1
|
Kafi Z, Masoudi AA, Torshizi RV, Ehsani A. Copy number variations affecting growth curve parameters in a crossbred chicken population. Gene 2024; 927:148710. [PMID: 38901536 DOI: 10.1016/j.gene.2024.148710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Copy number variations (CNVs) are key structural variations in the genome and may contribute to phenotypic differences. In this study, we used a F2 chicken population created from reciprocal crossing between fast-growing Arian broiler line and Urmia native chickens. The chickens were genotyped by 60 K SNP BeadChip, and PennCNV algorithm was used to detect genome-wide CNVs. The growth curve parameters of W0, k, L, Wf, Wi, ti and average GR were used as phenotypic data. The association between CNV and growth curve parameters was carried out using the CNVRanger R/Bioconductor package. Five CNV regions (CNVRs) were chosen for the validation experiment using qPCR. Gene enrichment analysis was done using WebGestalt. The STRING database was used to search for significant pathways. The results identified 966 CNVs and 600 CNVRs including 468 gains, 67 losses, and 65 both events on autosomal chromosomes. Validation of the CNVRs obtained from the qPCR assay were 79 % consistent with the prediction by PennCNV. A total of 43 significant CNVs were obtained for the seven growth curve parameters. The 416 genes annotated for significant CNVs. Six genes out of 416 genes were most related to growth curve parameters. These genes were LCP2, Dock2, CD80, CYFIP1, NIPA1 and NIPA2. Some of these genes in their biological process were associated with the growth, reproduction and development of cells or organs that ultimately lead to the growth of the body. The results of the study could pave the way for better understanding the molecular process of CNVs and growth curve parameters in birds.
Collapse
Affiliation(s)
- Zeinab Kafi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Alireza Ehsani
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Zheng J, Wang N, Zhang W, Liao Y, Tao T, Chang J, Ye J, Xu F, Wang Q, Jiang L, Liu L. Characterization and functional analysis of novel α-bisabolol synthase (MrBAS) promoter from Matricaria recutita. Int J Biol Macromol 2024; 281:136445. [PMID: 39389512 DOI: 10.1016/j.ijbiomac.2024.136445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Matricaria recutita is widely used in industry and as a medicinal plant because it contains α-bisabolol. Alpha-bisabolol has broad application prospects due to its healthy function and medical value. The activity of the α-bisabolol synthase (MrBAS) promoter determines the expression of the MrBAS gene, which in turn influences the synthesis and accumulation of α-bisabolol. However, the activity and tissue specificity of the MrBAS promoter have not yet been characterized. In this study, a 1327-base pair (bp) region upstream of the MrBAS of the translation start site was cloned from the genome of M. recutita. MrBAS promoter sequence analysis revealed multiple light-responsive elements, and further dark treatment reduced α-bisabolol content in flowers. The α-bisabolol content and MrBAS expression levels in various flower tissues showed a strong correlation. The 5' deletion analysis revealed that the MrBAS promoter sequence could drive β-glucuronidase (GUS) gene expression in Nicotiana benthamiana leaves, with activity decreasing as the fragment shortened. Transgenic experiments demonstrated that the MrBAS promoter could specifically drive GUS gene expression in Arabidopsis anthers, pollen tubes, and petals. Thus, the MrBAS promoter has the potential to be a tool for directing transgene expression specifically in flower organs, offering new research avenues for cultivar development.
