1
|
Inverse age-related changes between hypothalamic NPY and KISS1 gene expression during pubertal initiation in male rhesus monkey. Reprod Biol 2022; 22:100599. [PMID: 35033902 DOI: 10.1016/j.repbio.2021.100599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/30/2021] [Accepted: 12/26/2021] [Indexed: 01/12/2023]
Abstract
The neuroendocrine mechanism underlying the sinusoidal wave nature of gonadotropin-releasing hormone pulse generator activity from infantile to adult age still needs to be meticulously defined. Direct inhibition of kisspeptin neurons by neuropeptide Y (NPY) and close intimacy between the two rekindle the importance of these two neuropeptides controlling reproductive axis activity. Thus, the present study was undertaken to decipher simultaneous fluctuations and to profile correlative changes in the relative expression of KISS1, NPY, and their receptor genes from the mediobasal hypothalamus of infant (n = 3), juvenile, pre-pubertal, and adult (n = 4 in each stage) male rhesus monkey (Macaca mulatta) by RT-qPCR. Significant elevation (p < 0.05-0.01) in KISS1 and KISS1R and low (p < 0.05) expression in NPY and NPY1R mRNA in the adult group as compared to the pre-pubertal group was observed. Moreover, significantly high (p < 0.05) expression of NPY and NPY1R mRNA with non-significant (p> 0.05) decline in KISS1 and KISS1R in pre-pubertal animals in comparison to infants describe inverse correlative age-associated changes during pubertal development. Current findings imply that NPY may contribute as a neurobiological brake for the dormancy of kisspeptin neurons before pubertal onset, while dwindling of this brake is likely to occasion kisspeptin dependent hypothalamic-pituitary-gonadal axis activation at puberty. These findings may help in the development of clinical and therapeutic strategies to regulate fertility in humans.
Collapse
|
2
|
Sitticharoon C, Sukharomana M, Likitmaskul S, Churintaraphan M, Maikaew P. Increased high molecular weight adiponectin, but decreased total adiponectin and kisspeptin, in central precocious puberty compared with aged-matched prepubertal girls. Reprod Fertil Dev 2017; 29:2466-2478. [DOI: 10.1071/rd16282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/11/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to compare serum leptin, kisspeptin, total adiponectin, high molecular weight (HMW) adiponectin and neuropeptide Y (NPY) levels between girls with central precocious puberty (CPP; n = 26, 7–9.5 years old) and age-matched controls (n = 29) including or excluding obese girls. Leptin and NPY levels were comparable between CPP and control girls. Kisspeptin levels were lower in the CPP than control group, and were positively correlated with oestrogen in the control group and with systolic and diastolic blood pressure in the CPP group. Kisspeptin levels were negatively correlated with FSH and LH in the CPP group. Total adiponectin levels were lower in CPP than control girls, and were negatively correlated with Tanner stage and body mass index, but positively correlated with the quantitative insulin sensitivity check index in the control group. HMW adiponectin was higher in the CPP than control group, and was positively correlated with Tanner stage and LH in all girls. Total adiponectin had a strong positive correlation with HMW adiponectin in the CPP group (r = 0.915) compared with the control group (r = 0.371). In conclusion, kisspeptin may be associated with increased oestrogen in prepubertal girls, but with increased blood pressure in girls with CPP. In girls entering puberty, HMW adiponectin was increased and associated with reproductive parameters. Based on these observations, HMW adiponectin probably plays an essential role in the initiation of puberty and is a candidate marker for the prediction of CPP.
Collapse
|
3
|
Cardoso RC, Alves BRC, Prezotto LD, Thorson JF, Tedeschi LO, Keisler DH, Amstalden M, Williams GL. Reciprocal changes in leptin and NPY during nutritional acceleration of puberty in heifers. J Endocrinol 2014; 223:289-98. [PMID: 25326602 DOI: 10.1530/joe-14-0504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Feeding a high-concentrate diet to heifers during the juvenile period, resulting in increased body weight (BW) gain and adiposity, leads to early-onset puberty. In this study, we tested the hypothesis that the increase in GnRH/LH release during nutritional acceleration of puberty is accompanied by reciprocal changes in circulating leptin and central release of neuropeptide Y (NPY). The heifers were weaned at 3.5 months of age and fed to gain either 0.5 (Low-gain; LG) or 1.0 kg/day (High-gain; HG) for 30 weeks. A subgroup of heifers was fitted surgically with third ventricle guide cannulas and was subjected to intensive cerebrospinal fluid (CSF) and blood sampling at 8 and 9 months of age. Mean BW was greater in HG than in LG heifers at week 6 of the experiment and remained greater thereafter. Starting at 9 months of age, the percentage of pubertal HG heifers was greater than that of LG heifers, although a replicate effect was observed. During the 6-h period in which CSF and blood were collected simultaneously, all LH pulses coincided with or shortly followed a GnRH pulse. At 8 months of age, the frequency of LH pulses was greater in the HG than in the LG group. Beginning at 6 months of age, concentrations of leptin were greater in HG than in LG heifers. At 9 months of age, concentrations of NPY in the CSF were lesser in HG heifers. These observations indicate that increased BW gain during juvenile development accelerates puberty in heifers, coincident with reciprocal changes in circulating concentrations of leptin and hypothalamic NPY release.
