1
|
Bharti S, Vadlamudi HC. A strategic review on the involvement of receptors, transcription factors and hormones in acne pathogenesis. J Recept Signal Transduct Res 2020; 41:105-116. [PMID: 32787477 DOI: 10.1080/10799893.2020.1805626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acne vulgaris is a very common pilosebaceous inflammatory disease occurring primarily on the face and also rare on the upper arms, trunk, and back, which is caused by Propionibacterium, Staphylococcus, Corynebacterium, and other species. Pathophysiology of acne comprises of irregular keratinocyte proliferation, differentiation, increased sebum output, bacterial antigens and cytokines induced inflammatory response. Treatment of acne requires proper knowledge on the pathophysiology then only the clinician can come out with a proper therapeutic dosage regimen. Understanding the pathophysiology not only includes the mechanism but also involvement of receptors. Thus, this review is framed in such a way that the authors have focused on the disease acne vulgaris, pathophysiology, transcription factors viz. the Forkhead Box O1 (FoxO1) Transcription Factor, hormones like androgens and receptors such as Histamine receptors, Retinoic receptor, Fibroblast growth factor receptors, Toll like receptor, Androgen receptor, Liver X-receptor, Melanocortin receptor, Peroxisome proliferator-activated receptor and epidermal growth factor receptors involvement in the progression of acne vulgaris.
Collapse
Affiliation(s)
- Sneha Bharti
- Department of Pharmaceutics, Acharya & BM Reddy College of Pharmacy, Bangalore, India
| | | |
Collapse
|
2
|
Kougioumtsidou N, Vavoulidis E, Nasioutziki M, Symeonidou M, Pratilas GC, Mareti E, Petousis S, Chatzikyriakidou A, Grimbizis G, Theodoridis T, Miliaras D, Dinas K, Zepiridis L. DNA methylation patterns of RAR-β2 and RASSF1A gene promoters in FNAB samples from Greek population with benign or malignant breast lesions. Diagn Cytopathol 2020; 49:153-164. [PMID: 32530576 DOI: 10.1002/dc.24513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/27/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Promoter hypermethylation is common in Breast Cancer (BC) with studies mainly in histological specimens showing frequent methylation of tumor suppressor genes (TSGs) compared with normal tissues. The aim of this study was to estimate the frequency of promoter methylation of RAR-β2 and RASSF1A genes in breast FNAB material aiming to evaluate the methylation status of these two genes as biomarker for detecting BC in Greek population. METHODS FNAB material from 104 patients was collected for cytological evaluation and epigenetic analysis. DNA was extracted and subjected to bisulfite conversion. A methylation-specific PCR was carried out and the final products were separated with electrophoresis in 2% agarose gels. RESULTS From 104 samples, RASSF1A hypermethylation was observed in 78 (75%) and RAR-β2 hypermethylation in 64 (61.6%). 84% and 78% of the cases diagnosed with breast malignancy (n = 50) were methylated for RASSF1A and RAR-β2, respectively. Methylated RASSF1A and RAR-β2 were also detected in 88.3% and 76.5% in samples diagnosed as suspicious for malignancy (n = 17) and in 57.2% of samples diagnosed with atypia (n = 14). The Odds Ratio for breast malignancy was 4.545 in patients with RASSF1A hypermethylation and 9.167 in patients with RAR-β2 hypermethylation underlying their promoter's methylation positive correlation with breast malignancy. CONCLUSION To optimize the sensitivity and specificity of this epigenetic setting, more TSGs related to BC should be gradually imported in our evaluated methylation panel and be validated in a larger study sample with the aim that the obtained epigenetic profiles will provide clinicians with valuable tools for management of BC patients in Greece.
