1
|
Jimenez RM, Jeong J, Berger JM. Inducing and Monitoring Liquid-Liquid Phase Separation by Type II Topoisomerases. Methods Mol Biol 2025; 2928:173-185. [PMID: 40372645 DOI: 10.1007/978-1-0716-4550-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Liquid-liquid phase separation (LLPS) is an increasingly studied property of biological macromolecules that can give rise to membrane-less compartments ("condensates") in cells. Analogous to droplets that form after the mixing of oil and water, certain biological macromolecules are also capable of de-mixing from the bulk solution, forming condensates whose contents are partitioned from the rest of the cellular environment. Phase transitions in biology are frequently driven by weak, multivalent protein-protein or protein-nucleic acid interactions, as well as by intrinsically disordered regions (IDRs) of proteins. Fluorescence microscopy is one method commonly used for studying the formation of biological condensates both in vitro and in cellulo. Depending on the system, imaging may be performed with protein alone or with the addition of a nucleic acid ligand or substrate to induce phase separation. Here, we describe a protocol for how to produce dye-labeled samples suitable for studies of in vitro phase separation by a human type II topoisomerase using fluorescence microscopy. The approach does not rely on tags or fusion proteins (which can alter LLPS properties) and is generalizable to any protein with a free, N-terminal primary amine.
Collapse
Affiliation(s)
- Rosa Meyo Jimenez
- Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Ozturk A, Agbektas T, Huseynzada A, Guliyev R, Ganbarova R, Hasanova U, Tas A, Erkan S, Zontul C, Inandiklioglu N, Silig Y. In Silico and In Vitro Studies of Novel Azomethines on DNA Repair Genes in Gastric Cell Lines. Life (Basel) 2023; 13:1982. [PMID: 37895364 PMCID: PMC10607974 DOI: 10.3390/life13101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
We herein report the determination of the cytotoxic activity and expression profiles of some DNA repair genes of newly synthesized azomethines in the gastric cancer cell line (AGS). The studied novel compounds were synthesized by a condensation reaction and received compounds were characterized by 1H and 13C NMR spectroscopy methods. Furthermore, they were applied to the AGS cell line at eight different concentrations (0.1-50 µg/mL). Anticancer activities were determined using the MTT method. Expression levels of ATR, ERCC1, TOP2A, and ABCB1 genes were determined by the RT-PCR method. Biochemical parameters were also examined. The interaction of proteins with other proteins was investigated with the String v11 program. The IC50 values of compounds 1, 2, and 3 obtained after 72 h were 23.10, 8.93, and 1.58 µg/mL, respectively. The results demonstrate that the cytotoxic activity of compound 3 on AGS cancer cells is higher in comparison with other molecules. It was determined that the expression levels of ATR, TOP2A, and ABCB1 genes in compounds 1, 2, and 3 were decreased compared to the control group. In addition, it was determined that ERCC1 gene expression increased in compound 3, decreased in compound 2, and remained unchanged in compound 1 (p < 0.001). In AGS gastric cancer cells, a 64% decrease was detected for GST levels in compound 1, while a 38% decrease in GSH levels in compound 2. In addition, compounds 1-3 were examined at the molecular level with computational techniques and the docking studies revealed 4LN0 as a target protein.