Collapse
Affiliation(s)
- Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Nuo Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Tingting Tao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jie Chang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Leiyu Jiang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Li Liu
- Shannan Anrao Township Agricultural and Animal Husbandry Comprehensive Service Center, Shannan 856000, Xizang, China
| |
Collapse
|
3
|
Yan Z, Li K, Li Y, Wang W, Leng B, Yao G, Zhang F, Mu C, Liu X. The ZmbHLH32-ZmIAA9-ZmARF1 module regulates salt tolerance in maize. Int J Biol Macromol 2023; 253:126978. [PMID: 37741480 DOI: 10.1016/j.ijbiomac.2023.126978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
The growth and productivity of maize (Zea mays), along with other crop plants, can be significantly hindered by salt stress. Nevertheless, the precise molecular mechanism underlying salt tolerance in maize has yet to be fully elucidated. Hence, it was attempted to identify ZmIAA9, a member of the maize Aux/IAA gene family, as a positive regulator of salt tolerance in maize, which was accompanied by the increased ROS detoxification and elevated transcript abundances of ROS scavenging genes. Molecular and biochemical assays have provided compelling evidence that ZmbHLH32, a transcription factor belonging to the bHLH family, was capable of binding directly to the promoter region of ZmIAA9, thereby activating its expression. This interaction between ZmbHLH32 and ZmIAA9 could be critical for the regulation of salt tolerance in maize. As expected, overexpression of ZmbHLH32 led to the enhanced salt tolerance. In contrast, decreased salt tolerance was attained after application of knockout mutants of ZmbHLH32. Furthermore, ZmARF1, which could act as a downstream of ZmIAA9, was found to physically interact with ZmIAA9 and repress the expression levels of ROS scavenging genes. Thus, our work uncovers a novel mechanism of ZmbHLH32-ZmIAA9-ZmARF1 module-mediated salt tolerance in maize, which can be exploited for breeding salt-tolerant maize varieties.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Ke Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Yanli Li
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Wenli Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| |
Collapse
|
4
|
Genome-Wide Identification and Expression Analysis of the Zinc Finger Protein Gene Subfamilies under Drought Stress in Triticum aestivum. PLANTS 2022; 11:plants11192511. [PMID: 36235376 PMCID: PMC9572532 DOI: 10.3390/plants11192511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022]
Abstract
The zinc finger protein (ZFP) family is one of plants’ most diverse family of transcription factors. These proteins with finger-like structural domains have been shown to play a critical role in plant responses to abiotic stresses such as drought. This study aimed to systematically characterize Triticum aestivum ZFPs (TaZFPs) and understand their roles under drought stress. A total of 9 TaC2H2, 38 TaC3HC4, 79 TaCCCH, and 143 TaPHD were identified, which were divided into 4, 7, 12, and 14 distinct subgroups based on their phylogenetic relationships, respectively. Segmental duplication dominated the evolution of four subfamilies and made important contributions to the large-scale amplification of gene families. Syntenic relationships, gene duplications, and Ka/Ks result consistently indicate a potential strong purifying selection on TaZFPs. Additionally, TaZFPs have various abiotic stress-associated cis-acting regulatory elements and have tissue-specific expression patterns showing different responses to drought and heat stress. Therefore, these genes may play multiple functions in plant growth and stress resistance responses. This is the first comprehensive genome-wide analysis of ZFP gene families in T. aestivum to elucidate the basis of their function and resistance mechanisms, providing a reference for precise manipulation of genetic engineering for drought resistance in T. aestivum.
Collapse
|
5
|
Anisimova OK, Kochieva EZ, Shchennikova AV, Filyushin MA. Thaumatin-like Protein (TLP) Genes in Garlic (Allium sativum L.): Genome-Wide Identification, Characterization, and Expression in Response to Fusarium proliferatum Infection. PLANTS 2022; 11:plants11060748. [PMID: 35336630 PMCID: PMC8949454 DOI: 10.3390/plants11060748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
Abstract
Plant antifungal proteins include the pathogenesis-related (PR)-5 family of fungi- and other stress-responsive thaumatin-like proteins (TLPs). However, the information on the TLPs of garlic (Allium sativum L.), which is often infected with soil Fusarium fungi, is very limited. In the present study, we identified 32 TLP homologs in the A. sativum cv. Ershuizao genome, which may function in the defense against Fusarium attack. The promoters of A. sativumTLP (AsTLP) genes contained cis-acting elements associated with hormone signaling and response to various types of stress, including those caused by fungal pathogens and their elicitors. The expression of AsTLP genes in Fusarium-resistant and -susceptible garlic cultivars was differently regulated by F. proliferatum infection. Thus, in the roots the mRNA levels of AsTLP7–9 and 21 genes were increased in resistant and decreased in susceptible A. sativum cultivars, suggesting the involvement of these genes in the garlic response to F. proliferatum attack. Our results provide insights into the role of TLPs in garlic and may be useful for breeding programs to increase the resistance of Allium crops to Fusarium infections.
