1
|
Zhang J, Qin Y, Chen Y, Zhao X, Wang J, Wang Z, Li J, Zhao J, Liu S, Guo Z, Wei W, Zhao J, Wang X. Ultrathin 2D As 2Se 3 Nanosheets for Photothermal-Triggered Cancer Immunotherapy. ACS NANO 2024; 18:4398-4413. [PMID: 38275273 DOI: 10.1021/acsnano.3c10432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Arsenic trioxide (As2O3) has achieved groundbreaking success in the treatment of acute promyelocytic leukemia (APL). However, its toxic side effects seriously limit its therapeutic application in the treatment of solid tumors. To detoxify the severe side effects of arsenic, herein we synthesized innovative 2D ultrathin As2Se3 nanosheets (As2Se3 NSs) with synergistic photothermal-triggered immunotherapy effects. As2Se3 NSs are biocompatible and biodegradable under physiological conditions and can release As(III) and Se(0). Furthermore, selenium increases the immunomodulatory efficacy of arsenic treatments, facilitating reprogramming of the tumor microenvironment by As2Se3 NSs by enhancing the infiltration of natural killer cells and effector tumor-specific CD8+ T cells. The synergistic combination of photothermal therapy and immunotherapy driven by As2Se3 NSs via a simple but effective all-in-one strategy achieved efficient anticancer effects, addressing the key limitations of As2O3 for solid tumor treatment. This work demonstrates not only the great potential of selenium for detoxifying arsenic but also the application of 2D As2Se3 nanosheets for cancer therapy.
Collapse
Affiliation(s)
- Jingyi Zhang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Qin
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiming Chen
- School of Engineering, Vanderbilt University, Nashville 37235-0734, Tennessee, United States
| | - Xinyang Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenzhen Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiayi Li
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shengjin Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijian Guo
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Junprung W, Supungul P, Tassanakajon A. Structure, gene expression, and putative functions of crustacean heat shock proteins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103875. [PMID: 32987013 DOI: 10.1016/j.dci.2020.103875] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones with critical roles in the maintenance of cellular proteostasis. HSPs, which regulate protein folding and refolding, assembly, translocation, and degradation, are induced in response to physiological and environmental stressors. In recent years, HSPs have been recognized for their potential role in immunity; in particular, these proteins elicit a variety of immune responses to infection and modulate inflammation. This review focuses on delineating the structural and functional roles of crustacean HSPs in the innate immune response. Members of crustacean HSPs include high molecular weight HSPs (HSP90, HSP70, and HSP60) and small molecular weight HSPs (HSP21 and HSP10). The sequences and structures of these HSPs are highly conserved across various crustacean species, indicating strong evolutionary links among this group of organisms. The expression of HSP-encoding genes across different crustacean species is significantly upregulated upon exposure to a wide range of pathogens, emphasizing the important role of HSPs in the immune response. Functional studies of crustacean HSPs, particularly HSP70s, have demonstrated their involvement in the activation of several immune pathways, including those mediating anti-bacterial resistance and combating viral infections, upon heat exposure. The immunomodulatory role of HSPs indicates their potential use as an immunostimulant to enhance shrimp health for control of disease in aquaculture.
Collapse
Affiliation(s)
- Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Klong Luang, Pathum Thani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Knigge T, Bachmann L, Köhler HR. An intron-containing, heat-inducible stress-70 gene in the millipede Tachypodoiulus niger (Julidae, Diplopoda). Cell Stress Chaperones 2014; 19:741-7. [PMID: 24446070 PMCID: PMC4147066 DOI: 10.1007/s12192-014-0494-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/27/2013] [Accepted: 01/01/2014] [Indexed: 10/25/2022] Open
Abstract
The highly conserved part of the nucleotide-binding domain of the hsp70 gene family was amplified from the soil diplopod Tachypodoiulus niger (Julidae, Diplopoda). Genomic DNA yielded 701, 549 and 540 bp sequences, whereas cDNA from heat shocked animals produced only one distinct fragment of 543 bp. The sequences could be classified as a 70 kDa heat shock protein (hsp70), the corresponding 70 kDa heat shock cognate (hsc70) and a glucose-related hsp70 homologue (grp78). Comparisons of genomic and cDNA sequences of hsc70 identified two introns within the consensus sequence. Generally, stress-70 expression levels were low, which hampered successful RT-PCR and subsequent subcloning. Following experimental heat shock, however, the spliced hsc70 was amplified predominantly, instead of its inducible homologue hsp70. This finding suggests that microevolution in this soil-dwelling arthropod is directed towards low constitutive stress-70 levels and that the capacity for stress-70 induction presumably is limited. hsc70, albeit having introns, apparently is inducible and contributes to the stress-70 response.