Collapse
Affiliation(s)
- Alpaslan Ozturk
- Clinical Biochemistry, Etlik City Hospital, 06170 Ankara, Turkey
| | - Tugba Agbektas
- Department of Food Processing Technologies Services, Yıldızeli Vocational School, 58500 Sivas, Turkey;
| | - Alakbar Huseynzada
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
- Department of Chemistry, Azerbaijan Engineers Union, Bashir Safaroglu 118, Baku AZ1022, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan
| | - Ruslan Guliyev
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
| | - Rana Ganbarova
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
| | - Ulviyya Hasanova
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan
| | - Ayca Tas
- Department of Nutrition and Diet, Faculty of Health Sciences, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Sultan Erkan
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Cemile Zontul
- Department of Chemistry and Chemical Processing Technologies Services, Yıldızeli Vocational School, 58500 Sivas, Turkey;
| | - Nihal Inandiklioglu
- Department of Medical Biology, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey;
| | - Yavuz Silig
- Department of Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| |
Collapse
|
3
|
Wang YQ, Yang YS, Chen J, Liu MH, Chen GQ, Huang Y. FAM122A maintains DNA stability possibly through the regulation of topoisomerase IIα expression. Exp Cell Res 2020; 396:112242. [PMID: 32866497 DOI: 10.1016/j.yexcr.2020.112242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
FAM122A is a housekeeping gene and highly conserved in mammals. More recently, we have demonstrated that FAM122A is essential for maintaining the growth of hepatocellular carcinoma cells, in which we unexpectedly found that FAM122A deletion increases γH2AX protein level, suggesting that FAM122A may participate in the regulation of DNA homeostasis or stability. In this study, we continued to investigate the potential role of FAM122A in DNA damage and/or repair. We found that CRISPR/Cas9-mediated FAM122A deletion enhances endogenous DNA damages in cancer cells but not in normal cells, demonstrating a significant increase in γH2AX protein and foci formation of γH2AX and 53BP1, as well as DNA breaks by comet assay. Further, we found that FAM122A deletion greatly increases TOP2α protein level, and significantly and specifically enhances TOP2 poisons (etoposide and doxorubicin)-induced DNA damage effects in cancer cells. Moreover, FAM122A is found to be interacted with TOP2α, instead of TOP2β. However, FAM122A knockout doesn't affect the intracellular ROS levels and the process of DNA repair after removal of etoposide with short-term stimulation, suggesting that FAM122A deletion-enhanced DNA damage does not result from endogenous overproduction of ROS and/or impairment of DNA repair ability. Collectively, our study provides the first demonstration that FAM122A is critical for maintaining DNA stability probably by modulating TOP2α protein, and FAM122A deletion combined with TOP2-targeted drugs may represent a potential novel chemotherapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Yin-Qi Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Sheng Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Hua Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Austin CA, Lee KC, Swan RL, Khazeem MM, Manville CM, Cridland P, Treumann A, Porter A, Morris NJ, Cowell IG. TOP2B: The First Thirty Years. Int J Mol Sci 2018; 19:ijms19092765. [PMID: 30223465 PMCID: PMC6163646 DOI: 10.3390/ijms19092765] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Type II DNA topoisomerases (EC 5.99.1.3) are enzymes that catalyse topological changes in DNA in an ATP dependent manner. Strand passage reactions involve passing one double stranded DNA duplex (transported helix) through a transient enzyme-bridged break in another (gated helix). This activity is required for a range of cellular processes including transcription. Vertebrates have two isoforms: topoisomerase IIα and β. Topoisomerase IIβ was first reported in 1987. Here we review the research on DNA topoisomerase IIβ over the 30 years since its discovery.
Collapse
Affiliation(s)
- Caroline A Austin
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ka C Lee
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Rebecca L Swan
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Mushtaq M Khazeem
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Catriona M Manville
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Peter Cridland
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Achim Treumann
- NUPPA, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Andrew Porter
- NUPPA, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Nick J Morris
- School of Biomedical Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ian G Cowell
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
5
|
The Roles of DNA Topoisomerase IIβ in Transcription. Int J Mol Sci 2018; 19:ijms19071917. [PMID: 29966298 PMCID: PMC6073266 DOI: 10.3390/ijms19071917] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022] Open
Abstract
Type IIA topoisomerases allow DNA double helical strands to pass through each other by generating transient DNA double strand breaks βDSBs), and in so doing, resolve torsional strain that accumulates during transcription, DNA replication, chromosome condensation, chromosome segregation and recombination. Whereas most eukaryotes possess a single type IIA enzyme, vertebrates possess two distinct type IIA topoisomerases, Topo IIα and Topo IIβ. Although the roles of Topo IIα, especially in the context of chromosome condensation and segregation, have been well-studied, the roles of Topo IIβ are only beginning to be illuminated. This review begins with a summary of the initial studies surrounding the discovery and characterization of Topo IIβ and then focuses on the insights gained from more recent studies that have elaborated important functions for Topo IIβ in transcriptional regulation.