Collapse
Affiliation(s)
- Niki Kougioumtsidou
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Vavoulidis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Maria Nasioutziki
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Marianthi Symeonidou
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Chrysostomos Pratilas
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Mareti
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stamatios Petousis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Anthoula Chatzikyriakidou
- Faculty of Medicine, Laboratory of Medical Biology-Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gregorios Grimbizis
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Theodoridis
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Dimosthenis Miliaras
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Dinas
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Leonidas Zepiridis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Marchwicka A, Cunningham A, Marcinkowska E, Brown G. Therapeutic use of selective synthetic ligands for retinoic acid receptors: a patent review. Expert Opin Ther Pat 2016; 26:957-71. [PMID: 27336223 DOI: 10.1080/13543776.2016.1205586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Differentiation therapy using all-trans retinoic acid (ATRA) revolutionised the treatment of acute promyelocytic leukaemia to such an extent that it is now one of the most curable types of leukaemia, with ATRA and anthracycline-based chemotherapy providing cure rates above 80%. Isotretinoin is used to treat chronic acne. Here, we examine the information described in recent patents and the extent to which new findings are influencing extending retinoid-based differentiation therapy to other cancers, as well as the development of new therapies for other disorders. AREAS COVERED A search has been performed on the literature and worldwide patents filed during 2014 to the present time, focusing on synthetic agonists and antagonists of retinoic acid receptors and novel compositions for the delivery of these agents. EXPERT OPINION New potential therapeutic applications have been described, including lung, breast and head and neck cancers, T cell lymphoma and neurodegenerative, metabolic, ophthalmic, muscle, and inflammatory disorders. Recent patents have described the means to maximise retinoid activity. Two decades of efforts to extend retinoid-based therapies have been disappointing and new synthetic retinoids, target diseases and modes of delivery may well resolve this long standing issue.
Collapse
Affiliation(s)
- Aleksandra Marchwicka
- a Laboratory of Protein Biochemistry, Faculty of Biotechnology , University of Wroclaw , Wroclaw , Poland
| | - Alan Cunningham
- b Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK
| | - Ewa Marcinkowska
- a Laboratory of Protein Biochemistry, Faculty of Biotechnology , University of Wroclaw , Wroclaw , Poland
| | - Geoffrey Brown
- c Institute of Clinical Sciences, College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK
| |
Collapse
|
4
|
Song X, Shi K, Zhou SJ, Yu DP, Liu Z, Han Y. Clinicopathological significance and a potential drugtarget of RARβ in non-small-cell lung carcinoma: a meta-analysis and a systematic review. Drug Des Devel Ther 2016; 10:1345-54. [PMID: 27103788 PMCID: PMC4827914 DOI: 10.2147/dddt.s96766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in men worldwide. Aberrant RARβ promoter methylation has been frequently investigated in non-small-cell lung carcinoma (NSCLC), the most common form of lung cancer. The aim of present study was to carry out a meta-analysis and a systematic review to evaluate clinicopathological significance of RARβ promoter hypermethylation in NSCLC. A systematic literature search was carried out. The data were extracted and assessed by two reviewers independently. The Cochrane software Review Manager 5.2 was used to conduct the review. Odds ratios (ORs) with 95% corresponding confidence intervals (CIs) were calculated. A total of 18 relevant articles were available for meta-analysis which included 1,871 participants. The frequency of RARβ hypermethylation was significantly increased in NSCLC than in nonmalignant lung tissue, and the pooled OR was 5.69 (P<0.00001). RARβ hypermethylation was significantly more frequently observed in adenocarcinoma (AC) than in squamous cell carcinoma (SCC), and the pooled OR was 1.47 (P=0.005). Hypermethylation of RARβ gene in NSCLC was 2.46 times higher in smoking than in nonsmoking individuals, and the pooled OR was 2.46 (P=0.0002). RARβ hypermethylation rate was not significantly correlated with stage of the disease and sex. RARβ gene methylation status was not associated with prognosis of patients with NSCLC. In conclusion, RARβ promoter hypermethylation significantly increased in NSCLC than in non-neoplastic lung tissue and is predominant in AC, suggesting that RARβ methylation contributes to the development of NSCLC, especially AC. RARβ gene is a potential novel target for development of personalized therapy in patients with NSCLC, and is promising in restoration of retinoic acid-target gene induction via demethylation of RARβ1' promoter.
