1
|
Dent MAR, Aranda-Anzaldo A. Lessons we can learn from neurons to make cancer cells quiescent. J Neurosci Res 2019; 97:1141-1152. [PMID: 30985022 DOI: 10.1002/jnr.24428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/20/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
Cancer is a major concern for contemporary societies. However, the incidence of cancer is unevenly distributed among tissues and cell types. In particular, the evidence indicates that neurons are absolutely resistant to cancer and this is commonly explained on the basis of the known postmitotic state of neurons. The dominant paradigm on cancer understands this problem as a disease caused by mutations in cellular genes that result in unrestrained cell proliferation and eventually in tissue invasion and metastasis. However, the evidence also shows that mutations and gross chromosomal anomalies are common in functional neurons that nevertheless do not become neoplastic. This fact suggests that in the real nonexperimental setting mutations per se are not enough for inducing carcinogenesis but also that the postmitotic state of neurons is not genetically controlled or determined, otherwise there should be reports of spontaneously transformed neurons. Here we discuss the evidence that the postmitotic state of neurons has a structural basis on the high stability of their nuclear higher order structure that performs like an absolute tumor suppressor. We also discuss evidence that it is possible to induce a similar structural postmitotic state in nonneural cell types as a practical strategy for stopping or reducing the progression of cancer.
Collapse
Affiliation(s)
- Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
2
|
Silva-Santiago E, Pardo JP, Hernández-Muñoz R, Aranda-Anzaldo A. The nuclear higher-order structure defined by the set of topological relationships between DNA and the nuclear matrix is species-specific in hepatocytes. Gene 2017; 597:40-48. [PMID: 27771449 DOI: 10.1016/j.gene.2016.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
During the interphase the nuclear DNA of metazoan cells is organized in supercoiled loops anchored to constituents of a nuclear substructure or compartment known as the nuclear matrix. The stable interactions between DNA and the nuclear matrix (NM) correspond to a set of topological relationships that define a nuclear higher-order structure (NHOS). Current evidence suggests that the NHOS is cell-type-specific. Biophysical evidence and theoretical models suggest that thermodynamic and structural constraints drive the actualization of DNA-NM interactions. However, if the topological relationships between DNA and the NM were the subject of any biological constraint with functional significance then they must be adaptive and thus be positively selected by natural selection and they should be reasonably conserved, at least within closely related species. We carried out a coarse-grained, comparative evaluation of the DNA-NM topological relationships in primary hepatocytes from two closely related mammals: rat and mouse, by determining the relative position to the NM of a limited set of target sequences corresponding to highly-conserved genomic regions that also represent a sample of distinct chromosome territories within the interphase nucleus. Our results indicate that the pattern of topological relationships between DNA and the NM is not conserved between the hepatocytes of the two closely related species, suggesting that the NHOS, like the karyotype, is species-specific.
Collapse
Affiliation(s)
- Evangelina Silva-Santiago
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180, Edo. Méx., Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, 04510, Ciudad de México, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, 04510, Ciudad de México, Mexico
| | - Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180, Edo. Méx., Mexico.
| |
Collapse
|
3
|
Pandey SN, Cabotage J, Shi R, Dixit M, Sutherland M, Liu J, Muger S, Harper SQ, Nagaraju K, Chen YW. Conditional over-expression of PITX1 causes skeletal muscle dystrophy in mice. Biol Open 2012; 1:629-639. [PMID: 23125914 PMCID: PMC3486706 DOI: 10.1242/bio.20121305] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Paired-like homeodomain transcription factor 1 (PITX1) was specifically up-regulated in patients with facioscapulohumeral muscular dystrophy (FSHD) by comparing the genome-wide mRNA expression profiles of 12 neuromuscular disorders. In addition, it is the only known direct transcriptional target of the double homeobox protein 4 (DUX4) of which aberrant expression has been shown to be the cause of FSHD. To test the hypothesis that up-regulation of PITX1 contributes to the skeletal muscle atrophy seen in patients with FSHD, we generated a tet-repressible muscle-specific Pitx1 transgenic mouse model in which expression of PITX1 in skeletal muscle can be controlled by oral administration of doxycycline. After PITX1 was over-expressed in the skeletal muscle for 5 weeks, the mice exhibited significant loss of body weight and muscle mass, decreased muscle strength, and reduction of muscle fiber diameters. Among the muscles examined, the tibialis anterior, gastrocnemius, quadricep, bicep, tricep and deltoid showed significant reduction of muscle mass, while the soleus, masseter and diaphragm muscles were not affected. The most prominent pathological change was the development of atrophic muscle fibers with mild necrosis and inflammatory infiltration. The affected myofibers stained heavily with NADH-TR with the strongest staining in angular-shaped atrophic fibers. Some of the atrophic fibers were also positive for embryonic myosin heavy chain using immunohistochemistry. Immunoblotting showed that the p53 was up-regulated in the muscles over-expressing PITX1. The results suggest that the up-regulation of PITX1 followed by activation of p53-dependent pathways may play a major role in the muscle atrophy developed in the mouse model.