Collapse
|
6
|
Ren L, Liu J, Gou K, Xing C. Copy number variation and high expression of DNA topoisomerase II alpha predict worse prognosis of cancer: a meta-analysis. J Cancer 2018; 9:2082-2092. [PMID: 29937926 PMCID: PMC6010676 DOI: 10.7150/jca.23681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Increasing numbers of literatures have investigated the association between TOP2A and cancer prognosis. But the results of the relationship between the two were inconclusive. The aim of this meta-analysis was to elucidate whether TOP2A could predict prognosis of cancer. Materials and Methods: A systematically searching for potentially valuable literature was conducted through electronic databases containing PubMed and Web of Science. Hazard Ratio (HR) and their 95% confidence interval (CI) were used to assess the strength of association between TOP2A and cancer prognosis. Results: Finally twenty-five studies were included in this meta-analysis. High expression of TOP2A was associated with shorter disease free survival (DFS) of cancer prognosis compared with low expression of TOP2A (HR= 1.36, 95% CI= 1.18-1.57, P<0.001). Amplification of TOP2A gene showed no significant association with overall survival (OS), disease free survival (DFS) or relapse free survival (RFS) compared with non-amplification of TOP2A (OS: HR= 0.96, 95%CI= 0.75-1.22, P= 0.735; DFS: HR= 0.93, 95%CI= 0.70-1.23, P= 0.621; RFS: HR= 0.97, 95%CI= 0.71-1.34, P= 0.867). In the subgroup of regions, TOP2A amplification was associated with longer overall survival (HR= 0.66, 95%CI= 0.46-0.96, P= 0.029) in Australia. Alteration (amplification or deletion) of TOP2A gene demonstrated shorter survival according to OS and RFS compared with those with normal TOP2A status (OS: HR= 1.37, 95%CI= 1.22-1.55, P<0.001; RFS: HR= 1.26, 95%CI= 1.12-1.41, P<0.001). Conclusion: High TOP2A expression suggested significant relationship with worse cancer prognosis. Alteration (amplification or deletion) of TOP2A gene was also significantly related to shorter survival of cancer patients. Therefore, TOP2A might be used as an indicator for poor prognosis of cancer in the future.
Collapse
Affiliation(s)
| | | | | | - Chengzhong Xing
- Department of anorectal surgery, the First Affiliated Hospital of China Medical University
| |
Collapse
|
7
|
Alikhani M, Mirzaei M, Sabbaghian M, Parsamatin P, Karamzadeh R, Adib S, Sodeifi N, Gilani MAS, Zabet-Moghaddam M, Parker L, Wu Y, Gupta V, Haynes PA, Gourabi H, Baharvand H, Salekdeh GH. Quantitative proteomic analysis of human testis reveals system-wide molecular and cellular pathways associated with non-obstructive azoospermia. J Proteomics 2017; 162:141-154. [DOI: 10.1016/j.jprot.2017.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/22/2017] [Accepted: 02/13/2017] [Indexed: 12/17/2022]
|
8
|
Uusküla-Reimand L, Hou H, Samavarchi-Tehrani P, Rudan MV, Liang M, Medina-Rivera A, Mohammed H, Schmidt D, Schwalie P, Young EJ, Reimand J, Hadjur S, Gingras AC, Wilson MD. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol 2016; 17:182. [PMID: 27582050 PMCID: PMC5006368 DOI: 10.1186/s13059-016-1043-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 08/10/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Type II DNA topoisomerases (TOP2) regulate DNA topology by generating transient double stranded breaks during replication and transcription. Topoisomerase II beta (TOP2B) facilitates rapid gene expression and functions at the later stages of development and differentiation. To gain new insight into the genome biology of TOP2B, we used proteomics (BioID), chromatin immunoprecipitation, and high-throughput chromosome conformation capture (Hi-C) to identify novel proximal TOP2B protein interactions and characterize the genomic landscape of TOP2B binding at base pair resolution. RESULTS Our human TOP2B proximal protein interaction network included members of the cohesin complex and nucleolar proteins associated with rDNA biology. TOP2B associates with DNase I hypersensitivity sites, allele-specific transcription factor (TF) binding, and evolutionarily conserved TF binding sites on the mouse genome. Approximately half of all CTCF/cohesion-bound regions coincided with TOP2B binding. Base pair resolution ChIP-exo mapping of TOP2B, CTCF, and cohesin sites revealed a striking structural ordering of these proteins along the genome relative to the CTCF motif. These ordered TOP2B-CTCF-cohesin sites flank the boundaries of topologically associating domains (TADs) with TOP2B positioned externally and cohesin internally to the domain loop. CONCLUSIONS TOP2B is positioned to solve topological problems at diverse cis-regulatory elements and its occupancy is a highly ordered and prevalent feature of CTCF/cohesin binding sites that flank TADs.
