1
|
Soond SM, Kozhevnikova MV, Frolova AS, Savvateeva LV, Plotnikov EY, Townsend PA, Han YP, Zamyatnin AA. Lost or Forgotten: The nuclear cathepsin protein isoforms in cancer. Cancer Lett 2019; 462:43-50. [PMID: 31381961 DOI: 10.1016/j.canlet.2019.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
While research into the role of cathepsins has been progressing at an exponential pace over the years, research into their respective isoform proteins has been less frenetic. In view of the functional and biological potential of such protein isoforms in model systems for cancer during their initial discovery, much later they have offered a new direction in the field of cathepsin basic and applied research. Consequently, the analysis of such isoforms has laid strong foundations in revealing other important regulatory aspects of the cathepsin proteins in general. In this review article, we address these key aspects of cathepsin isoform proteins, with particular emphasis on how they have shaped what is now known in the context of nuclear cathepsin localization and what potential these hold as nuclear-based therapeutic targets in cancer.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation.
| | - Maria V Kozhevnikova
- Hospital Therapy Department № 1, Sechenov First Moscow State Medical University , 6-1 Bolshaya Pirogovskaya str, Moscow, 119991, Russian Federation.
| | - Anastasia S Frolova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation.
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| | - Paul A Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre; and the NIHR Manchester Biomedical Research Centre, Manchester, UK.
| | - Yuan-Ping Han
- College of Life Sciences Sichuan University, Chengdu, Sichuan, PO 6100064, People's Republic of China.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| |
Collapse
|
2
|
Ojetti V, Persiani R, Cananzi FCM, Sensi C, Piscaglia AC, Saulnier N, Biondi A, Gasbarrini A, D'Ugo D. cDNA-microarray analysis as a new tool to predict lymph node metastasis in gastric cancer. World J Surg 2015; 38:2058-64. [PMID: 24696059 DOI: 10.1007/s00268-014-2529-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aim of the present study was to investigate whether microarray gene expression analysis can be used to predict lymph node status in gastric cancer. METHODS Twenty-nine patients undergoing gastrectomy for cancer were enrolled and subdivided according to the pathologic nodal involvement of their disease (N+ vs. N0). Molecular profiling was performed by cDNA microarray on tumor tissue and healthy mucosa. Data were processed to identify differently expressed genes. Selected genes were categorized with gene ontology. RESULTS Compared to healthy gastric mucosa, 52 genes were differently expressed in N+ patients, and 50 genes in N0 patients. Forty-five genes were similarly regulated in N+ and N0 patients, whereas 12 genes were differently expressed between N+ and N0 patients. Seven genes were exclusively expressed in N+ patients: Egr-1 was upregulated; Claudin-18, AKR1C2, Cathepsin E, CA II, TFF 1, and progastricsin were downregulated. Five genes were exclusively expressed in N0 patients: Complement C5 receptor 1, PLA2/VII, and MMP- 9 were upregulated; MAO-A and ID-4 were downregulated. CONCLUSIONS Microarray analysis could be a valuable tool to identify genes associated with lymph node metastasis in gastric cancer. This technique could improve the selection of patients with locally advanced disease who are candidates for extended lymph node dissection, multimodal treatment options, or alternative therapeutic strategies.
Collapse
Affiliation(s)
- V Ojetti
- Department of Internal Medicine, Catholic University of Rome, Largo A. Gemelli 8, 00168, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Puizdar V, Zajc T, Žerovnik E, Renko M, Pieper U, Eswar N, Šali A, Dolenc I, Turk V. Biochemical characterization and structural modeling of human cathepsin E variant 2 in comparison to the wild-type protein. Biol Chem 2012; 393:177-86. [PMID: 22718633 PMCID: PMC4111641 DOI: 10.1515/hsz-2011-0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/19/2011] [Indexed: 11/15/2022]
Abstract
Cathepsin E splice variant 2 appears in a number of gastric carcinomas. Here we report detecting this variant in HeLa cells using polyclonal antibodies and biotinylated inhibitor pepstatin A. An overexpression of GFP fusion proteins of cathepsin E and its splice variant within HEK-293T cells was performed to show their localization. Their distribution under a fluorescence microscope showed that they are colocalized. We also expressed variants 1 and 2 of cathepsins E, with propeptide and without it, in Escherichia coli. After refolding from the inclusion bodies, the enzymatic activity and circular dichroism spectra of the splice variant 2 were compared to those of the wild-type mature active cathepsins E. While full-length cathepsin E variant 1 is activated at acid pH, the splice variant remains inactive. In contrast to the active cathepsin E, the splice variant 2 predominantly assumes β-sheet structure, prone to oligomerization, at least under in vitro conditions, as shown by atomic force microscopy as shallow disk-like particles. A comparative structure model of splice variant 2 was computed based on its alignment to the known structure of cathepsin E intermediate (Protein Data Bank code 1TZS) and used to rationalize its conformational properties and loss of activity.
