures containing ER-typical activities. Following isopycnic centrifugation of plasma membrane-free extracts, microsomes enriched in enzymatic activities such as dolichol-P-mannose synthase (DPMS; EC 2.4.1.83), UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase (NAGPT; EC 2.7.8.15), and UDP-D-GlcNAc:dolichol-PP GlcNAc (NAGT; EC 2.4.1.141) were resolved from phagolysosomal fractions. Sec61alpha-subunit, an ER-marker involved in the translocation of nascent proteins to the ER, was found to co-fractionate with DPMS activity indicating that they are contained in microsomes with a similar density. Further, we optimized conditions for trophozoite homogenization and differential centrifugation that resulted in the separation of a 57,000 g-sedimenting microsomal fraction containing EhSec61alpha-subunit, EhDPMS, and EhPDI (protein disulfide isomerase, a soluble marker of the lumen of the ER). A relevant observation was the lack of ER markers associated to the nuclear fraction. Large macromolecular structures such as Ehproteasome were sedimented at a higher speed. Our knowledge of the molecular machinery involved in the biosynthesis of dolichol-linked oligosaccharide was enriched with the identification of putative genes related to the stepwise assembly of the dolichol-PP-GlcNAc(2)Man(5) core. No evidence of genes supporting further assembly steps was obtained at this time.
Collapse
Affiliation(s)
- Milena Salgado
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología (UNAM), Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Sánchez R, Saralegui A, Olivos-García A, Scapolla C, Damonte G, Sanchez-Lopez R, Alagón A, Stock RP. Entamoeba histolytica: intracellular distribution of the sec61alpha subunit of the secretory pathway and down-regulation by antisense peptide nucleic acids. Exp Parasitol 2005; 109:241-51. [PMID: 15755422 DOI: 10.1016/j.exppara.2004.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 12/04/2004] [Accepted: 12/10/2004] [Indexed: 11/22/2022]
Abstract
The Sec61alpha protein is defined as a highly conserved essential integral component of the endoplasmic reticulum in eukaryotic cells. We report a detailed immunolocalization of the Entamoeba histolytica homologue of the Sec61alpha subunit (EhSec61alpha), which shows an irregular pattern throughout the cell and is also found on the cell surface, its effective down-regulation by means of antisense peptide nucleic acids and its effects on cell proliferation, subcellular distribution of two virulence factors, and the ability of the trophozoites to cause liver abscess in hamsters. Although Sec61alpha levels are specifically decreased in antisense PNA-treated trophozoites, which proliferate more slowly than the controls, mobilization of the cysteine protease 5 and amoebapore to the cell surface is not significantly impeded and the capacity to induce liver abscess in hamsters is largely unaffected. The implications of these findings are discussed in the context of the peculiar cell biology of E. histolytica.
Collapse
Affiliation(s)
- Ricardo Sánchez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ramos MA, Sanchez-Lopez R, Olvera F, Alagón A. Entamoeba histolytica genomic organization: identification, structure, and phylogenetic relationship of two serine-threonine protein kinases. Exp Parasitol 2002; 100:135-9. [PMID: 12054704 DOI: 10.1016/s0014-4894(02)00011-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marco A Ramos
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Ave., Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | | | | | | |
Collapse
|
8
|
Field J, Van Dellen K, Ghosh SK, Samuelson J. Responses of Entamoeba invadens to heat shock and encystation are related. J Eukaryot Microbiol 2000; 47:511-4. [PMID: 11001149 DOI: 10.1111/j.1550-7408.2000.tb00083.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An Entamoeba invadens gene encoding a homologue of BiP/GRP78, a 70-kDa heat shock protein or chaperonin was cloned. The predicted E. invadens BiP contained an ATP-binding site, a substrate-recognition domain, and a carboxy-terminal KDEL-peptide. Messenger RNAs of E. invadens for BiP, for a 70-kDa heat shock cognate, for a cyst wall glycoprotein (Jacob), and for chitinase were all induced by heat shock and by encystation medium. The presence of Jacob in heat-shocked amebae was confirmed by confocal microscopy and suggests that heat shock and encystation responses in E. invadens are related.