Collapse
Affiliation(s)
- Rodolfo C Cardoso
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Bruna R C Alves
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Ligia D Prezotto
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Jennifer F Thorson
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Luis O Tedeschi
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Duane H Keisler
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Marcel Amstalden
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Gary L Williams
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
4
|
Amstalden M, Cardoso RC, Alves BRC, Williams GL. Reproduction Symposium: hypothalamic neuropeptides and the nutritional programming of puberty in heifers. J Anim Sci 2014; 92:3211-22. [PMID: 24894003 DOI: 10.2527/jas.2014-7808] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nutrition during the juvenile period has a major impact on timing reproductive maturity in heifers. Restricted growth delays puberty, whereas elevated BW gain advances the onset of puberty. The initiation of high-frequency episodic release of GnRH and, consequently, LH during the peripubertal period is crucial for maturation of the reproductive axis and establishment of normal estrous cycles. Nutritional signals are perceived by metabolic-sensing cells in the hypothalamus, which interact with estradiol-receptive neurons to regulate the secretory activity of GnRH neurons. The orexigenic peptide, neuropeptide Y (NPY), and the anorexigenic peptide derived from the proopiomelanocortin (POMC) gene, melanocyte-stimulating hormone α (αMSH), are believed to be major afferent pathways that transmit inhibitory (NPY) and excitatory (αMSH) inputs to GnRH neurons. The neuropeptide kisspeptin is considered a major stimulator of GnRH secretion and has been shown to mediate estradiol's effect on GnRH neuronal activity. Kisspeptin may also integrate the neuronal pathways mediating the metabolic and gonadal steroid hormone control of gonadotropin secretion. Recent studies in our laboratories indicate that functional and structural changes in the pathways involving NPY, POMC, and kisspeptin neurons occur in response to high rates of BW gain during the juvenile period in heifers. Changes include regulation of expression in NPY, POMC, and KISS1 and plasticity in the neuronal projections to GnRH neurons and within the neuronal network comprising these cells. Moreover, an intricate pattern of differential gene expression in the arcuate nucleus of the hypothalamus occurs in response to feeding high concentrate diets that promote elevated BW gain. Genes involved include those controlling feeding intake and cell metabolism, neuronal growth and remodeling, and synaptic transmission. Characterizing the cellular pathways and molecular networks involved in the mechanisms that control the timing of pubertal onset will assist in improving existing strategies and facilitate the development of novel approaches to program puberty in heifers. These include the use of diets that elevate BW gain during strategic periods of prepubertal development.
Collapse
Affiliation(s)
- M Amstalden
- Department of Animal Science, Texas A&M University, College Station 77843
| | - R C Cardoso
- Department of Animal Science, Texas A&M University, College Station 77843 Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville 78102
| | - B R C Alves
- Department of Animal Science, Texas A&M University, College Station 77843
| | - G L Williams
- Department of Animal Science, Texas A&M University, College Station 77843 Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville 78102
| |
Collapse
|
5
|
Amstalden M, Alves BRC, Liu S, Cardoso RC, Williams GL. Neuroendocrine pathways mediating nutritional acceleration of puberty: insights from ruminant models. Front Endocrinol (Lausanne) 2011; 2:109. [PMID: 22654842 PMCID: PMC3356117 DOI: 10.3389/fendo.2011.00109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/09/2011] [Indexed: 01/15/2023] Open
Abstract
The pubertal process is characterized by an activation of physiological events within the hypothalamic-adenohypophyseal-gonadal axis which culminate in reproductive competence. Excessive weight gain and adiposity during the juvenile period is associated with accelerated onset of puberty in females. The mechanisms and pathways by which excess energy balance advances puberty are unclear, but appear to involve an early escape from estradiol negative feedback and early initiation of high-frequency episodic gonadotropin-releasing hormone (GnRH) secretion. Hypothalamic neurons, particularly neuropeptide Y and proopiomelanocortin neurons are likely important components of the pathway sensing and transmitting metabolic information to the control of GnRH secretion. Kisspeptin neurons may also have a role as effector neurons integrating metabolic and gonadal steroid feedback effects on GnRH secretion at the time of puberty. Recent studies indicate that leptin-responsive neurons within the ventral premammillary nucleus play a critical role in pubertal progression and challenge the relevance of kisspeptin neurons in this process. Nevertheless, the nutritional control of puberty is likely to involve an integration of major sensor and effector pathways that interact with modulatory circuitries for a fine control of GnRH neuron function. In this review, observations made in ruminant species are emphasized for a comparative perspective.
