1
|
Nawaz A, Rai GP, Singh K, Shanker A, Ali V. Computational approaches and experimental investigation for identification of potential inhibitors targeting cysteine synthase in Leishmania donovani. Comput Biol Med 2025; 188:109753. [PMID: 39946789 DOI: 10.1016/j.compbiomed.2025.109753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Visceral leishmaniasis poses a significant health challenge due to limited treatment options, drug resistance, and lack of vaccine. Targeting essential proteins of Leishmania parasites, either absent or distinct from human, is imperative for developing new chemotherapeutic strategies. The cysteine synthase (CS) and serine O-acetyltransferase (SAT) involved in the de novo cysteine biosynthetic pathway of L. donovani may represent an attractive drug target. This pathway is absent in humans and controls the trypanothione-based redox metabolism; crucial for parasite survival and drug resistance. The C-terminal SAT-peptides strongly bind to CS creating a regulatory CS-SAT complex, leading to partial or complete inhibition of CS activity. In this study, CS in complex with SAT was utilized as a framework to screen inhibitors against LdCS. Structure-based virtual screening and molecular docking against LdCS protein with varying precisions (SP and XP modes) were performed to identify potential novel inhibitors. We have identified 17 top-ranked hits exhibiting inhibitory activity based on docking score against LdCS. Four of these compounds were further evaluated through molecular dynamics simulations and biological assays. Compounds (ASN05106249) and (ASN03069898) showed significant inhibitory effect on CS enzymatic activity and growth of parasite that highlight the potential of LdCS to develop new therapies against Leishmaniasis.
Collapse
Affiliation(s)
- Afreen Nawaz
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Gyan Prakash Rai
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Kuljit Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India.
| |
Collapse
|
2
|
Calcium Signaling Involves Na+/H+ Exchanger and IP3 Receptor Activation in T. cruzi Epimastigotes. BIOLOGICS 2021. [DOI: 10.3390/biologics1030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The calcium ion (Ca2+) plays a fundamental role in the metabolism and cell physiology of eukaryotic cells. In general, increases in cytosolic Ca2+ may come from both of the extracellular environment through specific channels and/or calcium release from intracellular stores. The mechanism by which the ion calcium (Ca2+) is released from intracellular stores in higher eukaryotes is well known; however, in lower eukaryotes is still a subject of study. In the present work, it was elucidated that Trypanosoma cruzi epimastigotes can release Ca2+ from intracellular stores in response to high osmolarity, in a process involving a protein kinase-regulated Na+/H+ exchanger present in the acidocalsisomes of the parasite. In addition, we demonstrated that epimastigote membranes are able to release Ca2+ in response to exogenous activators of both inositol 1,4,5-triphosphate (IP3) and Ryanodine receptors. Furthermore, we also summarize the involvement of calcium-related signaling pathways in biochemical and morphological changes triggered by hyperosmotic stress in T. cruzi epimastigotes.
Collapse
|
3
|
The IP 3 receptor and Ca 2+ signaling in trypanosomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118947. [PMID: 33421534 DOI: 10.1016/j.bbamcr.2021.118947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022]
Abstract
Trypanosoma cruzi, and the T. brucei group of parasites cause neglected diseases that affect millions of people around the world. These unicellular microorganisms have complex life cycles involving an insect vector and a mammalian host. Both groups of pathogens possess an inositol 1,4,5-trisphosphate (IP3)/diacylglycerol (DAG) signaling pathway, and an IP3 receptor, but with lineage-specific adaptations that make them different from their mammalian counterparts. The phospholipase C (PLC), which hydrolyzes phosphatidyl inositol 4,5-bisphosphate (PIP2) to IP3 is N-terminally myristoylated and palmitoylated. Acidocalcisomes, which are lysosome-related organelles rich in polyphosphate, are the main intracellular Ca2+ stores. The inositol 1,4,5-trisphosphate receptor (IP3R) localizes to acidocalcisomes instead of the endoplasmic reticulum. The trypanosome IP3R is stimulated by luminal phosphate and pyrophosphate, which are hydrolysis products of polyphosphate (polyP), and inhibited by tripolyphosphate (polyP3), which is the most abundant polyP in acidocalcisomes. Ca2+ signaling is important for host cell invasion and differentiation and to maintain cellular bioenergetics.