Collapse
Affiliation(s)
- Liis Uusküla-Reimand
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Huayun Hou
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | | | - Matteo Vietri Rudan
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Minggao Liang
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Alejandra Medina-Rivera
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Present address: International Laboratory for Research in Human Genomics, Universidad Nacional Autónoma de México, Juriquilla, Querétaro Mexico
| | - Hisham Mohammed
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Present address: The Babraham Institute, Cambridge, UK
| | - Dominic Schmidt
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Present address: Syncona Partners LLP, London, UK
| | - Petra Schwalie
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Present address: Laboratory of Systems Biology and Genetics, Lausanne, Switzerland
| | - Edwin J. Young
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
| | - Jüri Reimand
- Ontario Institute for Cancer Research, Toronto, ON Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Suzana Hadjur
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
9
|
Mladenović M, Stanković N, Matić S, Stanić S, Mihailović M, Mihailović V, Katanić J, Boroja T, Vuković N. Newly discovered chroman-2,4-diones neutralize the in vivo DNA damage induced by alkylation through the inhibition of Topoisomerase IIα: A story behind the molecular modeling approach. Biochem Pharmacol 2015; 98:243-66. [PMID: 26319574 DOI: 10.1016/j.bcp.2015.08.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023]
Abstract
Eight chroman-2,4-diones, namely 2a-h, previously investigated as anticoagulants, of which 2a and 2f as the most active, were evaluated as in vivo genotoxic agents in Wistar rat livers and kidneys using the comet assay. Compounds 2a, 2b, and 2f without genotoxic activity were applied prior to ethyl methanesulfonate (EMS) and diminished EMS-induced DNA damage according to the total score and percentage of reduction. EMS produce harmful O(6)-ethylguanine lesion which is incorporated in aberrant genotoxic GT and TG pairing after ATP-dependent DNA strand breaks have been catalyzed by rat Topoisomerase IIα (rTopIIα, EC 5.99.1.3). Therefore, the mechanism of 2a, 2b, and 2f antigenotoxic activity was investigated on the enzyme level using molecular docking and molecular dynamics simulations insamuch as it had been determined that compounds do not intercalate DNA but instead inhibit the ATPase activity. Calculations predicted that compounds inhibit ATP hydrolysis before the DNA-EMS cleavage is being catalyzed by rTopIIα, prevent EMS mutagenic and carcinogenic effects, and beside anticoagulant activity can even be applied in the cancer treatment to control the rate of anticancer alkylation drugs.
Collapse
Affiliation(s)
- Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Nevena Stanković
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Sanja Matić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Snežana Stanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Vladimir Mihailović
- Bioactive Natural Products Investigation, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Jelena Katanić
- Bioactive Natural Products Investigation, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Tatjana Boroja
- Bioactive Natural Products Investigation, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Nenad Vuković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| |
Collapse
|
10
|
Rao VA. Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxid Redox Signal 2013; 18:930-55. [PMID: 22900902 PMCID: PMC3557438 DOI: 10.1089/ars.2012.4877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. RECENT ADVANCES The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. CRITICAL ISSUES While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. FUTURE DIRECTIONS Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed.