Collapse
Affiliation(s)
- Thomas Knigge
- Laboratory of Ecotoxicology, EA 3222 PRES Normandie, Le Havre University, 25 Rue Philippe Lebon, F-76058, Le Havre Cedex, France,
| | | | | |
Collapse
|
4
|
Wang TT, Wang N, Liao XL, Meng L, Liu Y, Chen SL. Cloning, molecular characterization and expression analysis of heat shock cognate 70 (Hsc70) cDNA from turbot (Scophthalmus maximus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1377-1386. [PMID: 23543141 DOI: 10.1007/s10695-013-9792-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
As an essential member of the HSP70 family, heat shock cognate 70 (Hsc70) is a constitutively expressed molecular chaperone involved in protein metabolism. In this paper, turbot Hsc70 was cloned and the expression profile was also analyzed. The full-length cDNA of the turbot Hsc70 was 2,292 bp in length, including a 113-bp 5' UTR, a 223-bp 3' UTR and a 1,956-bp open reading frame coding a protein with 651 amino acid residues. Comparison of amino acid sequence revealed the existence of three classical HSP70 family signature motifs, a signature nonapeptide and one repeat of tetrapeptide in turbot Hsc70. The turbot Hsc70-deduced amino acids sequence exhibited 75.4-96.8 % homology with Hsp70s/Hsc70s of 24 other known sequences. In particular, the strongest homology was found with the cognate members of Hsc70 subfamily and the highest identity was found with Japanese flounder Hsc70. Semi-quantitative RT-PCR revealed that turbot Hsc70 transcripts were stably expressed in all tested tissues under normal physiological condition, while the expression levels also increased (~1.5-fold to ~threefold) after heat shock and bacterial infection. In addition, Hsc70 transcripts were detected throughout embryonic development and in turbot embryonic cell line (TEC) in the absence of any stress. Meanwhile, it was also heat inducible, but not cold inducible in TEC. These results suggest that Hsc70 gene may be involved in embryogenesis and cellular protection events under normal and stress condition.
Collapse
Affiliation(s)
- T T Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | | | | | | | | | | |
Collapse
|
5
|
Takano M, Yamashita T, Nagano K, Otani M, Maekura K, Kamada H, Tsunoda SI, Tsutsumi Y, Tomiyama T, Mori H, Matsuura K, Matsuyama S. Proteomic analysis of the hippocampus in Alzheimer's disease model mice by using two-dimensional fluorescence difference in gel electrophoresis. Neurosci Lett 2012; 534:85-9. [PMID: 23276639 DOI: 10.1016/j.neulet.2012.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/13/2012] [Accepted: 11/06/2012] [Indexed: 11/16/2022]
Abstract
We previously identified the E693Δ mutation in amyloid precursor protein (APP) in patients with Alzheimer's disease (AD) and then generated APP-transgenic mice expressing this mutation. As these mice possessed abundant Aβ oligomers from 8 months of age but no amyloid plaques even at 24 months of age, they are a good model to study pathological effects of amyloid β (Aβ) oligomers. The two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) technology, using a mixed-sample internal standard, is now recognized as an accurate method to determine and quantify proteins. In this study, we examined the proteins for which levels were altered in the hippocampus of 12-month-old APP(E693Δ)-transgenic mice using 2D-DIGE and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fourteen proteins were significantly changed in the hippocampus of APP(E693Δ)-transgenic mice. Actin cytoplasmic 1 (β-actin), heat shock cognate 71kDa, γ-enolase, ATP synthase subunit β, tubulin β-2A chain, clathrin light chain B (clathrin) and dynamin-1 were increased. Heat shock-related 70kDa protein 2, neurofilament light polypeptide (NFL), stress-induced-phosphoprotein 2, 60kDa heat shock protein (HSP60), α-internexin, protein kinase C and casein kinase substrate in neurons protein 1 (Pacsin 1), α-enolase and β-actin were decreased. Western blotting also validated the changed levels of HSP60, NFL, clathrin and Pacsin 1 in APP(E693Δ)-transgenic mice. The identified proteins could be classified as cytoskeleton, chaperons, neurotransmission, energy supply and signal transduction. Thus, proteomics by 2D-DIGE and LC-MS/MS has provided knowledge of the levels of proteins in the early stages of AD brain.