Collapse
Affiliation(s)
- Xiaoyun Song
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Kang Shi
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shi-Jie Zhou
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Da-Ping Yu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhidong Liu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
5
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
6
|
Flamini MI, Gauna GV, Sottile ML, Nadin BS, Sanchez AM, Vargas-Roig LM. Retinoic acid reduces migration of human breast cancer cells: role of retinoic acid receptor beta. J Cell Mol Med 2014; 18:1113-23. [PMID: 24720764 PMCID: PMC4508151 DOI: 10.1111/jcmm.12256] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/21/2014] [Indexed: 11/27/2022] Open
Abstract
Breast cancer is the most common malignancy in women and the appearance of distant metastases produces the death in 98% of cases. The retinoic acid receptor β (RARβ) is not expressed in 50% of invasive breast carcinoma compared with normal tissue and it has been associated with lymph node metastasis. Our hypothesis is that RARβ protein participates in the metastatic process. T47D and MCF7 breast cancer cell lines were used to perform viability assay, immunobloting, migration assays, RNA interference and immunofluorescence. Administration of retinoic acid (RA) in breast cancer cells induced RARβ gene expression that was greatest after 72 hrs with a concentration 1 μM. High concentrations of RA increased the expression of RARβ causing an inhibition of the 60% in cell migration and significantly decreased the expression of migration-related proteins [moesin, c-Src and focal adhesion kinase (FAK)]. The treatment with RARα and RARγ agonists did not affect the cell migration. On the contrary, the addition of the selective retinoid RARβ-agonist (BMS453) significantly reduced cell migration comparable to RA inhibition. When RARβ gene silencing was performed, the RA failed to significantly inhibit migration and resulted ineffective to reduce moesin, c-Src and FAK expressions. RARβ is necessary to inhibit migration induced by RA in breast cancer cells modulating the expression of proteins involved in cell migration.
Collapse
Affiliation(s)
- Marina Ines Flamini
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, National Research Council of Argentina, Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
7
|
Gao T, He B, Pan Y, Li R, Xu Y, Chen L, Nie Z, Gu L, Wang S. The association of retinoic acid receptor beta2(RARβ2) methylation status and prostate cancer risk: a systematic review and meta-analysis. PLoS One 2013; 8:e62950. [PMID: 23675444 PMCID: PMC3652867 DOI: 10.1371/journal.pone.0062950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/27/2013] [Indexed: 11/24/2022] Open
Abstract
The retinoic acid receptor beta2(RARβ2) is a type of nuclear receptor that is activated by both all-trans retinoic acid and 9-cis retinoic acid, which has been shown to function as a tumor suppressor gene in different types of human tumors. Previous reports demonstrated that the frequency of RARβ2 methylation was significantly higher in prostate cancer patients compared with controls, but the relationship between RARβ2 promoter methylation and pathological stage or Gleason score of prostate cancer remained controversial. Therefore, a meta-analysis of published studies investigating the effects of RARβ2 methylation status in prostate cancer occurrence and association with both pathological stage and Gleason score in prostate cancer was performed in the study. A total of 12 eligible studies involving 777 cases and 404 controls were included in the pooled analyses. Under the random-effects model, the pooled OR of RARβ2 methylation in prostate cancer patients, compared to non-cancer controls, was 17.62 with 95%CI = 6.30-49.28. The pooled OR with the fixed-effects model of pathological stage in RASSF1A methylated patients, compared to unmethylated patients, was 0.67 (95%CI = 0.40-1.09) and the pooled OR of low-GS in RARβ2 methylated patients by the random-effect model, compared to high-GS RARβ2 methylated patients, was 0.54 (95%CI = 0.28-1.04). This study showed that RARβ2 might be a potential biomarker in prostate cancer prevention and diagnosis. The detection of RARβ2 methylation in urine or serum is a potential non-invasive diagnostic tool in prostate cancer. The present findings also require confirmation through adequately designed prospective studies.