Collapse
|
4
|
Gimenez AM, Gesumaría MC, Schoijet AC, Alonso GD, Flawiá MM, Racagni GE, Machado EE. Phosphatidylinositol kinase activities in Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 2015; 203:14-24. [DOI: 10.1016/j.molbiopara.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 12/28/2022]
|
5
|
Ca2+ Regulation of Trypanosoma brucei Phosphoinositide Phospholipase C. EUKARYOTIC CELL 2015; 14:486-94. [PMID: 25769297 DOI: 10.1128/ec.00019-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
We characterized a phosphoinositide phospholipase C (PI-PLC) from the procyclic form (PCF) of Trypanosoma brucei. The protein contains a domain organization characteristic of typical PI-PLCs, such as X and Y catalytic domains, an EF-hand calcium-binding motif, and a C2 domain, but it lacks a pleckstrin homology (PH) domain. In addition, the T. brucei PI-PLC (TbPI-PLC) contains an N-terminal myristoylation consensus sequence found only in trypanosomatid PI-PLCs. A peptide containing this N-terminal domain fused to green fluorescent protein (GFP) was targeted to the plasma membrane. TbPI-PLC enzymatic activity was stimulated by Ca(2+) concentrations below the cytosolic levels in the parasite, suggesting that the enzyme is constitutively active. TbPI-PLC hydrolyzes both phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP2), with a higher affinity for PIP2. We found that modification of a single amino acid in the EF-hand motif greatly affected the protein's Ca(2+) sensitivity and substrate preference, demonstrating the role of this motif in Ca(2+) regulation of TbPI-PLC. Endogenous TbPI-PLC localizes to intracellular vesicles and might be using an intracellular source of PIP2. Knockdown of TbPI-PLC expression by RNA interference (RNAi) did not result in growth inhibition, although enzymatic activity was still present in parasites, resulting in hydrolysis of PIP2 and a contribution to the inositol 1,4,5-trisphosphate (IP3)/diacylglycerol (DAG) pathway.
Collapse
|
6
|
Queiroz RML, Charneau S, Bastos IMD, Santana JM, Sousa MV, Roepstorff P, Ricart CAO. Cell surface proteome analysis of human-hosted Trypanosoma cruzi life stages. J Proteome Res 2014; 13:3530-41. [PMID: 24978697 DOI: 10.1021/pr401120y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chagas' disease is a neglected infectious illness, caused by the protozoan Trypanosoma cruzi. It remains a challenging health issue in Latin America, where it is endemic, and so far there is no immunoprophylatic vaccine or satisfactory chemotherapic treatment for its chronic stage. The present work addressed the analysis of the plasma membrane (PM) subproteome from T. cruzi human-hosted life stages, trypomastigote and axenic amastigote, by two complementary PM protein enrichment techniques followed by identification using an LC-MS/MS approach. The results revealed an extensive repertoire of proteins in the PM subproteomes, including enzymes that might be suitable candidates for drug intervention. The comparison of the cell surface proteome among the life forms revealed some potentially stage-specific enzymes, although the majority was shared by both stages. Bioinformatic analysis showed that the vast majority of the identified proteins are membrane-derived and/or possess predicted transmembrane domains. They are mainly involved in host cell infection, protein adhesion, cell signaling, and the modulation of mammalian host immune response. Several virulence factors and proteins potentially capable of acting at a number of metabolic pathways of the host and also to regulate cell differentiation of the parasite itself were also found.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela-Ramirez A, Choi H, Yoshida N, da Silveira JF, Almeida IC. Proteomic Analysis of Trypanosoma cruzi Secretome: Characterization of Two Populations of Extracellular Vesicles and Soluble Proteins. J Proteome Res 2013; 12:883-97. [DOI: 10.1021/pr300947g] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Microbiologia,
Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Clemente Aguilar-Bonavides
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
- Computational Science Program,
The Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Silas Pessini Rodrigues
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Esteban Maurício Cordero
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Alexandre Ferreira Marques
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Armando Varela-Ramirez