Collapse
Affiliation(s)
- Masaoki Takano
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li XL, Kang Y, Zhang XY, Zhu BL, Fang WH. Identification of a heat shock cognate protein 70 gene in Chinese soft-shell turtle (Pelodiscus sinensis) and its expression profiles under thermal stress. J Zhejiang Univ Sci B 2012; 13:465-77. [PMID: 22661209 DOI: 10.1631/jzus.b1100309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The heat shock cognate protein 70 (Hsc70) is a member of a 70-kDa heat shock protein (HSP70) family that functions as molecular chaperones. In this study, a novel Hsc70 gene from Chinese soft-shelled turtle (Pelodiscus sinensis) (tHsc70) was identified. The tHsc70 full-length complementary DNA (cDNA) is 2272 bp long with a 1941-bp open reading frame (ORF) encoding 646 amino acids. Three characteristic signature regions of the HSP70 family, two major domains of an adenosine triphosphate (ATP)/guanosine triphosphate (GTP) binding domain (ABD), and a substrate-binding domain (SBD) were present in the predicted tHsc70 amino acid sequence. The tHsc70 gene was expressed in Escherichia coli BL21 and the expression product reacted with the anti-Hsc70 mouse monoclonal antibody by Western blotting. Homology analysis revealed that tHsc70 shared identity from 53.9% to 87.7% at the nucleotide level, and 49.1% to 99.5% at the amino acid level with the known Hsc70s. Phylogenetic analysis showed that tHsc70 was clustered together with the Hsc70 gene of another reptile species (Alligator mississippiensis). The tHsc70 was expressed in the liver, lung, heart, and skeletal muscle. The expression patterns of tHsc70 messenger RNA (mRNA) differed among different tissues under different durations of heat stress at 40 °C. Adaptation at 25 °C for 1 h after heat stress was also different among tissues and length of heat stress. Irrespective of different profiles of expression under heat stress, tHsc70 may play roles in protecting turtles from thermal stress.
Collapse
Affiliation(s)
- Xiao-liang Li
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
7
|
Zhang X, Pang H, Wu Z, Jian J. Molecular characterization of heat shock protein 70 gene transcripts during Vibrio harveyi infection of humphead snapper, Lutjanus sanguineus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:897-910. [PMID: 21559800 DOI: 10.1007/s10695-011-9487-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 04/15/2011] [Indexed: 05/26/2023]
Abstract
In the present study, heat shock cognate 70 (HSC70) and inducible heat shock protein 70 (HSP70) gene of humphead snapper, Lutjanus sanguineus, were cloned by rapid amplification of cDNA ends (RACE) technique with the primers designed from the known expressed sequence tags (ESTs) identified from the subtracted cDNA library of the head kidney of humphead snapper. BLAST program analysis indicated that both HSC70 and HSP70 shared high homology with their counterparts in other species. However, the homology between HSC70 and HSP70 is only 82.5% identity. Phylogenetic trees were constructed by the neighbor-joining method, and the results suggested that both HSC70 and HSP70 could be used for phylogenetic analysis at order levels. The expression profiles of HSC70 and HSP70 were measured by fluorescent real-time RT-PCR after Vibrio harveyi infection. Our results suggested that both HSC70 and HSP70 could be induced by V. harveyi challenge. However, the expression pattern of HSP70 showed some differences compared with that of HSC70. Original level of HSP70 in head kidney was lower than that of HSC70. The expression of HSP70 could increase faster and last longer than that of HSC70 and maintain a high level from the time point of 6-15 h. Our results suggested that the rapid transcriptional upregulation of HSC70 and HSP70 in response to V. harveyi infection might be important for the survival of humphead snapper.