Collapse
Affiliation(s)
- Marcel Amstalden
- Department of Animal Science, Texas A&M UniversityCollege Station, TX, USA
- *Correspondence: Marcel Amstalden, Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77845-2471, USA. e-mail:
| | - Bruna R. C. Alves
- Department of Animal Science, Texas A&M UniversityCollege Station, TX, USA
| | - Songrui Liu
- Department of Animal Science, Texas A&M UniversityCollege Station, TX, USA
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M UniversityCollege Station, TX, USA
- Animal Reproduction Laboratory, Texas AgriLife ResearchBeeville, TX, USA
| | - Gary L. Williams
- Department of Animal Science, Texas A&M UniversityCollege Station, TX, USA
- Animal Reproduction Laboratory, Texas AgriLife ResearchBeeville, TX, USA
| |
Collapse
|
6
|
Pralong FP. Insulin and NPY pathways and the control of GnRH function and puberty onset. Mol Cell Endocrinol 2010; 324:82-6. [PMID: 20138117 DOI: 10.1016/j.mce.2010.01.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 11/16/2022]
Abstract
Energy balance exerts a critical influence on reproductive function. Leptin and insulin are among the metabolic factors signaling the nutritional status of an individual to the hypothalamus, and their role in the overall modulation of the activity of GnRH neurons is increasingly recognized. As such, they participate to a more generalized phenomenon: the signaling of peripheral metabolic changes to the central nervous system. The physiological importance that the interactions occurring between peripheral metabolic factors and the central nervous system bear for the control of food intake is increasingly recognized. The central mechanisms implicated are the focus of attention of very many research groups worldwide. We review here the experimental data that suggest that similar mechanisms are at play for the metabolic control of the neuroendocrine reproductive function. It is appearing that metabolic signals are integrated at the levels of first-order neurons equipped with the proper receptors, ant that these neurons send their signals towards hypothalamic GnRH neurons which constitute the integrative element of this network.
Collapse
Affiliation(s)
- François P Pralong
- Services of Endocrinology, Diabetology and Metabolism, University Hospitals of Lausanne and Geneva, Switzerland.
| |
Collapse
|
7
|
Klenke U, Constantin S, Wray S. Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors. Endocrinology 2010; 151:2736-46. [PMID: 20351316 PMCID: PMC2875836 DOI: 10.1210/en.2009-1198] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY), a member of the pancreatic polypeptide family, is an orexigenic hormone. GnRH-1 neurons express NPY receptors. This suggests a direct link between metabolic function and reproduction. However, the effect of NPY on GnRH-1 cells has been variable, dependent on metabolic and reproductive status of the animal. This study circumvents these issues by examining the role of NPY on GnRH-1 neuronal activity in an explant model that is based on the extra-central nervous system origin of GnRH-1 neurons. These prenatal GnRH-1 neurons express many receptors found in GnRH-1 neurons in the brain and use similar transduction pathways. In addition, these GnRH-1 cells exhibit spontaneous and ligand-induced oscillations in intracellular calcium as well as pulsatile calcium-controlled GnRH-1 release. Single-cell PCR determined that prenatal GnRH-1 neurons express the G protein-coupled Y1 receptor (Y1R). To address the influence of NPY on GnRH-1 neuronal activity, calcium imaging was used to monitor individual and population dynamics. NPY treatment, mimicked with Y1R agonist, significantly decreased the number of calcium peaks per minute in GnRH-1 neurons and was prevented by a Y1R antagonist. Pertussis toxin blocked the effect of NPY on GnRH-1 neuronal activity, indicating the coupling of Y1R to inhibitory G protein. The NPY-induced inhibition was independent of the adenylate cyclase pathway but mediated by the activation of G protein-coupled inwardly rectifying potassium channels. These results indicate that at an early developmental stage, GnRH-1 neuronal activity can be directly inhibited by NPY via its Y1R.