Collapse
|
6
|
Leng ZX, Liu Y, Chen ZY, Guo J, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Cui XY. Genome-Wide Analysis of the DUF4228 Family in Soybean and Functional Identification of GmDUF4228 -70 in Response to Drought and Salt Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:628299. [PMID: 34079564 PMCID: PMC8166234 DOI: 10.3389/fpls.2021.628299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Domain of unknown function 4228 (DUF4228) proteins are a class of proteins widely found in plants, playing an important role in response to abiotic stresses. However, studies on the DUF4228 family in soybean (Glycine max L.) are sparse. In this study, we identified a total of 81 DUF4228 genes in soybean genome, named systematically based on their chromosome distributions. Results showed that these genes were unevenly distributed on the 20 chromosomes of soybean. The predicted soybean DUF4228 proteins were identified in three groups (Groups I-III) based on a maximum likelihood phylogenetic tree. Genetic structure analysis showed that most of the GmDUF4228 genes contained no introns. Expression profiling showed that GmDUF4228 genes were widely expressed in different organs and tissues in soybean. RNA-seq data were used to characterize the expression profiles of GmDUF4228 genes under the treatments of drought and salt stresses, with nine genes showing significant up-regulation under both drought and salt stress further functionally verified by promoter (cis-acting elements) analysis and quantitative real-time PCR (qRT-PCR). Due to its upregulation under drought and salt stresses based on both RNA-seq and qRT-PCR analyses, GmDUF4228-70 was selected for further functional analysis in transgenic plants. Under drought stress, the degree of leaf curling and wilting of the GmDUF4228-70-overexpressing (GmDUF4228-70-OE) line was lower than that of the empty vector (EV) line. GmDUF4228-70-OE lines also showed increased proline content, relative water content (RWC), and chlorophyll content, and decreased contents of malondialdehyde (MDA), H2O2, and O2-. Under salt stress, the changes in phenotypic and physiological indicators of transgenic plants were the same as those under drought stress. In addition, overexpression of the GmDUF4228-70 gene promoted the expression of marker genes under both drought and salt stresses. Taken together, the results indicated that GmDUF4228 genes play important roles in response to abiotic stresses in soybean.
Collapse
Affiliation(s)
- Zhi-Xin Leng
- College of Life Sciences/College of Agronomy, Jilin Agricultural University, Changchun, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ying Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhan-Yu Chen
- College of Life Sciences/College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yong-Bin Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - You-Zhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhao-Shi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xi-Yan Cui
- College of Life Sciences/College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Sanclemente MA, Ma F, Liu P, Della Porta A, Singh J, Wu S, Colquhoun T, Johnson T, Guan JC, Koch KE. Sugar modulation of anaerobic-response networks in maize root tips. PLANT PHYSIOLOGY 2021; 185:295-317. [PMID: 33721892 PMCID: PMC8133576 DOI: 10.1093/plphys/kiaa029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/28/2020] [Indexed: 05/11/2023]
Abstract
Sugar supply is a key component of hypoxia tolerance and acclimation in plants. However, a striking gap remains in our understanding of mechanisms governing sugar impacts on low-oxygen responses. Here, we used a maize (Zea mays) root-tip system for precise control of sugar and oxygen levels. We compared responses to oxygen (21 and 0.2%) in the presence of abundant versus limited glucose supplies (2.0 and 0.2%). Low-oxygen reconfigured the transcriptome with glucose deprivation enhancing the speed and magnitude of gene induction for core anaerobic proteins (ANPs). Sugar supply also altered profiles of hypoxia-responsive genes carrying G4 motifs (sources of regulatory quadruplex structures), revealing a fast, sugar-independent class followed more slowly by feast-or-famine-regulated G4 genes. Metabolite analysis showed that endogenous sugar levels were maintained by exogenous glucose under aerobic conditions and demonstrated a prominent capacity for sucrose re-synthesis that was undetectable under hypoxia. Glucose abundance had distinctive impacts on co-expression networks associated with ANPs, altering network partners and aiding persistence of interacting networks under prolonged hypoxia. Among the ANP networks, two highly interconnected clusters of genes formed around Pyruvate decarboxylase 3 and Glyceraldehyde-3-phosphate dehydrogenase 4. Genes in these clusters shared a small set of cis-regulatory elements, two of which typified glucose induction. Collective results demonstrate specific, previously unrecognized roles of sugars in low-oxygen responses, extending from accelerated onset of initial adaptive phases by starvation stress to maintenance and modulation of co-expression relationships by carbohydrate availability.