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Hyungwon Choi
- Saw Swee Hock School of Public
Health, National University of Singapore, Singapore
| | - Nobuko Yoshida
- Departamento de Microbiologia,
Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia,
Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Igor C. Almeida
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
8
|
Bonansea S, Usorach M, Gesumaría MC, Santander V, Gimenez AM, Bollo M, Machado EE. Stress response to high osmolarity in Trypanosoma cruzi epimastigotes. Arch Biochem Biophys 2012; 527:6-15. [DOI: 10.1016/j.abb.2012.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 11/16/2022]
|
9
|
Biochemical and genetic evidence for the presence of multiple phosphatidylinositol- and phosphatidylinositol 4,5-bisphosphate-specific phospholipases C in Tetrahymena. EUKARYOTIC CELL 2010; 10:412-22. [PMID: 21169416 DOI: 10.1128/ec.00272-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eukaryotic phosphoinositide-specific phospholipases C (PI-PLC) specifically hydrolyze phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)], produce the Ca(2+)-mobilizing agent inositol 1,4,5-trisphosphate, and regulate signaling in multicellular organisms. Bacterial PtdIns-specific PLCs, also present in trypanosomes, hydrolyze PtdIns and glycosyl-PtdIns, and they are considered important virulence factors. All unicellular eukaryotes studied so far contain a single PI-PLC-like gene. In this report, we show that ciliates are an exception, since we provide evidence that Tetrahymena species contain two sets of functional genes coding for both bacterial and eukaryotic PLCs. Biochemical characterization revealed two PLC activities that differ in their phosphoinositide substrate utilization, subcellular localization, secretion to extracellular space, and sensitivity to Ca(2+). One of these activities was identified as a typical membrane-associated PI-PLC activated by low-micromolar Ca(2+), modestly activated by GTPγS in vitro, and inhibited by the compound U73122 [1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione]. Importantly, inhibition of PI-PLC in vivo resulted in rapid upregulation of PtdIns(4,5)P(2) levels, suggesting its functional importance in regulating phosphoinositide turnover in Tetrahymena. By in silico and molecular analysis, we identified two PLC genes that exhibit significant similarity to bacterial but not trypanosomal PLC genes and three eukaryotic PI-PLC genes, one of which is a novel inactive PLC similar to proteins identified only in metazoa. Comparative studies of expression patterns and PI-PLC activities in three T. thermophila strains showed a correlation between expression levels and activity, suggesting that the three eukaryotic PI-PLC genes are functionally nonredundant. Our findings imply the presence of a conserved and elaborate PI-PLC-Ins(1,4,5)P(3)-Ca(2+) regulatory axis in ciliates.
Collapse
|
10
|
Developmental expression of a Trypanosoma cruzi phosphoinositide-specific phospholipase C in amastigotes and stimulation of host phosphoinositide hydrolysis. Infect Immun 2010; 78:4206-12. [PMID: 20643853 DOI: 10.1128/iai.00473-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phosphoinositide phospholipase C (PI-PLC) plays an essential role in cell signaling. A unique Trypanosoma cruzi PI-PLC (TcPI-PLC) is lipid modified in its N terminus and localizes to the outer surface of the plasma membrane of amastigotes. We show here that TcPI-PLC is developmentally regulated in amastigotes and shows two peaks of surface expression during the developmental cycle of T. cruzi, the first immediately after differentiation of trypomastigotes into amastigotes and the second before differentiation of amastigotes into trypomastigotes. Surface expression of TcPI-PLC coincides with phosphatidylinositol 4,5-bisphosphate (PIP(2)) depletion in the host cell membrane and with an increase in the levels of its product, inositol 1,4,5-trisphosphate. During extracellular differentiation, PI-PLC is secreted into the incubation medium. Maximal early expression of TcPI-PLC on the surface of amastigotes and PIP(2) depletion coincide with host cytoskeletal changes, Ca(2+) signaling, and transcriptional responses described previously. The presence of TcPI-PLC on the outer surface of the plasma membrane of the parasite and the capacity to be secreted and to alter host phospholipids are novel mechanisms of the host-parasite interaction.