Collapse
Affiliation(s)
- Ulrike Klenke
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
8
|
Kawagoe R, Yamamoto Y, Kubo K, Dobashi K, Asayama K, Ueta Y, Shirahata A. Postnatal development of galanin-like peptide mRNA expression in rat hypothalamus. ACTA ACUST UNITED AC 2007; 145:133-40. [PMID: 17950941 DOI: 10.1016/j.regpep.2007.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined the developmental change of GALP mRNA in male and female rat hypothalamus during postnatal day 1 to 60, using in situ hybridization histochemistry. Neuropeptide Y (NPY) and proopiomelanocortin (POMC) mRNA in the hypothalamus were also examined because they are important in the regulation of food intake. GALP mRNA was first detected in the arcuate nucleus (ARC) on day 8. GALP mRNA was gradually increased between day 8 and 14 and markedly increased between day 14 and 40, which is the weaning and pubertal period in rats. After day 40, there were no significant differences in GALP mRNA. In contrast to GALP, NPY and POMC mRNAs were detected in the ARC from day 1 and lasted to day 60. There was no sexual dimorphism in GALP, NPY and POMC mRNAs during postnatal development. Next, we examined the effect of the milk deprivation for 24 h on GALP, NPY and POMC mRNA in pups. GALP mRNA did not change by milk deprivation on day 9 and 15, while milk deprivation had a significant effect on NPY and POMC mRNA on day 15. These results suggest that the development of GALP may be associated with developmental changes such as weaning, feeding and maturation of reproductive functions. The regulatory mechanism of GALP mRNA is different from that of the NPY and POMC genes during postnatal development.
Collapse
Affiliation(s)
- Rinko Kawagoe
- Department of Pediatrics, University of Occupational and Environmental Health, Japan, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Lin S, Lin EJD, Boey D, Lee NJ, Slack K, During MJ, Sainsbury A, Herzog H. Fasting inhibits the growth and reproductive axes via distinct Y2 and Y4 receptor-mediated pathways. Endocrinology 2007; 148:2056-65. [PMID: 17272395 DOI: 10.1210/en.2006-1408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y, a neuropeptide abundantly expressed in the brain, has been implicated in the regulation of the hypothalamo-pituitary-somatotropic axis and the hypothalamo-pituitary-gonadotropic axis. Elevated hypothalamic neuropeptide Y expression, such as that occurs during fasting, is known to inhibit both of these axes. However, it is not known which Y receptor(s) mediate these effects. Here we demonstrate, using Y receptor knockout mice, that Y2 and Y4 receptors are separately involved in the regulation of these axes. Fasting-induced inhibition of hypothalamic GHRH mRNA expression and reduction of circulating IGF-I levels were observed in wild-type and Y4(-/-) mice but not Y2(-/-) or Y2(-/-)Y4(-/-) mice. In contrast, fasting-induced reduction of GnRH expression in the medial preoptic area and testis testosterone content were abolished in the absence of Y4 receptors. Colocalization of Y2 receptors and GHRH in the arcuate nucleus (Arc) suggests that GHRH mRNA expression in this region might be directly regulated by Y2 receptors. Indeed, hypothalamic-specific deletion of Y2 receptors in conditional knockout mice prevented the fasting-induced reduction in Arc GHRH mRNA expression. On the other hand, fasting-induced decrease in GnRH mRNA expression in the medial preoptic area is more likely indirectly influenced by Y4 receptors because no Y4 receptors could be detected on GnRH neurons in this region. Together these data show that fasting inhibits the somatotropic axis via direct action on Y2 receptors in the Arc and indirectly inhibits the gonadotropic axis via Y4 receptors.
Collapse
Affiliation(s)
- Shu Lin
- Neuroscience Research Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Eva C, Serra M, Mele P, Panzica G, Oberto A. Physiology and gene regulation of the brain NPY Y1 receptor. Front Neuroendocrinol 2006; 27:308-39. [PMID: 16989896 DOI: 10.1016/j.yfrne.2006.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Neuropeptide Y (NPY) is one of the most prominent and abundant neuropeptides in the mammalian brain where it interacts with a family of G-protein coupled receptors, including the Y(1) receptor subtype (Y(1)R). NPY-Y(1)R signalling plays a prominent role in the regulation of several behavioural and physiological functions including feeding behaviour and energy balance, sexual hormone secretion, stress response, emotional behaviour, neuronal excitability and ethanol drinking. Y(1)R expression is regulated by neuronal activity and peripheral hormones. The Y(1)R gene has been isolated from rodents and humans and it contains multiple regulatory elements that may participate in the regulation of its expression. Y(1)R expression in the hypothalamus is modulated by changes in energetic balance induced by a wide variety of conditions (fasting, pregnancy, hyperglycaemic challenge, hypophagia, diet induced obesity). Estrogens up-regulate responsiveness to NPY to stimulate preovulatory GnRH and gonadotropin surges by increasing Y(1)R gene expression both in the hypothalamus and the pituitary. Y(1)R expression is modulated by different kinds of brain insults, such as stress and seizure activity, and alteration in its expression may contribute to antidepressant action. Chronic modulation of GABA(A) receptor function by benzodiazepines or neuroactive steroids also affects Y(1)R expression in the amygdala, suggesting that a functional interaction between the GABA(A) receptor and Y(1)R mediated signalling may contribute to the regulation of emotional behaviour. In this paper, we review the state of the art concerning Y(1)R function and gene expression, including our personal contribution to many of the subjects mentioned above.