Collapse
Affiliation(s)
- Tianyi Gao
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bangshun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Li
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yeqiong Xu
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liping Chen
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zhenling Nie
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Gu
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shukui Wang
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Moison C, Senamaud-Beaufort C, Fourrière L, Champion C, Ceccaldi A, Lacomme S, Daunay A, Tost J, Arimondo PB, Guieysse-Peugeot AL. DNA methylation associated with polycomb repression in retinoic acid receptor β silencing. FASEB J 2013; 27:1468-78. [PMID: 23299856 DOI: 10.1096/fj.12-210971] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Retinoic acid receptor β 2 (RARβ2) is a tumor suppressor gene whose loss of expression is recurrent in prostate cancers. Here we studied the epigenetic mechanisms leading to its stable silencing. First, we characterized all RARβ isoforms in 6 human tumor cell lines (prostate DU145, LNCaP, PC3, lung A549, breast Hs578T, and colon HCT116) by RT-PCR and Western blot. We excluded loss of heterozygosity (2D-FISH) and loss of RARa expression, an upstream regulator, as origin of RARβ2 silencing. All data concluded to an epigenetic silencing. In agreement, a DNA methylation inhibitor restored its expression. Second RARβ2 loss of expression was found associated with different epigenetic profiles in LNCaP and DU145 cells. According to bisulfite sequencing and ChIP analysis, we observed heavy methylation (97%) of the RARβ2 promoter with repressive histone mark H3K9me3 in LNCaP. While DNA methylation and polycomb repression are described to be mutually exclusive at CpG-rich promoters, we observed that in DU145, moderate DNA methylation (36%) and H3K9me3 mark were present concomitantly with H3K27me3, a signature of polycomb repression. In summary, we provide new insights on how the RARβ2 promoter is silenced, reveal the existence of two distinct repressive chromatin profiles at the same locus, and support a polycomb-mediated epigenetic repression process in prostate cancer.
Collapse
Affiliation(s)
- Céline Moison
- CNRS-Pierre Fabre, Unité de Service et de Recherche 3388, Epigenetic Targeting of Cancer, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stearns V, Zhou Q, Davidson NE. Epigenetic Regulation as a New Target for Breast Cancer Therapy. Cancer Invest 2009; 25:659-65. [DOI: 10.1080/07357900701719234] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Ren M, Pozzi S, Bistulfi G, Somenzi G, Rossetti S, Sacchi N. Impaired retinoic acid (RA) signal leads to RARbeta2 epigenetic silencing and RA resistance. Mol Cell Biol 2005; 25:10591-603. [PMID: 16287870 PMCID: PMC1291229 DOI: 10.1128/mcb.25.23.10591-10603.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Resistance to the growth-inhibitory action of retinoic acid (RA), the bioactive derivative of vitamin A, is common in human tumors. One form of RA resistance has been associated with silencing and hypermethylation of the retinoic acid receptor beta2 gene (RARbeta2), an RA-regulated tumor suppressor gene. The presence of an epigenetically silent RARbeta2 correlates with lack of the RA receptor alpha (RARalpha). Normally, RARalpha regulates RARbeta2 transcription by mediating dynamic changes of RARbeta2 chromatin in the presence and absence of RA. Here we show that interfering with RA signal through RARalpha (which was achieved by use of a dominant-negative RARalpha, by downregulation of RARalpha by RNA interference, and by use of RARalpha antagonists) induces an exacerbation of the repressed chromatin status of RARbeta2 and leads to RARbeta2 transcriptional silencing. Further, we demonstrate that RARbeta2 silencing causes resistance to the growth-inhibitory effect of RA. Apparently, RARbeta2 silencing can also occur in the absence of DNA methylation. Conversely, we demonstrate that restoration of RA signal at a silent RARbeta2 through RARalpha leads to RARbeta2 reactivation. This report provides proof of principle that RARbeta2 silencing and RA resistance are consequent to an impaired integration of RA signal at RARbeta2 chromatin.
Collapse
Affiliation(s)
- Mingqiang Ren
- Roswell Park Cancer Institute, Elm & Carlton Streets, C&V Bldg., RM 226, Buffalo, NY 14263.
| | | | | | | | | | | |
Collapse
|
11
|
Xu XC, Lee JJ, Wu TT, Hoque A, Ajani JA, Lippman SM. Increased retinoic acid receptor-beta4 correlates in vivo with reduced retinoic acid receptor-beta2 in esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 2005; 14:826-9. [PMID: 15824151 DOI: 10.1158/1055-9965.epi-04-0500] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Different retinoic acid receptor-beta (RAR-beta) isoforms seem to have contrasting biological effects in human carcinogenesis. Both in vitro and in vivo data indicate that RAR-beta2 expression is frequently lost or reduced (and transfecting RAR-beta2 suppresses growth and promotes apoptosis) in various cancer cells and tissues, whereas RAR-beta4 expression is increased in several cancer cell lines. To clarify the effects of different RAR-beta isoforms in esophageal carcinogenesis, we used real-time quantitative reverse transcription-PCR to assess in vivo RAR-beta mRNA levels in specimens of normal and malignant human esophageal tissue, comparing these levels with each other and the expressions of other genes. RAR-beta2 mRNA expression was significantly reduced (i.e., lower in cancer than normal tissue) in 67% (18 of 27, P = 0.001) and RAR-beta(4) mRNA was increased in 52% (14 of 27, P = 0.054) of our esophageal cancer cases. The expressions of RAR-beta1, chicken ovalbumin upstream promoter-transcription factor-I (COUP-TFI), COUP-TFII, and peroxisome proliferator-activated receptor-gamma (PPAR-gamma) mRNA were reduced, whereas epidermal growth factor receptor and cyclin D1 expressions were increased in tumor compared with in normal tissues. Reduced RAR-beta2 expression correlated with increased RAR-beta4 expression (P = 0.002) and with the suppression of COUP-TFI and COUP-TFII (P = 0.050 and 0.023, respectively) in tumor samples. These are the first in vivo expression patterns of RAR-beta2 and RAR-beta4 reported in humans or animals and support the in vitro data on these isoforms and their contrasting biological effects in human carcinogenesis.