Collapse
|
11
|
Almeida-Amaral EE, Cardoso VC, Francioli FG, Meyer-Fernandes JR. Leishmania amazonensis: Heme stimulates (Na++ K+)ATPase activity via phosphatidylinositol-specific phospholipase C/protein kinase C-like (PI-PLC/PKC) signaling pathways. Exp Parasitol 2010; 124:436-41. [DOI: 10.1016/j.exppara.2009.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 12/23/2009] [Indexed: 11/28/2022]
|
12
|
Einicker-Lamas M, Nascimento MTC, Masuda CA, Oliveira MM, Caruso-Neves C. Trypanosoma cruzi epimastigotes: regulation of myo-inositol transport by effectors of protein kinases A and C. Exp Parasitol 2007; 117:171-7. [PMID: 17586497 DOI: 10.1016/j.exppara.2007.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 04/11/2007] [Accepted: 04/23/2007] [Indexed: 01/10/2023]
Abstract
Inositol is the precursor for most Trypanosoma cruzi surface molecules, including phosphoinositides, glycosylinositolphospholipids and glycosylphosphatidylinositol anchors. As the parasite is an inositol auxotroph, the inositol transport system might be a potential target for new trypanocide drugs, as some of its properties are different from its mammalian counterpart. Here, we investigated the modulation exerted by effectors of PKA and PKC on this transport system to comply with the parasite physiology. Pre-incubation of the cells with either dibutyryl-cyclic AMP (25 microM) or forskolin (30 microM) decreased the myo-inositol uptake by half, this effect being reversed by KT5720 (PKA inhibitor). Conversely, pre-incubation of the cells with PMA (2.8 microg/ml) or serum (5%) had a approximately 50% stimulation in myo-inositol uptake, being this effect reversed by staurosporine (0.5 microM) or sphingosine (10 microM). These results allow us to conclude that the myo-inositol transport system in T. cruzi epimastigotes is inhibited by PKA and stimulated by PKC effectors.
Collapse
Affiliation(s)
- Marcelo Einicker-Lamas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
13
|
Okura M, Fang J, Salto ML, Singer RS, Docampo R, Moreno SNJ. A lipid-modified phosphoinositide-specific phospholipase C (TcPI-PLC) is involved in differentiation of trypomastigotes to amastigotes of Trypanosoma cruzi. J Biol Chem 2005; 280:16235-43. [PMID: 15710612 DOI: 10.1074/jbc.m414535200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphoinositide-specific phospholipase C (PI-PLC) is an important component of the inositol phosphate/diacylglycerol signaling pathway. A newly discovered Trypanosoma cruzi PI-PLC (TcPI-PLC) is lipid modified in its N terminus, targeted to its plasma membrane, and believed to play a role in differentiation of the parasite because its expression increases during the differentiation of trypomastigote to amastigote stages. To determine whether TcPI-PLC is involved in this differentiation step, antisense inhibition using phosphorothioate-modified oligonucleotides, and overexpression of the gene were performed. Antisense oligonucleotide-treated parasites showed a reduced rate of differentiation in comparison to controls, as well as accumulation of intermediate forms. Overexpression of TcPI-PLC led to a faster differentiation rate. In contrast, overexpression of a mutant TcPI-PLC that lacked the lipid modification at its N terminus did not affect the differentiation rate. Therefore, TcPI-PLC is involved, when expressed in the plasma membrane, in the differentiation of trypomastigotes to amastigotes, an essential step for the intracellular replication of these parasites.