Collapse
Affiliation(s)
- Maria-Angelica Sanclemente
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht 3584CH, The Netherlands
- Author for communication:
| | - Fangfang Ma
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Liu
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Adriana Della Porta
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Jugpreet Singh
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Shan Wu
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Thomas Colquhoun
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Environmental Horticulture, University of Florida, Gainesville, Florida, USA
| | - Timothy Johnson
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Environmental Horticulture, University of Florida, Gainesville, Florida, USA
| | - Jiahn-Chou Guan
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Karen E Koch
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
8
|
Hao L, Shi S, Guo H, Li M, Hu P, Wei Y, Feng Y. Genome-wide identification and expression profiles of ERF subfamily transcription factors in Zea mays. PeerJ 2020; 8:e9551. [PMID: 32742811 PMCID: PMC7370932 DOI: 10.7717/peerj.9551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
The Ethylene-Response Factor (ERF) subfamily transcription factors (TFs) belong to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily and play a vital role in plant growth and development. However, identification and analysis of the ERF subfamily genes in maize have not yet been performed at genome-wide level. In this study, a total of 76 ERF subfamily TFs were identified and were found to be unevenly distributed on the maize chromosomes. These maize ERF (ZmERF) TFs were classified into six groups, namely groups B1 to B6, based on phylogenetic analysis. Synteny analysis showed that 50, 54, and 58 of the ZmERF genes were orthologous to those in rice, Brachypodium, and Sorghum, respectively. Cis-element analysis showed that elements related to plant growth and development, hormones, and abiotic stress were identified in the promoter region of ZmERF genes. Expression profiles suggested that ZmERF genes might participate in plant development and in response to salinity and drought stresses. Our findings lay a foundation and provide clues for understanding the biological functions of ERF TFs in maize.
Collapse
Affiliation(s)
- Lidong Hao
- College of Agriculture, Xinjiang Agriculture University, Urumqi, China.,College of Agriculture and Hydraulic Engineering, Sui Hua University, Suihua, China
| | - Shubing Shi
- College of Agriculture, Xinjiang Agriculture University, Urumqi, China
| | - Haibin Guo
- College of Agriculture and Hydraulic Engineering, Sui Hua University, Suihua, China
| | - Ming Li
- School of Economics and Management, Sui Hua University, Suihua, China
| | - Pan Hu
- College of Agriculture and Hydraulic Engineering, Sui Hua University, Suihua, China
| | - Yadong Wei
- College of Agriculture, Xinjiang Agriculture University, Urumqi, China
| | - Yanfei Feng
- College of Agriculture and Hydraulic Engineering, Sui Hua University, Suihua, China
| |
Collapse
|
9
|
Chen S, Zhao H, Luo T, Liu Y, Nie X, Li H. Characteristics and Expression Pattern of MYC Genes in Triticum aestivum, Oryza sativa, and Brachypodium distachyon. PLANTS (BASEL, SWITZERLAND) 2019; 8:E274. [PMID: 31398900 PMCID: PMC6724133 DOI: 10.3390/plants8080274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
Myelocytomatosis oncogenes (MYC) transcription factors (TFs) belong to basic helix-loop-helix (bHLH) TF family and have a special bHLH_MYC_N domain in the N-terminal region. Presently, there is no detailed and systematic analysis of MYC TFs in wheat, rice, and Brachypodium distachyon. In this study, 26 TaMYC, 7 OsMYC, and 7 BdMYC TFs were identified and their features were characterized. Firstly, they contain a JAZ interaction domain (JID) and a putative transcriptional activation domain (TAD) in the bHLH_MYC_N region and a BhlH region in the C-terminal region. In some cases, the bHLH region is followed by a leucine zipper region; secondly, they display tissue-specific expression patterns: wheat MYC genes are mainly expressed in leaves, rice MYC genes are highly expressed in stems, and B. distachyon MYC genes are mainly expressed in inflorescences. In addition, three types of cis-elements, including plant development/growth-related, hormone-related, and abiotic stresses-related were identified in different MYC gene promoters. In combination with the previous studies, these results indicate that MYC TFs mainly function in growth and development, as well as in response to stresses. This study laid a foundation for the further functional elucidation of MYC genes.