Collapse
Affiliation(s)
- Sachchida N. Pandey
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jennifer Cabotage
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Rongye Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Manjusha Dixit
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Margret Sutherland
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jian Liu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Stephanie Muger
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Scott Q. Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
| |
Collapse
|
4
|
Alva-Medina J, Maya-Mendoza A, Dent MAR, Aranda-Anzaldo A. Continued stabilization of the nuclear higher-order structure of post-mitotic neurons in vivo. PLoS One 2011; 6:e21360. [PMID: 21731716 PMCID: PMC3121788 DOI: 10.1371/journal.pone.0021360] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/26/2011] [Indexed: 11/19/2022] Open
Abstract
Background Cellular terminal differentiation (TD) correlates with a permanent exit from the cell cycle and so TD cells become stably post-mitotic. However, TD cells express the molecular machinery necessary for cell proliferation that can be reactivated by experimental manipulation, yet it has not been reported the stable proliferation of any type of reactivated TD cells. Neurons become post-mitotic after leaving the ventricular zone. When neurons are forced to reenter the cell cycle they invariably undergo cell death. Wider evidence indicates that the post-mitotic state cannot solely depend on gene products acting in trans, otherwise mutations in the corresponding genes may lead to reentry and completion of the cell cycle in TD cells, but this has not been observed. In the interphase, nuclear DNA of metazoan cells is organized in supercoiled loops anchored to a nuclear nuclear matrix (NM). The DNA-NM interactions define a higher-order structure in the cell nucleus (NHOS). We have previously compared the NHOS of aged rat hepatocytes with that of early post-mitotic rat neurons and our results indicated that a very stable NHOS is a common feature of both senescent and post-mitotic cells in vivo. Principal Findings In the present work we compared the NHOS in rat neurons from different post-natal ages. Our results show that the trend towards further stabilization of the NHOS in neurons continues throughout post-natal life. This phenomenon occurs in absence of overt changes in the post-mitotic state and transcriptional activity of neurons, suggesting that it is independent of functional constraints. Conclusions Apparently the continued stabilization of the NHOS as a function of time is basically determined by thermodynamic and structural constraints. We discuss how the resulting highly stable NHOS of neurons may be the structural, non-genetic basis of their permanent and irreversible post-mitotic state.
Collapse
Affiliation(s)
- Janeth Alva-Medina
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - Apolinar Maya-Mendoza
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - Myrna A. R. Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
- * E-mail:
| |
Collapse
|
5
|
Rivera-Mulia JC, Aranda-Anzaldo A. Determination of the in vivo structural DNA loop organization in the genomic region of the rat albumin locus by means of a topological approach. DNA Res 2010; 17:23-35. [PMID: 20047947 PMCID: PMC2818189 DOI: 10.1093/dnares/dsp027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear DNA of metazoans is organized in supercoiled loops anchored to a proteinaceous substructure known as the nuclear matrix (NM). DNA is anchored to the NM by non-coding sequences known as matrix attachment regions (MARs). There are no consensus sequences for identification of MARs and not all potential MARs are actually bound to the NM constituting loop attachment regions (LARs). Fundamental processes of nuclear physiology occur at macromolecular complexes organized on the NM; thus, the topological organization of DNA loops must be important. Here, we describe a general method for determining the structural DNA loop organization in any large genomic region with a known sequence. The method exploits the topological properties of loop DNA attached to the NM and elementary topological principles such as that points in a deformable string (DNA) can be positionally mapped relative to a position-reference invariant (NM), and from such mapping, the configuration of the string in third dimension can be deduced. Therefore, it is possible to determine the specific DNA loop configuration without previous characterization of the LARs involved. We determined in hepatocytes and B-lymphocytes of the rat the DNA loop organization of a genomic region that contains four members of the albumin gene family.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Apartado Postal 428, Toluca, Edo. Méx., México
| | | |
Collapse
|
6
|
Aranda-Anzaldo A. A structural basis for cellular senescence. Aging (Albany NY) 2009; 1:598-607. [PMID: 20157542 PMCID: PMC2806039 DOI: 10.18632/aging.100074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 07/28/2009] [Indexed: 12/18/2022]
Abstract
Replicative
senescence (RS) that limits the proliferating potential of normal
eukaryotic cells occurs either by a cell-division counting mechanism linked
to telomere erosion or prematurely through induction by cell stressors such
as oncogene hyper-activation. However, there is evidence that RS also
occurs by a stochastic process that is independent of number of cell
divisions or cellular stress and yet it leads to a highly-stable,
non-reversible post-mitotic state that may be long-lasting and that such a
process is widely represented among higher eukaryotes. Here I present and
discuss evidence that the interactions between DNA and the nuclear
substructure, commonly known as the nuclear matrix, define a higher-order
structure within the cell nucleus that following thermodynamic constraints,
stochastically evolves towards maximum stability, thus becoming limiting
for mitosis to occur. It is suggested that this process is responsible for
ultimate replicative senescence and yet it is compatible with long-term
cell survival.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza, Toluca, Edo. Méx., México.