Collapse
Affiliation(s)
- Carola Eva
- Sezione di Farmacologia, Dipartimento di Anatomia, Farmacologia e Medicina Legale, Università di Torino, Italy; Centro Rita Levi Montalcini, Università di Torino, Italy.
| | | | | | | | | |
Collapse
|
11
|
Gamba M, Pralong FP. Control of GnRH neuronal activity by metabolic factors: the role of leptin and insulin. Mol Cell Endocrinol 2006; 254-255:133-9. [PMID: 16757107 DOI: 10.1016/j.mce.2006.04.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Energy balance exerts a critical influence on reproductive function. Leptin and insulin are among the metabolic factors signaling the nutritional status of an individual to the hypothalamus, and their role in the overall modulation of the activity of GnRH neurons is increasingly recognized. The experiments described here were designed to further investigate the central mechanisms of action of these two hormones and the precise hypothalamic pathways implicated in their effects on the reproductive axis. NPY neurons represent a primary target of leptin actions within the hypothalamus We used mice lacking the NPY Y1 receptor (Y1-/- mice) to investigate the physiological importance of the hypothalamic NPY neuronal system and its downstream pathways involving Y1 in the reproductive effects of leptin. Results point to a crucial role for the NPY Y1 receptor in the control of the onset of puberty and the maintenance of reproductive functions by leptin. A striking finding of these experiments was the observation that juvenile Y1-/- mice submitted to food restriction can proceed through puberty like normally fed animals, demonstrating that the absence of Y1 impairs the perception of decreasing energy stores by the gonadotrope axis. Next, we used parallel in vivo and in vitro experiments to delineate the role of insulin in the stimulation and maintenance of the activity of the neuroendocrine reproductive axis. First, we observed that the increase in circulating insulin levels achieved during hyperinsulinemic clamp studies in normal male mice was associated with a significant rise in LH secretion. This effect of insulin is likely mediated at the hypothalamic level, as insulin stimulates the secretion and the expression of GnRH by hypothalamic neurons in culture. Using primary neuronal cultures as well as a novel GnRH neuronal cell line obtained by conditional immortalization of adult rat hypothalamic neurons, we have recently demonstrated that this effect of insulin on GnRH gene expression is probably mediated directly at the level of GnRH neurons, and involves the stimulation of the MAP kinase Erk1/2 pathway. Taken together, these results provide new insights into the mechanisms involved in the regulation of GnRH neuronal activity by metabolic factors.
Collapse
Affiliation(s)
- Marcella Gamba
- Services of Endocrinology, Diabetology and Metabolism, BH 19-709, University Hospitals of Lausanne and Geneva, Switzerland
| | | |
Collapse
|
12
|
Pinilla L, Fernández-Fernández R, Vigo E, Navarro VM, Roa J, Castellano JM, Pineda R, Tena-Sempere M, Aguilar E. Stimulatory effect of PYY-(3-36) on gonadotropin secretion is potentiated in fasted rats. Am J Physiol Endocrinol Metab 2006; 290:E1162-71. [PMID: 16390861 DOI: 10.1152/ajpendo.00469.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Development and normal function of the reproductive axis requires a precise degree of body energy stores. Polypeptide YY-(3-36) [PYY-(3-36)] is a gastrointestinal secreted molecule recently shown to be involved in the control of food intake with agonistic activity on neuropeptide Y (NPY) receptor subtypes Y2 and Y5. Notably, PYY-(3-36) has been recently demonstrated as putative regulator of gonadotropin secretion in the rat. However, the "reproductive" facet of this factor remains to be fully elucidated. In this context, we report herein our analyses of the influence of the nutritional status on the effects of PYY-(3-36) upon GnRH and gonadotropin secretion. The major findings of our study are 1) the stimulatory effect of central administration of PYY-(3-36) on LH secretion was significantly enhanced after fasting and blocked by a GnRH antagonist; 2) besides central effects, PYY-(3-36) elicited LH and FSH secretion directly at the pituitary level, a response that is also augmented by fasting; 3) PYY-(3-36) inhibited GnRH secretion by hypothalamic fragments from male rats fed ad libitum, whereas a significant stimulatory effect was observed after fasting; and 4) the increase in the gonadotropin responsiveness to PYY-(3-36) in fasting was not associated with changes in the expression of Y2 and Y5 receptor genes at hypothalamus and/or pituitary. In conclusion, our study extends our previous observations suggesting a relevant, mostly stimulatory, role of PYY-(3-36) in the control of gonadotropin secretion. Strikingly, such an effect was significantly enhanced by fasting. Considering the proposed decrease in PYY-(3-36) levels after fasting, the possibility that reduced PYY-(3-36) secretion might contribute to defective function of the gonadotropic axis after food deprivation merits further investigation.