Collapse
Affiliation(s)
- Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Hongyan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Tengli Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Yue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China.
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China.
| |
Collapse
|
10
|
Zaidi PH, Rashid Z, Vinayan MT, Almeida GD, Phagna RK, Babu R. QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. PLoS One 2015; 10:e0124350. [PMID: 25884393 PMCID: PMC4401703 DOI: 10.1371/journal.pone.0124350] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/09/2015] [Indexed: 11/18/2022] Open
Abstract
Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate rapid introgression of waterlogging tolerance in tropical maize breeding programs.
Collapse
Affiliation(s)
- Pervez Haider Zaidi
- International Maize and Wheat Improvement Center (CIMMYT)—Asia, C/o International Crop Research Institute for Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Zerka Rashid
- International Maize and Wheat Improvement Center (CIMMYT)—Asia, C/o International Crop Research Institute for Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Madhumal Thayil Vinayan
- International Maize and Wheat Improvement Center (CIMMYT)—Asia, C/o International Crop Research Institute for Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | | | - Raman Babu
- International Maize and Wheat Improvement Center (CIMMYT)—Asia, C/o International Crop Research Institute for Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- * E-mail:
| |
Collapse
|
11
|
Niemeyer J, Machens F, Fornefeld E, Keller-Hüschemenger J, Hehl R. Factors required for the high CO2 specificity of the anaerobically induced maize GapC4 promoter in transgenic tobacco. PLANT, CELL & ENVIRONMENT 2011; 34:220-9. [PMID: 20880205 DOI: 10.1111/j.1365-3040.2010.02237.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Flooding, a natural cause of anaerobiosis, is often accompanied by high CO(2) concentrations in the flood water. Plants need to respond to these environmental conditions. Strong anaerobic reporter gene activity in tobacco (Nicotiana tabacum) controlled by the glycolytic glyceraldehyde-3-phosphate dehydrogenase (GapC4) promoter from maize (Zea mays) depends on the presence of CO(2) and light. To identify factors required for CO(2) regulated gene expression, promoter deletions fused to the β-glucuronidase reporter gene were studied in transgenic tobacco. Deletion of a 40 bp fragment directly upstream of the TATA box leads to increased anaerobic reporter gene activity both, in the presence and absence of CO(2). This deletion does not affect light specific anaerobic expression. A positive correlation between increasing CO(2) concentrations and gene activity is observed. Electrophoretic mobility shift experiments indicate that tobacco nuclear extracts harbour proteins that bind to part of the 40 bp fragment. Database assisted as well as experimental analysis reveal a role for AP2/EREBP transcription factors for conferring the high CO(2) specificity to the GapC4 promoter in tobacco leaves. This work highlights the importance for plants to respond to high environmental CO(2) concentrations under anaerobic conditions.