Collapse
Affiliation(s)
- V Ashutosh Rao
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
11
|
Leduc F, Maquennehan V, Nkoma GB, Boissonneault G. DNA Damage Response During Chromatin Remodeling in Elongating Spermatids of Mice1. Biol Reprod 2008; 78:324-32. [DOI: 10.1095/biolreprod.107.064162] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
12
|
Nielsen KV, Ejlertsen B, Møller S, Jørgensen JT, Knoop A, Knudsen H, Mouridsen HT. The value of TOP2A gene copy number variation as a biomarker in breast cancer: Update of DBCG trial 89D. Acta Oncol 2008; 47:725-734. [PMID: 18465341 DOI: 10.1080/02841860801995396] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Previous analyses of TOP2A and HER2 in the Danish Breast Cancer Coopererative Group (DBCG) trial 89D suggested that TOP2A amplifications and possible also deletions are predictive markers for the effect of adjuvant epirubicin in patients with primary breast cancer. We present an updated and extended statistical analysis, requested for IVD-labeling of TOP2A testing. MATERIAL AND METHODS In the DBCG trial 89D 980 Danish patients were randomly assigned to nine cycles of intravenous CMF (cyclophosphamide, methotrexate, and fluorouracil) or CEF (cyclophosphamide, epirubicin, and fluorouracil). Archival tumor tissue was collected retrospectively from 806 of these patients in a prospectively designed, biological sub-study, and was successfully analyzed for TOP2A aberrations and HER2 status in 773 samples (96%). Recurrence-free survival (RFS) was the primary endpoint. RESULTS TOP2A aberrations (amplifications and deletions) were significantly associated with shorter RFS (p<0.0001) and overall survival (OS) (p<0.0001). Deleted cases had worse prognosis than amplified cases. In a Cox proportional hazard model TOP2A was an independent prognostic marker for RFS and OS. Patients with amplifications had a 61% reduction in the risk of an event (p=0.002) and a 51% reduction in the risk of death (p=0.01) if allocated to CEF compared to 6% and 10% in TOP2A normal patients. A similar but non-significant trend (p=0.08) was shown in patients with TOP2A deletions. Clear statistical evidence of a differential benefit, favoring CEF among patients with TOP2A aberrations was found for RFS (p=0.02 for interaction) but not for OS (p=0.14 for interaction). CONCLUSION In conclusion, this updated analysis of TOP2A aberrations in DBCG trial 89D suggests a differential benefit of adjuvant chemotherapy in patients with primary breast cancer, favoring treatment with epirubicin in patients with TOP2A amplifications, and perhaps deletions. Additional studies are needed to clarify the exact importance of TOP2A deletions on outcome, but deletions have proven to be associated with a very poor prognosis.
Collapse
|
13
|
Balan KV, Sitaras NM, Dimas K, Han Z, Wyche JH, Pantazis P. Differential susceptibility to etoposide in clones derived from a human ovarian cancer cell line. Chemotherapy 2006; 52:137-46. [PMID: 16645270 DOI: 10.1159/000093009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 07/29/2005] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To identify parameters/factors that may contribute to the differential sensitivity to etoposide in two clones isolated from the human ovarian carcinoma SKOV-3 cell line, which does not express p53 and is resistant to platinum-based regimens. METHODS Differential sensitivity of the cells to etoposide was monitored by microscopy to observe morphological changes, by flow cytometry analyses to detect cell cycle perturbations, and by molecular/biochemical assays to identify events involved in induction of apoptosis. RESULTS Etoposide treatment (1) induced apoptosis in one clone, ES, but not in another clone, ER, (2) had no effect on the expression of the antiapoptotic proteins Bcl-2 and Bcl-X(L) in both cell clones, whereas the proapoptotic proteins Bak and Bax were dramatically upregulated in ES, but not ER cells, and (3) induced more extensive processing of procaspase-8, procaspase-9, and the caspase-3-targeted substrates, topoisomerase I and PARP, in ES cells. Ectopic overexpression of Bcl-2 in ES cells failed to inhibit etoposide-induced apoptosis. CONCLUSIONS The differential susceptibility of ES and ER cells to etoposide-induced apoptosis is associated with differences in several events rather than with a specific single genetic regulator of the apoptotic machinery. We propose that the differential response of ovarian cancer patients to etoposide treatment is associated with the number of etoposide-sensitive cells in the tumor.