Collapse
Affiliation(s)
- J Field
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
9
|
Sánchez-López R, Siminovich B, Alagón A. Entamoeba histolytica codes for a protein homologue of the Sec61 alpha subunit, a component of the endoplasmic reticulum translocon. Arch Med Res 2000; 31:S168-70. [PMID: 11070269 DOI: 10.1016/s0188-4409(00)00110-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R Sánchez-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | | | | |
Collapse
|
10
|
Ramos MA, Sánchez-López R, Alagón A. Genomic organization of a 7 Kb gene cluster from Entamoeba histolytica. Arch Med Res 2000; 31:S263-5. [PMID: 11070309 DOI: 10.1016/s0188-4409(00)00112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- M A Ramos
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | | | | |
Collapse
|
11
|
Sánchez-López R, Gutiérrez A, Juárez P, Olvera A, Olvera F, Ramos MA, Sánchez R, Saralegui A, Stock RP, Alagón A. Molecular genetics of the secretory pathway in Entamoeba histolytica: an overview. Arch Med Res 2000; 31:S151-2. [PMID: 11070262 DOI: 10.1016/s0188-4409(00)00108-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R Sánchez-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rodríguez MA, García-Pérez RM, García-Rivera G, López-Reyes I, Mendoza L, Ortiz-Navarrete V, Orozco E. An Entamoeba histolytica rab-like encoding gene and protein: function and cellular location. Mol Biochem Parasitol 2000; 108:199-206. [PMID: 10838222 DOI: 10.1016/s0166-6851(00)00216-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We identified here a 576 bp rab-like gene (EhrabB) in Entamoeba histolytica. EhrabB is located 332 bp upstream from the start codon of the Ehcp112 encoding gene, but is transcribed from the complementary strand. The EhrabB open reading frame predicts a 192 amino acid polypeptide (EhRabB) with 40-42% identity to Rab proteins, involved in vesicle docking regulation in endo and exocytic pathways of eukaryotic cells. Transcripts of 0.6 and 0.97 kb were detected by the EhrabB probe in northern blot assays. Using specific antibodies, EhRabB was located in small cytoplasmic vesicles by confocal microscopy. During phagocytosis, EhRabB was initially translocated to the plasma membrane and to the phagocytic mouths. The protein diminished after 10 min phagocytosis, suggesting that EhRabB could be participating in the regulation of the endocytosis process.
Collapse
Affiliation(s)
- M A Rodríguez
- Departamento de Patología Experimental. Centro de Investigación y de Estudios Avanzados del IPN. A.P. 14-740, D.F. 07300, México, Mexico.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Estimation of genome size of Entamoeba histolytica by different methods has failed to give comparable values due to the inherent complexities of the organism, such as the uncertain level of ploidy, presence of multinucleated cells and a poorly demarcated cell division cycle. The genome of E. histolytica has a low G+C content (22.4%), and is composed of both linear chromosomes and a number of circular plasmid-like molecules. The rRNA genes are located exclusively on some of the circular DNAs. Karyotype analysis by pulsed field gel electrophoresis suggests the presence of 14 conserved linkage groups and an extensive size variation between homologous chromosomes from different isolates. Several repeat families have been identified, some of which have been shown to be present in all the electrophoretically separated chromosomes. The typical nucleosomal structure has not been demonstrated, though most of the histone genes have been identified. Most Entamoeba genes lack introns, have short 3' and 5' untranslated regions, and are tightly packed. Promoter analysis revealed the presence of three conserved motifs and several upstream regulatory elements. Unlike typical eukaryotes, the transcription of protein coding genes is alpha-amanitin resistant. Expressed Sequence Tag analysis has identified a group of highly abundant polyadenylated RNAs which are unlikely to be translated. The Expressed Sequence Tag approach has also helped identify several important genes which encode proteins that may be involved in different biochemical pathways, signal transduction mechanisms and organellar functions.
Collapse
Affiliation(s)
- A Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India.
| | | | | | | |
Collapse
|
14
|
Ghosh SK, Field J, Frisardi M, Rosenthal B, Mai Z, Rogers R, Samuelson J. Chitinase secretion by encysting Entamoeba invadens and transfected Entamoeba histolytica trophozoites: localization of secretory vesicles, endoplasmic reticulum, and Golgi apparatus. Infect Immun 1999; 67:3073-81. [PMID: 10338523 PMCID: PMC96624 DOI: 10.1128/iai.67.6.3073-3081.1999] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entamoeba histolytica, the protozoan parasite that phagocytoses bacteria and host cells, has a vesicle/vacuole-filled cytosol like that of macrophages. In contrast, the infectious cyst form has four nuclei and a chitin wall. Here, anti-chitinase antibodies identified hundreds of small secretory vesicles in encysting E. invadens parasites and in E. histolytica trophozoites overexpressing chitinase under an actin gene promoter. Abundant small secretory vesicles were also identified with antibodies to the surface antigen Ariel and with a fluorescent substrate of cysteine proteinases. Removal of an N-terminal signal sequence directed chitinase to the cytosol. Addition of a C-terminal KDEL peptide, identified on amebic BiP, retained chitinase in a putative endoplasmic reticulum, which was composed of a few vesicles of mixed sizes. A putative Golgi apparatus, which was Brefeldin A sensitive and composed of a few large, perinuclear vesicles, was identified with antibodies to ADP-ribosylating factor and to epsilon-COP. We conclude that the amebic secretory pathway is similar to those of other eukaryotic cells, even if its appearance is somewhat different.
Collapse
Affiliation(s)
- S K Ghosh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sanchez-Lopez R, Gama-Castro S, Ramos MA, Merino E, Lizardi PM, Alagón A. Cloning and expression of the Entamoeba histolytica ERD2 gene. Mol Biochem Parasitol 1998; 92:355-9. [PMID: 9657339 DOI: 10.1016/s0166-6851(98)00017-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- R Sanchez-Lopez
- Departamento de Reconocimiento Molecular y Bioestructura, Instituto de Biotecnología (UNAM), Cuernavaca, Morelos, Mexico
| | | | | | | | | | | |
Collapse
|