Collapse
Affiliation(s)
- Julia Niemeyer
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
12
|
Liu Q, Zhang Q, Burton RA, Shirley NJ, Atwell BJ. Expression of vacuolar H+-pyrophosphatase (OVP3) is under control of an anoxia-inducible promoter in rice. PLANT MOLECULAR BIOLOGY 2010; 72:47-60. [PMID: 19763843 DOI: 10.1007/s11103-009-9549-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 09/07/2009] [Indexed: 05/08/2023]
Abstract
Vacuolar H(+)-pyrophosphatase (V-PPase) expression increases in a number of abiotic stresses and is thought to play a role in adaptation to abiotic stresses. This paper reports on the regulation of six V-PPase genes in rice (Oryza sativa L.) coleoptiles under anoxia, using flood tolerant and intolerant cultivars to test our hypothesis. Quantitative PCR analysis showed that one vacuolar H(+)-pyrophosphatase (OVP3) was induced by anoxia, particularly in flood-tolerant rice. Regulation of OVP3 expression under anoxia was investigated by analysing putative OVP promoters. The putative OVP3 promoter contained more previously identified anoxia-inducible motifs than the putative promoters of the other five OVP genes. GUS activity in transgenic rice plants containing the OVP3 promoter region linked to the GUS reporter gene was induced only by anoxia. Salt and cold treatments had little effect on OVP3 promoter-driven GUS expression when compared to the anoxic treatment.
Collapse
Affiliation(s)
- Qinxiang Liu
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | | | | | | |
Collapse
|
13
|
Kole C, Michler CH, Abbott AG, Hall TC. Levels and Stability of Expression of Transgenes. TRANSGENIC CROP PLANTS 2010. [PMCID: PMC7122870 DOI: 10.1007/978-3-642-04809-8_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that in a given cell, at a particular time, only a fraction of the entire genome is expressed. Expression of a gene, nuclear, or organellar starts with the onset of transcription and ends in the synthesis of the functional protein. The regulation of gene expression is a complex process that requires the coordinated activity of different proteins and nucleic acids that ultimately determine whether a gene is transcribed, and if transcribed, whether it results in the production of a protein that develops a phenotype. The same also holds true for transgenic crops, which lie at the very core of insert design. There are multiple checkpoints at which the expression of a gene can be regulated and controlled. Much of the emphasis of studies related to gene expression has been on regulation of gene transcription, and a number of methods are used to effect the control of gene expression. Controlling transgene expression for a commercially valuable trait is necessary to capture its value. Many gene functions are either lethal or produce severe deformity (resulting in loss of value) if over-expressed. Thus, expression of a transgene at a particular site or in response to a particular elicitor is always desirable.
Collapse
Affiliation(s)
- Chittaranjan Kole
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Charles H. Michler
- NSF I/UCRC Center for Tree Genetics, Hardwood Tree Improvement and Regeneration Center at Purdue University, West Lafayette, IN 47907 USA
| | - Albert G. Abbott
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Timothy C. Hall
- Institute of Developmental & Molecular Biology Department of Biology, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
14
|
Hunter DA, Watson LM. The harvest-responsive region of the Asparagus officinalis sparagine synthetase promoter reveals complexity in the regulation of the harvest response. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1212-1223. [PMID: 32688868 DOI: 10.1071/fp08161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/15/2008] [Indexed: 06/11/2023]
Abstract
The activity of a 1915-bp asparagine synthetase (AS) promoter of Asparagus officinalis L. was induced in mature leaves of transgenic Arabidopsis thaliana (L.) Heynh. plants when the leaves were detached and held in water for 24 h. To understand this induction by harvest, variants of the AS promoter were linked to the β-glucuronidase GUS reporter gene. Harvest induction in the leaves required detachment and was not simply a wound response. Two regions in the AS promoter (Region A, -640 to -523; Region B, -524 to -383) were independently able to confer harvest response to the otherwise unresponsive -383AS (minimal) promoter. Region A was studied in further detail. Various truncations, deletions, or nucleotide substitutions of Region A affected activity and fold induction of the minimal promoter. However, no harvest-inducible cis-acting element within Region A was identified. Although the minimal promoter contained a dehydration-responsive element and ACGT elements similar to ABA-responsive regulatory motifs these were not needed by the upstream regulatory regions for directing harvest response. When four copies of Region A were linked to the minimal promoter it became highly active in leaves before harvest. Deletions within Region A showed that it required its complete 117 bp for driving harvest response, yet the region cannot simply be thought of as a harvest-responsive module, since its concatemerisation led to constitutive expression.