Collapse
Affiliation(s)
- Xinzhong Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | |
Collapse
|
8
|
Zhang XZ, Wu ZH, Yang SP, Pang HY, Jian JC, Lu YS. Expression pattern of heat-shock cognate 70 gene of humphead snapper, Lutjanus sanguineus (Cuvier), infected by Vibrio harveyi. JOURNAL OF FISH DISEASES 2011; 34:719-729. [PMID: 21883283 DOI: 10.1111/j.1365-2761.2011.01288.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The heat-shock cognate 70 (HSC70) gene of humphead snapper, Lutjanus sanguineus, designated as ByHSC70, was cloned by rapid amplification of cDNA ends (RACE) with the primers designed from the known expressed sequence tag (EST) identified from the subtracted cDNA library of the head kidney of humphead snapper. The full-length cDNA of ByHSC70 is 2313 bp, containing a 5' terminal untranslated region (UTR) of 96 bp, a 3' terminal UTR of 267 bp, and an open reading frame (ORF) of 1950 bp encoding a polypeptide of 650 amino acids with a theoretical molecular weight of 71.21 kDa and an estimated isoelectric point (pI) of 5.08. ByHSC70 contained three classical HSP70 family signatures. BLAST analysis showed that the amino acid sequence of ByHSC70 had the highest similarity of 99% when compared with other HSC70s. Fluorescent real-time quantitative RT-PCR was used to examine the expression of ByHSC70 gene in eight kinds of tissues/organs of humphead snapper after challenge with Vibrio harveyi. There was a clear time-dependent expression pattern of ByHSC70 in head kidney, spleen and thymus after bacterial challenge, and the expression of mRNA reached a maximum level at 9, 6 and 24 h post-infection and then returned to control levels after 15, 24 and 36 h, respectively. Our results suggest that HSC70 is an important component in the immune system of humphead snapper, its their rapid transcriptional upregulation in response to V. harveyi infection might be important for survival of humphead snapper.
Collapse
Affiliation(s)
- X Z Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
9
|
McGivney BA, Eivers SS, MacHugh DE, MacLeod JN, O'Gorman GM, Park SDE, Katz LM, Hill EW. Transcriptional adaptations following exercise in thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy. BMC Genomics 2009; 10:638. [PMID: 20042072 PMCID: PMC2812474 DOI: 10.1186/1471-2164-10-638] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 12/30/2009] [Indexed: 12/23/2022] Open
Abstract
Background Selection for exercise-adapted phenotypes in the Thoroughbred racehorse has provided a valuable model system to understand molecular responses to exercise in skeletal muscle. Exercise stimulates immediate early molecular responses as well as delayed responses during recovery, resulting in a return to homeostasis and enabling long term adaptation. Global mRNA expression during the immediate-response period has not previously been reported in skeletal muscle following exercise in any species. Also, global gene expression changes in equine skeletal muscle following exercise have not been reported. Therefore, to identify novel genes and key regulatory pathways responsible for exercise adaptation we have used equine-specific cDNA microarrays to examine global mRNA expression in skeletal muscle from a cohort of Thoroughbred horses (n = 8) at three time points (before exercise, immediately post-exercise, and four hours post-exercise) following a single bout of treadmill exercise. Results Skeletal muscle biopsies were taken from the gluteus medius before (T0), immediately after (T1) and four hours after (T2) exercise. Statistically significant differences in mRNA abundance between time points (T0 vs T1 and T0 vs T2) were determined using the empirical Bayes moderated t-test in the Bioconductor package Linear Models for Microarray Data (LIMMA) and the expression of a select panel of genes was validated using real time quantitative reverse transcription PCR (qRT-PCR). While only two genes had increased expression at T1 (P < 0.05), by T2 932 genes had increased (P < 0.05) and 562 genes had decreased expression (P < 0.05). Functional analysis of genes differentially expressed during the recovery phase (T2) revealed an over-representation of genes localized to the actin cytoskeleton and with functions in the MAPK signalling, focal adhesion, insulin signalling, mTOR signaling, p53 signaling and Type II diabetes mellitus pathways. At T1, using a less stringent statistical approach, we observed an over-representation of genes involved in the stress response, metabolism and intracellular signaling. These findings suggest that protein synthesis, mechanosensation and muscle remodeling contribute to skeletal muscle adaptation towards improved integrity and hypertrophy. Conclusions This is the first study to characterize global mRNA expression profiles in equine skeletal muscle using an equine-specific microarray platform. Here we reveal novel genes and mechanisms that are temporally expressed following exercise providing new knowledge about the early and late molecular responses to exercise in the equine skeletal muscle transcriptome.