Collapse
Affiliation(s)
- K V Balan
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | | | | | | | | |
Collapse
|
14
|
Nebral K, Schmidt HH, Haas OA, Strehl S. NUP98 Is Fused to Topoisomerase (DNA) IIβ 180 kDa (TOP2B) in a Patient with Acute Myeloid Leukemia with a New t(3;11)(p24;p15). Clin Cancer Res 2005; 11:6489-94. [PMID: 16166424 DOI: 10.1158/1078-0432.ccr-05-0150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The nucleoporin 98 kDa (NUP98) gene has been reported to be fused to 17 different partner genes in various hematologic malignancies with 11p15 aberrations. Cytogenetic analysis of an adult de novo acute myelogenous leukemia (M5a) revealed a t(3;11)(p24;p15), suggesting rearrangement of NUP98 with a novel partner gene. EXPERIMENTAL DESIGN Fluorescence in situ hybridization (FISH) was used to confirm the involvement of NUP98 in the t(3;11)(p24;p15). Selection of possible NUP98 partner genes was done by computer-aided analysis of the 3p24 region using the University of California Santa Cruz genome browser. Fusion gene-specific FISH and reverse transcription-PCR analyses were done to verify the presence of the new NUP98 fusion. RESULTS FISH analysis using a NUP98-specific clone showed a split signal, indicating that the NUP98 gene was affected by the translocation. Of the genes localized at 3p24, TOP2B was selected as a possible fusion partner candidate gene. Dual-color fusion gene-specific FISH and reverse transcription-PCR analysis verified that NUP98 was indeed fused to TOP2B. In addition to reciprocal NUP98-TOP2B and TOP2B-NUP98 in-frame fusion transcripts, an alternatively spliced out-of-frame TOP2B-NUP98 transcript that resulted in a premature stop codon was detected. Analysis of the genomic breakpoints revealed typical signs of nonhomologous end joining resulting from error-prone DNA repair. CONCLUSIONS TOP2B encodes a type II topoisomerase, which is involved in DNA transcription, replication, recombination, and mitosis, and besides TOP1, represents the second NUP98 fusion partner gene that belongs to the topoisomerase gene family. This finding emphasizes the important role of topoisomerases in malignant transformation processes.
Collapse
MESH Headings
- Acute Disease
- Amino Acid Sequence
- Base Sequence
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 3/genetics
- DNA Topoisomerases, Type II/genetics
- DNA-Binding Proteins/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid/genetics
- Male
- Middle Aged
- Molecular Sequence Data
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Poly-ADP-Ribose Binding Proteins
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Translocation, Genetic
Collapse
Affiliation(s)
- Karin Nebral
- Children's Cancer Research Institute, Vienna, Austria
| | | | | | | |
Collapse
|
15
|
Shagisultanova EI, Piao Z, Li HR, Malkhosyan SR. Topoisomerase II gene mutations in tumors and tumor cell lines with microsatellite instability. Cancer Lett 2005; 216:221-6. [PMID: 15533598 DOI: 10.1016/j.canlet.2004.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 05/25/2004] [Accepted: 06/01/2004] [Indexed: 11/29/2022]
Abstract
Genetic or epigenetic inactivation of the DNA mismatch repair genes in tumor precursor cells results in a strong mutator phenotype, known as the microsatellite mutator phenotype (MMP), or microsatellite instability (MSI). This mutator phenotype causes mutations in genes responsible for the regulation of cell growth and survival/death and thus promotes the development and progression of tumors. In the present study, we examined the DNA topoisomerase II genes (topIIalpha and topIIbeta) as mutational targets for MMP. We screened 10 MSI-positive human tumor cell lines and 30 MSI-positive colorectal tumors for mutations within the entire coding region of the topIIalpha gene and two coding poly(A)7 sequences of topIIbeta. Mutations in either the topIIalpha or topIIbeta gene were found with an overall frequency of 18% (in 10% of the primary tumors and in 44% of the cell lines). This indicates that modulation of the DNA topoisomerase II (TOPII) activity may be important for the development of MSI-positive cancer.
Collapse
|
16
|
Low RL, Orton S, Friedman DB. A truncated form of DNA topoisomerase IIbeta associates with the mtDNA genome in mammalian mitochondria. ACTA ACUST UNITED AC 2003; 270:4173-86. [PMID: 14519130 DOI: 10.1046/j.1432-1033.2003.03814.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the likely requirement for a DNA topoisomerase II activity during synthesis of mitochondrial DNA in mammals, this activity has been very difficult to identify convincingly. The only DNA topoisomerase II activity conclusively demonstrated to be mitochondrial in origin is that of a type II activity found associated with the mitochondrial, kinetoplast DNA network in trypanosomatid protozoa [Melendy, T., Sheline, C., and Ray, D.S. (1988) Cell 55, 1083-1088; Shapiro, T.A., Klein, V.A., and Englund, P.A. (1989) J. Biol. Chem.264, 4173-4178]. In the present study, we report the discovery of a type DNA topoisomerase II activity in bovine mitochondria. Identified among mtDNA replicative proteins recovered from complexes of mtDNA and protein, the DNA topoisomerase relaxes a negatively, supercoiled DNA template in vitro, in a reaction that requires Mg2+ and ATP. The relaxation activity is inhibited by etoposide and other inhibitors of eucaryotic type II enzymes. The DNA topoisomerase II copurifies with mitochondria and directly associates with mtDNA, as indicated by sensitivity of some mtDNA circles in the isolated complex of mtDNA and protein to cleavage by etoposide. The purified activity can be assigned to a approximately 150-kDa protein, which is recognized by a polyclonal antibody made against the trypanosomal mitochondrial topo II enzyme. Mass spectrometry performed on peptides prepared from the approximately 150-kDa protein demonstrate that this bovine mitochondrial activity is a truncated version of DNA topoisomerase IIbeta, one of two DNA topoisomerase II activities known to exist in mammalian nuclei.