Collapse
Affiliation(s)
- Vida Puizdar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Tajana Zajc
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Miha Renko
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences at UCSF, Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF MC 2552, Byers Hall, 1700 4th Street, Suite 503 B, San Francisco, CA 94158, USA
| | - Narayanan Eswar
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences at UCSF, Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF MC 2552, Byers Hall, 1700 4th Street, Suite 503 B, San Francisco, CA 94158, USA
| | - Andrej Šali
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences at UCSF, Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF MC 2552, Byers Hall, 1700 4th Street, Suite 503 B, San Francisco, CA 94158, USA
| | - Iztok Dolenc
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
The aspartic protease napsin A suppresses tumor growth independent of its catalytic activity. J Transl Med 2008; 88:256-63. [PMID: 18195689 DOI: 10.1038/labinvest.3700718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Members of the aspartic protease family have been implicated in cancer progression. The aspartic protease napsin A is expressed in type II cells of the lung, where it is involved in the processing of surfactant protein B (SP-B). Napsin A is also expressed in kidney, where its function is unknown. Here, we examined napsin A mRNA expression in human kidney tissues using in situ hybridization. Whereas strong napsin A mRNA expression was observed in kidney proximal tubules, expression was detected in only one of 29 renal cell carcinomas. This result is consistent with previous observations of loss of napsin A expression in high-grade lung adenocarcinomas. We re-expressed napsin A in the tumorigenic HEK293 kidney cell line and examined the phenotype of stably transfected cells. Napsin A-expressing HEK293 cells showed an altered phenotype characterized by formation of cyst-like structures in three-dimensional collagen cultures. Napsin A-expressing cells also showed reduced capacity for anchorage-independent growth and formed tumors in SCID mice with a lower efficiency and slower onset compared to vector-transfected control cells. Mutation of one of the aspartic acid residues in the napsin A catalytic site inactivated enzymatic activity, but did not influence the ability to suppress colony formation in soft agar and tumor formation. The mutation of the catalytic site did not affect processing, glycosylation or intracellular localization of napsin A. These data show that napsin A inhibits tumor growth of HEK293 cells by a mechanism independent of its catalytic activity.
Collapse
|
5
|
Bode S, Peters C, Deussing JM. Placental cathepsin M is alternatively spliced and exclusively expressed in the spongiotrophoblast layer. ACTA ACUST UNITED AC 2005; 1731:160-7. [PMID: 16297992 DOI: 10.1016/j.bbaexp.2005.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 09/16/2005] [Accepted: 10/11/2005] [Indexed: 11/19/2022]
Abstract
Cathepsin M and cathepsin-3 are cysteine peptidases expressed exclusively in the murine placenta. Their expression increases continuously from 11.5 dpc until the end of gestation. The cathepsin M gene consists of 8 exons and 7 introns covering 6 kb of genomic DNA on mouse chromosome 13. Multiple variants of CTSM were identified which display alternative splicing of exon 2 or exon 7. Alternative splicing of exon 2 does not affect the translated region of CTSM whereas aberrant splicing of exon 7 will results in enzymatically inactive versions of CTSM which still might retain inhibitory activity towards cysteine peptidases. Besides two defined major transcription start sites the putative promoter region comprises of a TATA-box and a relatively low (41%) G+C content reflecting its highly specific spatial and temporal expression pattern. Similar features are found within the promoter region of CTS3 which is highly homologous to CTSM. Both cathepsin M and -3 expression are confined to the spongiotrophoblast layer of the mouse placenta an expression pattern which is unique among cysteine peptidases located within the cluster of cathepsin J-like peptidases on mouse chromosome 13.
Collapse
Affiliation(s)
- Salima Bode
- Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 17, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
6
|
Chain BM, Free P, Medd P, Swetman C, Tabor AB, Terrazzini N. The expression and function of cathepsin E in dendritic cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:1791-800. [PMID: 15699105 DOI: 10.4049/jimmunol.174.4.1791] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cathepsin E is an aspartic proteinase that has been implicated in Ag processing within the class II MHC pathway. In this study, we document the presence of cathepsin E message and protein in human myeloid dendritic cells, the preeminent APCs of the immune system. Cathepsin E is found in a perinuclear compartment, which is likely to form part of the endoplasmic reticulum, and also a peripheral compartment just beneath the cell membrane, with a similar distribution to that of Texas Red-dextran within 2 min of endocytosis. To investigate the function of cathepsin E in processing, a new soluble targeted inhibitor was synthesized by linking the microbial aspartic proteinase inhibitor pepstatin to mannosylated BSA via a cleavable disulfide linker. This inhibitor was shown to block cathepsin D/E activity in cell-free assays and within dendritic cells. The inhibitor blocked the ability of dendritic cells from wild-type as well as cathepsin D-deficient mice to present intact OVA, but not an OVA-derived peptide, to cognate T cells. The data therefore support the hypothesis that cathepsin E has an important nonredundant role in the class II MHC Ag processing pathway within dendritic cells.
Collapse
Affiliation(s)
- Benjamin M Chain
- Department of Immunology and Molecular Pathology, University College London, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
7
|
Yee CSK, Yao Y, Li P, Klemsz MJ, Blum JS, Chang CH. Cathepsin E: A Novel Target for Regulation by Class II Transactivator. THE JOURNAL OF IMMUNOLOGY 2004; 172:5528-34. [PMID: 15100295 DOI: 10.4049/jimmunol.172.9.5528] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aspartic proteinase cathepsin E (CatE) has been implicated in Ag processing. In this study we report that CatE expression is negatively regulated by the MHC class II transactivator (CIITA). CIITA-deficient murine and human B cells expressed greater CatE than wild-type B cells, whereas overexpression of CIITA in a human gastric carcinoma cell line, AGS, resulted in decreased CatE mRNA and protein. AGS cells expressing CIITA also exhibited decreased processing of OVA Ag. Inhibition of CatE expression is specific to the type III CIITA isoform and maps to the acidic and proline/serine/threonine-rich (PST) protein domains of CIITA. We found that CatE expression is inducible by PU.1 and p300, and that this induction can be reversed by CIITA. These findings demonstrate a novel phenomenon: regulation of CatE Ag processing by CIITA in an isoform-dependent manner.
Collapse
Affiliation(s)
- Christina S K Yee
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|