Collapse
Affiliation(s)
- Beatrice A McGivney
- Animal Genomics Laboratory, UCD School of Agriculture, Food Science and Veterinary Medicine, UCD College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang RE, Kao JLF, Hilliard CA, Pandita RK, Roti Roti JL, Hunt CR, Taylor JS. Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. J Med Chem 2009; 52:1912-21. [PMID: 19296652 DOI: 10.1021/jm801445c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibitors of heat-induced heat shock protein 70 (HSP70) expression have the potential to enhance the therapeutic effectiveness of heat-induced radiosensitization of tumors. Among known small molecule inhibitors, quercetin has the advantage of being easily modified for structure-activity studies. Herein, we report the ability of five monomethyl and five carbomethoxymethyl derivatives of quercetin to inhibit heat-induced HSP70 expression and enhance HSP27 phosphorylation in human cells. While quercetin and several derivatives inhibit HSP70 induction and enhance HSP27 phosphorylation at Ser78, other analogues selectively inhibit HSP70 induction without enhancing HSP27 phosphorylation that would otherwise aid in cell survival. We also show that good inhibitors of HSP70 induction are also good inhibitors of both CK2 and CamKII, kinases that are known to activate HSP70 expression by phosphorylation of heat shock transcription factor 1. Derivatives that show poor inhibition of either or both kinases are not good inhibitors of HSP70 induction, suggesting that quercetin's effectiveness is due to its ability to inhibit both kinases.
Collapse
Affiliation(s)
- Rongsheng E Wang
- Department of Chemistry, Washington University, St Louis, Missouri 63130, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Liu J, Yang WJ, Zhu XJ, Karouna-Renier NK, Rao RK. Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii. Cell Stress Chaperones 2005; 9:313-23. [PMID: 15544169 PMCID: PMC1065290 DOI: 10.1379/csc-40r.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Two complementary deoxyribonucleic acid (cDNA) clones encoding 2 different 70-kDa heat shock proteins (HSPs) were isolated from the prawn Macrobrachium rosenbergii. The cDNA clones were 2448 and 2173 bp in length and contained 1950- and 1734-bp open reading frames (ORFs), respectively. The ORFs encoded 649- and 577-amino acid polypeptides, which were named Mar-HSC70 and Mar-HSP70, respectively, according to the sequence identities with other known HSC70s and HSP70s and based on their inducibility in response to heat shock stress (at 35 degrees C). Genomic DNA sequence analysis revealed no introns in either gene. The major structural differences between the 2 proteins were a 60-amino acid segment and a 14-amino acid segment present in the N-terminal and C-terminal, respectively, of Mar-HSC70 that were not found in Mar-HSP70. Northern blotting and semiquantitative reverse transcription-polymerase chain reaction analyses indicated that the Mar-HSP70 gene was expressed under heat shock (35 degrees C) stress in a non-tissue-specific manner. In contrast, Mar-HSC70 messenger ribonucleic acid was constitutively expressed in every tissue except muscle, and its expression in response to heat shock (at 35 degrees C) changed only in muscle.