Collapse
Affiliation(s)
- Robert L Low
- Department of Pathology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | |
Collapse
|
17
|
Abstract
The phylogenetic antiquity of DNA topoisomerases indicates their vital function. Structure and maintenance of genomic DNA depend on the activity of these enzymes, and without them DNA replication and cell division are impossible. Topoisomerase II alpha has therefore become the main target of many antitumour therapy regimens, even though the exact mechanism of cell killing remains elusive. The success of this approach is limited by the development of spontaneous resistance, and drug-induced DNA damage can increase malignancy. Nevertheless, the combined use of topoisomerase-inhibiting drugs with different mechanisms of action promises to improve particular treatment designs. The degree of topoisomerase II expression in tumours may predict the clinical course and responsiveness to therapy.
Collapse
Affiliation(s)
- Udo Kellner
- Department of Pathology, University of Magdeburg, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
18
|
Abstract
DNA topoisomerases solve the topological problems associated with DNA replication, transcription, recombination, and chromatin remodeling by introducing temporary single- or double-strand breaks in the DNA. In addition, these enzymes fine-tune the steady-state level of DNA supercoiling both to facilitate protein interactions with the DNA and to prevent excessive supercoiling that is deleterious. In recent years, the crystal structures of a number of topoisomerase fragments, representing nearly all the known classes of enzymes, have been solved. These structures provide remarkable insights into the mechanisms of these enzymes and complement previous conclusions based on biochemical analyses. Surprisingly, despite little or no sequence homology, both type IA and type IIA topoisomerases from prokaryotes and the type IIA enzymes from eukaryotes share structural folds that appear to reflect functional motifs within critical regions of the enzymes. The type IB enzymes are structurally distinct from all other known topoisomerases but are similar to a class of enzymes referred to as tyrosine recombinases. The structural themes common to all topoisomerases include hinged clamps that open and close to bind DNA, the presence of DNA binding cavities for temporary storage of DNA segments, and the coupling of protein conformational changes to DNA rotation or DNA movement. For the type II topoisomerases, the binding and hydrolysis of ATP further modulate conformational changes in the enzymes to effect changes in DNA topology.
Collapse
Affiliation(s)
- J J Champoux
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195-7242, USA.
| |
Collapse
|
19
|
Yakisich JS, Sidén A, Eneroth P, Cruz M. Disulfiram is a potent in vitro inhibitor of DNA topoisomerases. Biochem Biophys Res Commun 2001; 289:586-90. [PMID: 11716515 DOI: 10.1006/bbrc.2001.6027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The drug disulfiram is a thiol-reacting drug that is relatively nontoxic when used alone and has been used in the therapy of alcohol abuse for more than 40 years. Several effects of this drug have been reported for DNA synthesis and cell proliferation. In this study, the inhibitory effect of disulfiram on topoisomerase I and II activity was investigated by measuring the relaxation of superhelical plasmid pBR322 DNA. Disulfiram (1-100 microM) inhibited topoisomerase I and II in a concentration-dependent manner (IC(50) congruent with 42 +/- 8 and 30 +/- 9 microM, respectively). Consistent with the assumption that a thiol residue is involved, dithiothreitol (1 mM) markedly prevented the inhibitory effect of disulfiram on the activity of both classes of topoisomerases. These findings might explain certain aspects of disulfiram toxicity and encourage new studies to determine the usefulness of this drug and its analogues as antineoplastic agent.
Collapse
Affiliation(s)
- J S Yakisich
- Applied Biochemistry, Clinical Research Center, Karolinska Institute, Novum, Huddinge University Hospital, S-141 86 Huddinge, Sweden.
| | | | | | | |
Collapse
|