Collapse
Affiliation(s)
- Xiao-chun Xu
- Department of Clinical Cancer Prevention, Unit 1360, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Kok C, Kennerson ML, Myers SJ, Nicholson GA. Transcript map of the candidate region for HSNI with cough and gastroesophageal reflux on chromosome 3p and exclusion of candidate genes. Neurogenetics 2004; 5:197-200. [PMID: 15241656 DOI: 10.1007/s10048-004-0185-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Accepted: 05/27/2004] [Indexed: 11/24/2022]
Abstract
Dominantly inherited sensory neuropathy (HSNI) is a degenerative disorder of sensory neurons characterized predominantly by sensory loss with mild motor impairment. Recently our group identified a locus on chromosome 3p for a new form of HSNI associated with cough and gastroesophageal reflux (GER). Haplotype analysis in a second family refined the interval to a 3.4-cM region that includes the candidate genes TOP2B and SLC4A7. The genes TOP2B and SLC4A7 and five other characterized genes that map within the critical interval have been investigated and excluded from having a pathogenic role in HSNI with cough and GER. Two novel single nucleotide polymorphisms were identified; however both changes were observed in affected and non-affected individuals, suggesting that they have no relation to the disease. We have used the resources of the Human Genome Project to report a transcript map of the region on chromosome 3p24 containing the HSNI with cough and GER locus.
Collapse
Affiliation(s)
- Cindy Kok
- Neurobiology Laboratory, ANZAC Research Institute, Hospital Road, Concord, New South Wales, Australia.
| | | | | | | |
Collapse
|
13
|
Virmani AK, Rathi A, Zöchbauer-Müller S, Sacchi N, Fukuyama Y, Bryant D, Maitra A, Heda S, Fong KM, Thunnissen F, Minna JD, Gazdar AF. Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J Natl Cancer Inst 2000; 92:1303-7. [PMID: 10944551 DOI: 10.1093/jnci/92.16.1303] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Retinoic acid plays an important role in lung development and differentiation, acting primarily via nuclear receptors encoded by the retinoic acid receptor-beta (RARbeta) gene. Because receptor isoforms RARbeta2 and RARbeta4 are repressed in human lung cancers, we investigated whether methylation of their promoter, P2, might lead to silencing of the RARbeta gene in human lung tumors and cell lines. METHODS Methylation of the P2 promoter from small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) cell lines and tumor samples was analyzed by the methylation-specific polymerase chain reaction (PCR). Expression of RARbeta2 and RARbeta4 was analyzed by reverse transcription-PCR. Loss of heterozygosity (LOH) was analyzed by PCR amplification followed by electrophoretic separation of PCR products. Statistical differences were analyzed by Fisher's exact test with continuity correction. RESULTS The P2 promoter was methylated in 72% (63 of 87) of SCLC and in 41% (52 of 127) of NSCLC tumors and cell lines, and the difference was statistically significant (two-sided P:<.001). By contrast, in 57 of 58 control samples, we observed only the unmethylated form of the gene. Four tumor cell lines with unmethylated promoter regions expressed both RARbeta2 and RARbeta4. Four tumor lines with methylated promoter regions lacked expression of these isoforms, but demethylation by exposure to 5-aza-2'-deoxycytidine restored their expression. LOH at chromosome 3p24 was observed in 100% (13 of 13) of SCLC lines and 67% (12 of 18) of NSCLC cell lines, and the difference was statistically significant (two-sided P: =.028). CONCLUSIONS Methylation of the RARbeta P2 promoter is one mechanism that silences RARbeta2 and RARbeta4 expression in many lung cancers, particularly SCLC. Chemical demethylation is a potential approach to lung cancer therapy.