Collapse
Affiliation(s)
- Jun Liu
- College of Life Sciences, Zhejiang University, 232 Wensan Road, Hangzhou, Zhejiang 310012, People's Republic China
| | | | | | | | | |
Collapse
|
12
|
Longshaw VM, Chapple JP, Balda MS, Cheetham ME, Blatch GL. Nuclear translocation of the Hsp70/Hsp90 organizing protein mSTI1 is regulated by cell cycle kinases. J Cell Sci 2004; 117:701-10. [PMID: 14754904 DOI: 10.1242/jcs.00905] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The co-chaperone murine stress-inducible protein 1 (mSTI1), an Hsp70/Hsp90 organizing protein (Hop) homologue, mediates the assembly of the Hsp70/Hsp90 chaperone heterocomplex. The mSTI1 protein can be phosphorylated in vitro by cell cycle kinases proximal to a putative nuclear localization signal (NLS), which substantiated a predicted casein kinase II (CKII)-cdc2 kinase-NLS (CcN) motif at position 180-239 and suggested that mSTI1 might move between the cytoplasm and the nucleus under certain cell cycle conditions. The mechanism responsible for the cellular localization of mSTI1 was probed using NIH3T3 fibroblasts to investigate the localization of endogenous mSTI1 and enhanced green fluorescent protein (EGFP)-tagged mSTI1 mutants. Localization studies on cell lines stably expressing NLS(mSTI1)-EGFP and EGFP demonstrated that the NLS(mSTI1) was able to promote a nuclear localization of EGFP. The mSTI1 protein was exclusively cytoplasmic in most cells under normal conditions but was present in the nucleus of a subpopulation of cells and accumulated in the nucleus following inhibition of nuclear export (leptomycin B treatment). G1/S-phase arrest (using hydroxyurea) and inhibition of cdc2 kinase (using olomoucine) but not inhibition of casein kinase II (using 5,6-dichlorobenzimidazole riboside), increased the proportion of cells with endogenous mSTI1 nuclear staining. mSTI1-EGFP behaved identically to endogenous mSTI1. The functional importance of key residues was tested using modified mSTI1-EGFP proteins. Inactivation and phosphorylation mimicking of potential phosphorylation sites in mSTI1 altered the nuclear translocation. Mimicking of phosphorylation at the mSTI1 CKII phosphorylation site (S189E) promoted nuclear localization of mSTI1-EGFP. Mimicking phosphorylation at the cdc2 kinase phosphorylation site (T198E) promoted cytoplasmic localization of mSTI1-EGFP at the G1/S-phase transition,whereas removal of this site (T198A) promoted the nuclear localization of mSTI1-EGFP under the same conditions. These data provide the first evidence of nuclear import and export of a major Hsp70/Hsp90 co-chaperone and the regulation of this nuclear-cytoplasmic shuttling by cell cycle status and cell cycle kinases.
Collapse
Affiliation(s)
- Victoria M Longshaw
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | | | | | | | | |
Collapse
|
13
|
Ali KS, Dorgai L, Abrahám M, Hermesz E. Tissue- and stressor-specific differential expression of two hsc70 genes in carp. Biochem Biophys Res Commun 2003; 307:503-9. [PMID: 12893250 DOI: 10.1016/s0006-291x(03)01206-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two genes expressing 70 kDa heat shock proteins were identified in Cyprinus carpio. The sequence similarities and the intron-interrupted structure of the coding regions indicate that carp Hsc70-1 and Hsc70-2 belong to the Hsp70 cognate subfamily. The expressions of the two hsc70 genes were followed by semi-quantitative RT-PCR. Both genes are expressed under unstressed conditions in a characteristic tissue-specific manner. Inducibility of the response to elevated temperature, cold shock, and Cd treatment was investigated in the liver and muscle, in whole-animal experiments. Both genes were insensitive to or only weakly induced by the stressors, with two exceptions: Cd treatment resulted in an 11-13-fold enhanced induction of hsc70-1 in the liver and cold shock enhanced induction of hsc70-2 in the muscle by 7.5-10-fold.