Collapse
Affiliation(s)
- L Pinilla
- Physiology Section, Dept. of Cell Biology, Physiology and Immunology, Faculty of Medicine, Univ. of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shen H, Cai DP, Chen BY. [Effects of kidney-tonifying Chinese herbal medicine on hypothalamic-pituitary gonadotrophic function]. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2004; 2:53-7. [PMID: 15339508 DOI: 10.3736/jcim20040120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To observe the effects of kidney-tonifying Chinese herbal medicine on the synthesis and secretion of gonadotropin releasing hormone (GnRH) and the related neurotransmitters and neuropeptides, and to explore the mechanism of the regulative effect of Chinese herbal medicine on the hypothalamic-pituitary gonadotrophic function. METHODS Female Sprague-Dawley rats during the period of normal adolescent initiation (160-180 g, 1.5 months) were randomly divided into three groups. The control group was fed with normal saline and the two experimental groups were fed with Chinese herbal medicine for nourishing yin to reduce fire (Zi Yin Xie Huo, ZYXH) or nourishing kidney to replenish essence (Yi Shen Tian Jing, YSTJ) respectively. The dosage was 5 ml/d for 30 days by gastric gavage. Integrated optic densities of the GnRH and neuropeptide Y (NPY) in medial preoptic area (MPOA), arcuate nucleus (ARC) and median eminence (ME) of hypothalamus were determined by immunohistochemistry method and image processing. The content of GnRH in homogenate of hypothalamus preoptic area was determined by radioimmunoassay (RIA). The releasing amount of monoamine neurotransmitters from medial basal hypothalamus (MBH) was determined by brain slices incubation and high pressure liquid chromatography (HPLC). The releasing amount of GnRH and NPY from POA was determined by push-pull perfusion and RIA, and the releasing amount of monoamine neurotransmitters from this site was determined by HPLC. RESULTS ZYXH could inhibit the synthesis and secretion of GnRH from periodic and tonic secretory centers of GnRH, while YSTJ could stimulate the synthesis and secretion of GnRH from the both secretory centers of GnRH. ZYXH could inhibit the activity of GnRH neurons via diminishing the releasing of norepinephrine (NE) from tonic secretory center of GnRH, increasing the releasing of dopamine (DA) in periodic secretory center of GnRH and increasing the synthesis and releasing of NPY from the both secretory centers of GnRH, it hence inhibited the hypothalamic-pituitary gonadotrophic function. YSTJ could stimulate the activity of GnRH neurons via diminishing the synthesis and releasing of NPY from tonic secretory center of GnRH, it hence promoted the hypothalamic-pituitary gonadotrophic function. CONCLUSION Chinese herbal medicine for tonifying the kidney could modulate hypothalamic-pituitary gonadotrophic function via regulating the synthesis and secretion of GnRH and the related neurotransmitters (NE, DA) and neuropeptides (NPY).
Collapse
Affiliation(s)
- Hao Shen
- Department of Integrated Traditional Chinese and Western Medicine, Pediatric Hospital, Fudan University, Shanghai 200032, China.
| | | | | |
Collapse
|
14
|
Aguilar E, Fernandez-Fernandez R, Tena-Sempere M, Pinilla L. Effects of peptide YY(3-36) on PRL secretion: pituitary and extra-pituitary actions in the rat. Peptides 2004; 25:1147-52. [PMID: 15245874 DOI: 10.1016/j.peptides.2004.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 03/29/2004] [Accepted: 04/01/2004] [Indexed: 11/23/2022]
Abstract
Polypeptide YY(3-36) (PYY(3-36)) is a gastrointestinal secreted molecule, agonist of neuropeptide Y (NPY) receptor subtypes Y2 and Y5, that has been recently involved as anorexigenic signal in the network controlling food intake. Notably, several factors primarily involved in food intake control and energy homeostasis (as leptin, orexins, ghrelin and NPY) have been linked also to the regulation of anterior pituitary hormone secretion and carry out pleiotropic effects upon the reproductive axis. However, whether similar actions are conducted by PYY(3-36) remains so far largely unexplored. Present studies were undertaken to analyze the potential effects of PYY(3-36) in the control of prolactin (PRL) secretion in the rat. To this end, responses to PYY(3-36) in terms of PRL secretion were monitored in vitro, after pituitary exposure to 10(-8) to 10(-6) M concentrations, and in vivo, after i.p. administration of different doses of PYY(3-36) (3, 10 and 30 microg/kg) to prepubertal male and female rats. In addition, the in vivo effects of PYY(3-36) were tested after central (i.c.v.) administration of 3 nmol of the peptide to prepubertal rats, and in hyperprolactinaemic aged females. PYY(3-36) stimulated, in a dose-dependent manner, in vitro PRL secretion by pituitaries from prepubertal male and female rats. In contrast, systemic administration of PYY(3-36) failed to modify serum PRL levels, whereas central infusion of PYY(3-36) significantly inhibited PRL secretion in prepubertal rats. Finally, PRL secretion was stimulated in aged hyperprolactinaemic female rats by systemic administration of PYY(3-36). In conclusion, the anorexigenic peptide PYY(3-36) may participate in the control of PRL secretion in the prepubertal rat, acting at pituitary (stimulatory effect) and extra-pituitary (likely inhibitory action at the hypothalamus) sites of the lactotrope axis. Moreover, net actions of PYY(3-36) on PRL secretion may depend on the age and prevailing PRL levels.