Collapse
Affiliation(s)
- A K Virmani
- Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75390-8593, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Soprano DR, Scanlon E, Shukri M, Zhang ZP, Soprano KJ. Murine RAR?4 displays reduced transactivation activity, lower affinity for retinoic acid, and no anti-AP1 activity. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000615)77:4<604::aid-jcb8>3.0.co;2-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Sirchia SM, Ferguson AT, Sironi E, Subramanyan S, Orlandi R, Sukumar S, Sacchi N. Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor beta2 promoter in breast cancer cells. Oncogene 2000; 19:1556-63. [PMID: 10734315 DOI: 10.1038/sj.onc.1203456] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Retinoic acid (RA)-resistance in breast cancer cells has been associated with irreversible loss of retinoic acid receptor beta, RARbeta, gene expression. Search of the causes affecting RARbeta gene activity has been oriented at identifying possible differences either at the level of one of the RARbeta promoters, RARbeta2, or at regulatory factors. We hypothesized that loss of RARbeta2 activity occurs as a result of multiple factors, including epigenetic modifications, which can pattern RARbeta2 chromatin state. Using methylation-specific PCR, we found hypermethylation at RARbeta2 in a significant proportion of both breast cancer cell lines and primary breast tumors. Treatment of cells with a methylated RARbeta2 promoter, by means of the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR), led to demethylation within RARbeta2 and expression of RARbeta indicating that DNA methylation is at least one factor, contributing to RARbeta inactivity. However, identically methylated promoters can differentially respond to RA, suggesting that RARbeta2 activity may be associated to different repressive chromatin states. This supposition is supported by the finding that the more stable repressive RARbeta2 state in the RA-resistant MDA-MB-231 cell line can be alleviated by the HDAC inhibitor, trichostatin A (TSA), with restoration of RA-induced RARbeta transcription. Thus, chromatin-remodeling drugs might provide a strategy to restore RARbeta activity, and help to overcome the hurdle of RA-resistance in breast cancer.
Collapse
Affiliation(s)
- S M Sirchia
- Laboratory of Human Genetics, Hospital San Paolo, University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Sommer KM, Chen LI, Treuting PM, Smith LT, Swisshelm K. Elevated retinoic acid receptor beta(4) protein in human breast tumor cells with nuclear and cytoplasmic localization. Proc Natl Acad Sci U S A 1999; 96:8651-6. [PMID: 10411930 PMCID: PMC17571 DOI: 10.1073/pnas.96.15.8651] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor retinoic acid receptor beta(2) (RARbeta(2)) is a potent inhibitor of breast cancer cells in vitro, and studies suggest that RARbeta expression is lost in primary breast cancer. Although RARbeta(2) is selectively down-regulated at the mRNA level in breast tumor cells, we show that expression of an RARbeta protein is elevated in five of five breast tumor cell lines relative to normal human mammary epithelial cells. Subsequent analysis identified this protein as the translation product of the human RARbeta(4) transcript. Unlike the previously characterized mouse RARbeta(4) isoform, the human RARbeta(4) retains only half of a DNA-binding domain and lacks a ligand-independent transactivation domain at its N terminus. The RARbeta(4) protein localizes to the cytoplasm and to subnuclear compartments that resemble nuclear bodies. The structure and preliminary characterizations of human RARbeta(4), coupled with the observation that its expression is greatly elevated in breast tumor cell lines, support the hypothesis that RARbeta(4) functions as a dominant-negative repressor of RAR-mediated growth suppression.
Collapse
Affiliation(s)
- K M Sommer
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
17
|
Ghyselinck NB, Wendling O, Messaddeq N, Dierich A, Lampron C, Décimo D, Viville S, Chambon P, Mark M. Contribution of retinoic acid receptor β isoforms to the formation of the conotruncal septum of the embryonic heart. Dev Biol 1998. [DOI: 10.1016/s0012-1606(98)80007-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Affiliation(s)
- J W Fickett
- Bioinformatics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | |
Collapse
|