Collapse
Affiliation(s)
- Khaled Said Ali
- Department of Biochemistry, Faculty of Science, University of Szeged, PO Box 533, H-6701, Szeged, Hungary
| | | | | | | |
Collapse
|
14
|
Diehl JA, Yang W, Rimerman RA, Xiao H, Emili A. Hsc70 regulates accumulation of cyclin D1 and cyclin D1-dependent protein kinase. Mol Cell Biol 2003; 23:1764-74. [PMID: 12588994 PMCID: PMC151693 DOI: 10.1128/mcb.23.5.1764-1774.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin D-dependent kinase is a critical mediator of mitogen-dependent G1 phase progression in mammalian cells. Given the high incidence of cyclin D1 overexpression in human neoplasias, the nature and complexity of cyclin D complexes in vivo have been subjects of intense interest. Besides its catalytic partner, the nature and complexity of cyclin D complexes in vivo remain ambiguous. To address this issue, we purified native cyclin D1 complexes from proliferating mouse fibroblasts by affinity chromatography and began to identify and functionally characterize the associated proteins. In this report, we describe the identification of Hsc70 and its functional importance for cyclin D1 and cyclin D1-dependent kinase maturation. We demonstrate that Hsc70 associates with newly synthesized cyclin D1 and is a component of a mature, catalytically active cyclin D1/CDK4 holoenzyme complex. Our data suggest that Hsc70 promotes stabilization of newly synthesized cyclin D1, thereby increasing its availability for assembly with CDK4. In addition, our data demonstrate that Hsc70 remains bound to cyclin D1 following its assembly with CDK4 and Cip/Kip proteins, where it ensures the formation of a catalytically active complex.
Collapse
Affiliation(s)
- J Alan Diehl
- The Leonard and Madlyn Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
15
|
Karouna-Renier NK, Yang WJ, Rao KR. Cloning and characterization of a 70 kDa heat shock cognate gene (HSC70) from two species of Chironomus. INSECT MOLECULAR BIOLOGY 2003; 12:19-26. [PMID: 12542632 DOI: 10.1046/j.1365-2583.2003.00383.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the present study we carried out the isolation and characterization of an HSC70 gene from two midges, Chironomus tentans and C. yoshimatsui. The HSC70 cDNAs are approximately 2424 (C. tentans) and 2464 bp (C. yoshimatsui) long, and contain 1950 and 1956 bp open reading frames, respectively. Analysis of genomic DNA revealed the presence of two introns in these genes. The 5' untranslated regions of the HSC70 genes are adenosine-rich, a feature found in inducible HSP70 genes. The nucleotide and amino acid sequences exhibit high identity with cytosolic HSC70s from other Dipterans. Northern hybridization indicated that HSC70 is expressed at all developmental stages, from embryo to adult, and Southern hybridization confirmed the presence of multiple HSP70 genes in Chironomus.
Collapse
Affiliation(s)
- N K Karouna-Renier
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL 32514-5751, USA.
| | | | | |
Collapse
|
16
|
Fishelson Z, Hochman I, Greene LE, Eisenberg E. Contribution of heat shock proteins to cell protection from complement-mediated lysis. Int Immunol 2001; 13:983-91. [PMID: 11470768 DOI: 10.1093/intimm/13.8.983] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The possible participation of hsc70 and hsp70 in cellular protection from complement damage was studied. Human erythroleukemia K562 cells were pretreated with reagents affecting hsc70 or hsp70, and cell sensitivity to lysis by antibody and human complement was examined. Treatment with deoxyspergualin, an hsc70 inhibitor, sensitized K562 cells to complement lysis, whereas treatment with ethanol, butanol or hemin, inducers of hsc70 synthesis, protected the cells from complement-mediated lysis. Incubation of K562 at either 42 degrees C or with the amino acid analogue L-azetidine-2-carboxylic acid induced synthesis of hsp70, but not of hsc70. The latter treatment also conferred elevated resistance to complement lysis on K562 cells. Pretreatment of K562 cells with sub-lethal doses of complement desensitizes them to lethal complement doses. No effect of sublytic complement on synthesis of hsc70 and hsp70 was found. However, the results demonstrated that complement stress causes translocation of hsc70 from the cytoplasm to the K562 cell surface. Two monoclonal and two polyclonal antibodies identified hsc70 on the surface of intact, viable complement-stressed cells, while antibodies directed to hsp70 did not bind to these cells. Altogether, the results suggest that the heat shock proteins hsc70 and hsp70 play a role in cell defense against complement.