Collapse
Affiliation(s)
- Michael Okura
- Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | | | |
Collapse
|
14
|
Yagisawa H, Yamaga M, Okada M, Sasaki K, Fujii M. Regulation of the intracellular localization of phosphoinositide-specific phospholipase Cdelta(1). ADVANCES IN ENZYME REGULATION 2002; 42:261-84. [PMID: 12123720 DOI: 10.1016/s0065-2571(01)00040-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hitoshi Yagisawa
- Department of Life Science, Himeji Institute of Technology, Harima Science Garden City, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | | | | | | | | |
Collapse
|
15
|
Nozaki T, Shigeta Y, Saito-Nakano Y, Imada M, Kruger WD. Characterization of transsulfuration and cysteine biosynthetic pathways in the protozoan hemoflagellate, Trypanosoma cruzi. Isolation and molecular characterization of cystathionine beta-synthase and serine acetyltransferase from Trypanosoma. J Biol Chem 2001; 276:6516-23. [PMID: 11106665 DOI: 10.1074/jbc.m009774200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfur-containing amino acids play an important role in a variety of cellular functions such as protein synthesis, methylation, and polyamine and glutathione synthesis. We cloned and characterized cDNA encoding cystathionine beta-synthase (CBS), which is a key enzyme of transsulfuration pathway, from a hemoflagellate protozoan parasite Trypanosoma cruzi. T. cruzi CBS, unlike mammalian CBS, lacks the regulatory carboxyl terminus, does not contain heme, and is not activated by S-adenosylmethionine. T. cruzi CBS mRNA is expressed as at least six independent isotypes with sequence microheterogeneity from tandemly linked multicopy genes. The enzyme forms a homotetramer and, in addition to CBS activity, the enzyme has serine sulfhydrylase and cysteine synthase (CS) activities in vitro. Expression of the T. cruzi CBS in Saccharomyces cerevisiae and Escherichia coli demonstrates that the CBS and CS activities are functional in vivo. Enzymatic studies on T. cruzi extracts indicate that there is an additional CS enzyme and stage-specific control of CBS and CS expression. We also cloned and characterized cDNA encoding serine acetyltransferase (SAT), a key enzyme in the sulfate assimilatory cysteine biosynthetic pathway. Dissimilar to bacterial and plant SAT, a recombinant T. cruzi SAT showed allosteric inhibition by l-cysteine, l-cystine, and, to a lesser extent, glutathione. Together, these studies demonstrate the T. cruzi is a unique protist in possessing both transsulfuration and sulfur assimilatory pathways.
Collapse
Affiliation(s)
- T Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | |
Collapse
|
16
|
Furuya T, Kashuba C, Docampo R, Moreno SN. A novel phosphatidylinositol-phospholipase C of Trypanosoma cruzi that is lipid modified and activated during trypomastigote to amastigote differentiation. J Biol Chem 2000; 275:6428-38. [PMID: 10692446 DOI: 10.1074/jbc.275.9.6428] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphoinositide (PI)-specific phospholipase C gene (TcPI-PLC) of the protozoan parasite Trypanosoma cruzi was cloned, sequenced, expressed in Escherichia coli, and the protein product (TcPI-PLC) was shown to have enzymatic characteristics similar to those of mammalian delta-type PI-PLCs. The TcPI-PLC gene is expressed at high levels in the epimastigote and amastigote stages of the parasite, and its expression is induced during the differentiation of trypomastigotes into amastigotes, where TcPI-PLC associates with the plasma membrane and increases its catalytic activity. In contrast to other PI-PLCs described so far, the deduced amino acid sequence of TcPI-PLC revealed some unique features such as an N-myristoylation consensus sequence at its amino-terminal end, lack of an apparent pleckstrin homology domain and a highly charged linker region between the catalytic X and Y domains. TcPI-PLC is lipid modified in vivo, as demonstrated by metabolic labeling with [(3)H]myristate and [(3)H]palmitate and fatty acid analysis of the immunoprecipitated protein, and may constitute the first example of a new group of PI-PLCs.
Collapse
Affiliation(s)
- T Furuya
- Laboratory of Molecular Parasitology, Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | |
Collapse
|