Collapse
Affiliation(s)
- Donald A Hunter
- New Zealand Institute for Crop and Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand
| | - Lyn M Watson
- New Zealand Institute for Crop and Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand
| |
Collapse
|
15
|
Mohanty B, Krishnan SPT, Swarup S, Bajic VB. Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. ANNALS OF BOTANY 2005; 96:669-81. [PMID: 16027132 PMCID: PMC4247034 DOI: 10.1093/aob/mci219] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 12/16/2004] [Accepted: 01/31/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Plants can suffer from oxygen limitation during flooding or more complete submergence and may therefore switch from Kreb's cycle respiration to fermentation in association with the expression of anaerobically inducible genes coding for enzymes involved in glycolysis and fermentation. The aim of this study was to clarify mechanisms of transcriptional regulation of these anaerobic genes by identifying motifs shared by their promoter regions. METHODS Statistically significant motifs were detected by an in silico method from 13 promoters of anaerobic genes. The selected motifs were common for the majority of analysed promoters. Their significance was evaluated by searching for their presence in transcription factor-binding site databases (TRANSFAC, PlantCARE and PLACE). Using several negative control data sets, it was tested whether the motifs found were specific to the anaerobic group. KEY RESULTS Previously, anaerobic response elements have been identified in maize (Zea mays) and arabidopsis (Arabidopsis thaliana) genes. Known functional motifs were detected, such as GT and GC motifs, but also other motifs shared by most of the genes examined. Five motifs detected have not been found in plants hitherto but are present in the promoters of animal genes with various functions. The consensus sequences of these novel motifs are 5'-AAACAAA-3', 5'-AGCAGC-3', 5'-TCATCAC-3', 5'-GTTT(A/C/T)GCAA-3' and 5'-TTCCCTGTT-3'. CONCLUSIONS It is believed that the promoter motifs identified could be functional by conferring anaerobic sensitivity to the genes that possess them. This proposal now requires experimental verification.
Collapse
Affiliation(s)
- Bijayalaxmi Mohanty
- Knowledge Extraction Laboratory, Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613.
| | | | | | | |
Collapse
|
16
|
Sell S, Hehl R. Functional dissection of a small anaerobically induced bZIP transcription factor from tomato. EUROPEAN JOURNAL OF BIOCHEMISTRY 2004; 271:4534-44. [PMID: 15560794 DOI: 10.1111/j.1432-1033.2004.04413.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A small anaerobically induced tomato transcription factor was isolated from a subtractive library. This factor, designated ABZ1 (anaerobic basic leucine zipper), is anaerobically induced in fruits, leaves and roots and encodes a nuclear localized protein. ABZ1 shares close structural and sequence homology with the S-family of small basic leucine zipper (bZIP) transcription factors that are implicated in stress response. Nuclear localization of ABZ1 is mediated by the basic region and occurs under normoxic conditions. ABZ1 binds to G-box-like target sites as a dimer. Binding can be abolished by heterodimerization with a truncated protein retaining the leucine zipper but lacking the DNA binding domain. The protein binds in a sequence specific manner to the CaMV 35S promoter which is down regulated when ABZ1 is coexpressed. This correlates with the anaerobic down regulation of the 35S promoter in tomato and tobacco. These results may suggest that small bZIP proteins are involved in the negative regulation of gene expression under anaerobic conditions.
Collapse
Affiliation(s)
- Simone Sell
- Institut für Genetik, Technische Universität Braunschweig, Germany
| | | |
Collapse
|