Collapse
Affiliation(s)
- Z Fishelson
- Department of Cell Biology and Histology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
17
|
Park JH, Lee JJ, Yoon S, Lee JS, Choe SY, Choe J, Park EH, Kim CG. Genomic cloning of the Hsc71 gene in the hermaphroditic teleost Rivulus marmoratus and analysis of its expression in skeletal muscle: identification of a novel muscle-preferred regulatory element. Nucleic Acids Res 2001; 29:3041-50. [PMID: 11452029 PMCID: PMC55811 DOI: 10.1093/nar/29.14.3041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2001] [Revised: 05/31/2001] [Accepted: 05/31/2001] [Indexed: 11/13/2022] Open
Abstract
To further our understanding of the role of stress proteins in development as well as in adaptation of fish to adverse environmental conditions, we undertook molecular analyses of stress protein encoding genes from the hermaphroditic teleost Rivulus marmoratus. We isolated a genomic clone containing the Hsc71 gene (rm-hsc71m) and its upstream sequences. rm-Hsc71m is not induced by external stress, but is enriched in a tissue-specific manner during early development. In adult, the strongest expression appeared in skeletal muscle, whereas lower expression was seen in the gill, eye and brain. To understand the regulatory basis of high muscle expression of rm-hsc71m, transfection of R.marmoratus muscle tissue was performed using 5' deletion fragments containing the rm-hsc71m promoter driving EGFP expression. An upstream region from -2.7 to -1.9 kb was identified as a muscle-specific regulatory region. Within this region, we identified at least three sites with the novel sequence TGTnACA interacting with a fish muscle factor having an M(r) of 32 000. Our data indicate that rm-hsc71m expression in skeletal muscle is controlled by a muscle-specific regulatory element containing this novel motif.
Collapse
Affiliation(s)
- J H Park
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Macario AJ, De Macario EC. Molecular chaperones and age-related degenerative disorders. INTERORGANELLAR SIGNALING IN AGE-RELATED DISEASE 2001. [DOI: 10.1016/s1566-3124(01)07018-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
19
|
Yokota SI, Yanagi H, Yura T, Kubota H. Upregulation of cytosolic chaperonin CCT subunits during recovery from chemical stress that causes accumulation of unfolded proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1658-64. [PMID: 10712596 DOI: 10.1046/j.1432-1327.2000.01157.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chaperonin containing TCP-1 (CCT) is a molecular chaperone consisting of eight subunit species and assists in the folding of actin, tubulin and some other cytosolic proteins. We examined the stress response of CCT subunit proteins in mammalian cultured cells using chemical stressors that cause accumulation of unfolded proteins. Levels of CCT subunit proteins in HeLa cells were coordinately and transiently upregulated under continuous chemical stress with sodium arsenite. CCT subunit levels in several mammalian cell lines were also upregulated during recovery from chemical stress caused by sodium arsenite or a proline analogue, L-azetidine-2-carboxylic acid. Several unidentified proteins that were newly synthesized and associated with CCT were found to increase concomitantly with CCT subunits themselves and known substrates during recovery from the stress. These results suggest that CCT plays important roles in the recovery of cells from protein damage by assisting in the folding of proteins that are actively synthesized and/or renatured during this period.
Collapse
Affiliation(s)
- S I Yokota
- HSP Research Institute, Kyoto Research Park, Japan
| | | | | | | |
Collapse
|