Collapse
Affiliation(s)
- E Aguilar
- Physiology Section, Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Spain.
| | | | | | | |
Collapse
|
15
|
Gonzales C, Voirol MJ, Giacomini M, Gaillard RC, Pedrazzini T, Pralong FP. The neuropeptide Y Y1 receptor mediates NPY‐induced inhibition of the gonadotrope axis under poor metabolic conditions. FASEB J 2003; 18:137-9. [PMID: 14597564 DOI: 10.1096/fj.03-0189fje] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypothalamic neuropeptide Y (NPY) plays a central role in the control of food intake, energy balance, and modulation of neuroendocrine functions. In particular, an increase in NPY expression participates in the inhibition of the reproductive activity under poor nutritional conditions. The present study was designed to evaluate further the involvement of the Y1 subtype of NPY receptors in these effects. Food intake, body weight gain, and the onset of puberty were studied in groups of wild-type and Y1 deficient mice that were either fed ad libitum or subjected to a 30% restriction in food intake. This moderate feeding restriction induced a similar deficit in body weight gain in wild-type and in Y1 knockout mice. However, although wild-type mice experienced the expected delay of puberty, all mice in the food restriction group and lacking Y1 could go through puberty over the time of the experiment despite decreases in circulating leptin levels and increases in hypothalamic NPY expression. This observation demonstrates that the absence of Y1 impairs the perception of decreasing energy stores by the gonadotrope axis, demonstrating a physiological role for Y1 in the sensing of endogenous metabolic parameters by the hypothalamus.
Collapse
Affiliation(s)
- Christine Gonzales
- Division of Endocrinology, Diabetology and Metabolism, University Hospital, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Estrada KM, Pompolo S, Morris MJ, Tilbrook AJ, Clarke IJ. Neuropeptide Y (NPY) delays the oestrogen-induced luteinizing hormone (LH) surge in the ovariectomized ewe: further evidence that NPY has a predominant negative effect on LH secretion in the ewe. J Neuroendocrinol 2003; 15:1011-20. [PMID: 14622430 DOI: 10.1046/j.1365-2826.2003.01087.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies in rats suggest that neuropeptide Y (NPY) plays a stimulatory role in the generation of the preovulatory luteinizing hormone (LH) surge, via the Y1 receptor. We have investigated this issue using the oestradiol benzoate (EB)-treated ovariectomized (OVX) ewe which is a model for the preovulatory LH surge. A Y1 receptor antagonist (BIBO3304) was infused (25 microg/h) into the third cerebral ventricle (III-V) from 2 h before EB injection for 24 h, and had no effect on the ensuing LH surge. Using in situ hybridization, we then examined expression of NPY mRNA in the arcuate nucleus during the luteal, follicular and oestrous phases of the oestrous cycle, and found that levels were greatest during the luteal phase. Thus, reduced NPY synthesis might be an integral factor in the events leading to the cyclic preovulatory LH surge. This was tested by infusion of NPY (25 microg/h) into the III-V (as above). The NPY infusion delayed the LH surge until the infusion was ceased. High levels of NPY expression during the luteal phase of the oestrous cycle may be caused by progesterone. Thus, we determined whether NPY cells possess progesterone receptors (PR) and whether progesterone treatment up-regulates NPY mRNA expression in the arcuate nucleus. Immunohistochemistry for NPY and PR was performed in OVX, oestrogen-treated ewes, but no NPY cells of the arcuate nucleus were seen to colocalize PR. In situ hybridization for NPY was performed in OVX and OVX ewes treated with progesterone. There was no significant effect of progesterone treatment on NPY mRNA expression in the arcuate nucleus. We conclude that chronically elevated levels of NPY block the preovulatory surge of gonadotropin-releasing hormone/LH secretion in sheep, but high levels of NPY mRNA expression in the luteal phase of the oestrous cycle cannot be explained by an action of progesterone.
Collapse
Affiliation(s)
- K M Estrada
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
17
|
Pralong FP, Gonzales C, Voirol MJ, Palmiter RD, Brunner HR, Gaillard RC, Seydoux J, Pedrazzini T. The neuropeptide Y Y1 receptor regulates leptin-mediated control of energy homeostasis and reproductive functions. FASEB J 2002; 16:712-4. [PMID: 11978737 DOI: 10.1096/fj.01-0754fje] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The orexigenic neurotransmitter neuropeptide Y (NPY) plays a central role in the hypothalamic control of food intake and energy balance. NPY also exerts an inhibition of the gonadotrope axis that could be important in the response to poor metabolic conditions. In contrast, leptin provides an anorexigenic signal to centrally control the body needs in energy. Moreover, leptin contributes to preserve adequate reproductive functions by stimulating the activity of the gonadotrope axis. It is of interest that hypothalamic NPY represents a primary target of leptin actions. To evaluate the importance of the NPY Y1 and Y5 receptors in the downstream pathways modulated by leptin and controlling energy metabolism as well as the activity of the gonadotrope axis, we studied the effects of leptin administration on food intake and reproductive functions in mice deficient for the expression of either the Y1 or the Y5 receptor. Furthermore, the role of the Y1 receptor in leptin resistance was determined in leptin-deficient ob/ob mice bearing a null mutation in the NPY Y1 locus. Results point to a crucial role for the NPY Y1 receptor in mediating the NPY pathways situated downstream of leptin actions and controlling food intake, the onset of puberty, and the maintenance of reproductive functions.
Collapse
Affiliation(s)
- François P Pralong
- Division of Endocrinology, Diabetology and Metabolism, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Parker E, Van Heek M, Stamford A. Neuropeptide Y receptors as targets for anti-obesity drug development: perspective and current status. Eur J Pharmacol 2002; 440:173-87. [PMID: 12007534 DOI: 10.1016/s0014-2999(02)01427-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y is a widely distributed neuropeptide that elicits a plethora of physiological effects via interaction with six different receptors (Y(1)-y(6)). Recent attention has focused on the role of neuropeptide Y in the regulation of energy homeostasis. Neuropeptide Y stimulates food intake, inhibits energy expenditure, increases body weight and increases anabolic hormone levels by activating the neuropeptide Y Y(1) and Y(5) receptors in the hypothalamus. Based on these findings, several neuropeptide Y Y(1) and Y(5) receptor antagonists have been developed recently as potential anti-obesity agents. In addition, mice lacking neuropeptide Y, the neuropeptide Y Y(1) receptor or the neuropeptide Y Y(5) receptor have been generated. The data obtained to date with these newly developed tools suggests that neuropeptide Y receptor antagonists, particularly neuropeptide Y Y(1) receptor antagonists, may be useful anti-obesity agents. However, the redundancy of the neurochemical systems regulating energy homeostasis may limit the effect of ablating a single pathway. In addition, patients in whom the starvation response is activated, such as formerly obese patients who have lost weight or patients with complete or partial leptin deficiency, may be the best candidates for treatment with a neuropeptide Y receptor antagonist.
Collapse
Affiliation(s)
- Eric Parker
- Department of CNS and Cardiovascular Research, Schering-Plough Research Institute, Mail Stop K-15-2-2760, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | |
Collapse
|
19
|
Abstract
Leptin, the product of the obesity gene, is a cytokine-like circulating protein acting as a peripheral satiety signal to the hypothalamus. It was initially described as a secreted product of white adipose cells, but more recent data have demonstrated its expression by endocrine and neuroendocrine tissues like the ovary and the hypothalamus, as well as several anterior pituitary cell types. The effects of leptin on body weight homeostasis are mediated via different hypothalamic neurotransmitters regulating appetite and energy expenditure. In addition, leptin participates to the modulation of the activity of the neuroendocrine thyrotrope, somatotrope, corticotrope and gonadotrope axes. These endocrine effects of leptin have progressively emerged as important physiological functions of this molecule. Its role as a permissive factor for puberty and normal reproductive function in adulthood is becoming widely recognized. In addition, leptin participates in the fine tuning of the corticotrope axis. Thus, by signalling body fat stores to the hypothalamus and other endocrine organs, leptin serves as a metabolic integrator of several neuroendocrine functions. The precise site of action and mode of regulation of the gonadotrope and somatotrope axes by leptin are reviewed.
Collapse
Affiliation(s)
- F P Pralong
- Department of Medicine, University Hospital, Lausanne, Switzerland.
| | | |
Collapse
|