| |
Collapse
|
7
|
Martínez-Ramos I, Maya-Mendoza A, Gariglio P, Aranda-Anzaldo A. A global but stable change in HeLa cell morphology induces reorganization of DNA structural loop domains within the cell nucleus. J Cell Biochem 2008; 96:79-88. [PMID: 16052476 DOI: 10.1002/jcb.20428] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA of higher eukaryotes is organized in supercoiled loops anchored to a nuclear matrix (NM). The DNA loops are attached to the NM by means of non-coding sequences known as matrix attachment regions (MARs). Attachments to the NM can be subdivided in transient and permanent, the second type is considered to represent the attachments that subdivide the genome into structural domains. As yet very little is known about the factors involved in modulating the MAR-NM interactions. It has been suggested that the cell is a vector field in which the linked cytoskeleton-nucleoskeleton may act as transducers of mechanical information. We have induced a stable change in the typical morphology of cultured HeLa cells, by chronic exposure of the cells to the polar compound dimethylsulfoxide (DMSO). Using a PCR-based method for mapping the position of any DNA sequence relative to the NM, we have monitored the position relative to the NM of sequences corresponding to four independent genetic loci located in separate chromosomes representing different territories within the cell nucleus. Here, we show that stable modification of the NM morphology correlates with the redefinition of DNA loop structural domains as evidenced by the shift of position relative to the NM of the c-myc locus and the multigene locus PRM1 --> PRM2 --> TNP2, suggesting that both cell and nuclear shape may act as cues in the choice of the potential MARs that should be attached to the NM.
Collapse
Affiliation(s)
- Isy Martínez-Ramos
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Apartado Postal 428, C.P. 50000, Toluca, Edo. Méx., México
| | | | | | | |
Collapse
|
8
|
Sengupta S, Harris CC. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 2005; 6:44-55. [PMID: 15688066 DOI: 10.1038/nrm1546] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p53 mutants that lack DNA-binding activities, and therefore, transcriptional activities, are among the most common mutations in human cancer. Recently, a new role for p53 has come to light, as the tumour suppressor also functions in DNA repair and recombination. In cooperation with its function in transcription, the transcription-independent roles of p53 contribute to the control and efficiency of DNA repair and recombination.
Collapse
Affiliation(s)
- Sagar Sengupta
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 3068, Bethesda, Maryland, 20892-4255, USA
| | | |
Collapse
|
9
|
Maya-Mendoza A, Hernández-Muñoz R, Gariglio P, Aranda-Anzaldo A. Gene positional changes relative to the nuclear substructure correlate with the proliferating status of hepatocytes during liver regeneration. Nucleic Acids Res 2003; 31:6168-79. [PMID: 14576303 PMCID: PMC275467 DOI: 10.1093/nar/gkg825] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 09/10/2003] [Accepted: 09/10/2003] [Indexed: 11/14/2022] Open
Abstract
In the interphase nucleus the DNA of higher eukaryotes is organised in loops anchored to a proteinaceous substructure variously named but commonly known as the nuclear matrix. Important processes of nuclear physiology, such as replication, transcription and processing of primary transcripts, occur at macromolecular complexes located at discrete sites upon the nuclear substructure. The topological relationships between gene sequences located in the DNA loops and the nuclear substructure appear to be non-random, thus posing the question of whether such relationships remain invariant or change after the critical nuclear transitions associated with cell proliferation and tissue regeneration in vivo. The hepatocytes are cells that preserve a proliferating capacity that is readily displayed after partial ablation of the liver, leading to liver regeneration in experimental animals such as the rat. Using this animal model coupled to a recently developed PCR-based method for mapping the position of specific DNA sequences relative to the nuclear substructure, we provide evidence that transient changes in the topological relationships between specific genes and the nuclear substructure occur during liver regeneration and that such changes correlate with the actual proliferating status of the cells, thus suggesting that specific transitions in the higher-order DNA structure are characteristic of the quiescent (G0) and replicating (S) phases of the cell cycle in vivo.
Collapse
Affiliation(s)
- Apolinar Maya-Mendoza
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Apartado Postal 428, C.P. 50000, Toluca, Edo. Méx., México
| | | | | | | |
Collapse
|
10
|
Abstract
Development is a very robust but far from perfect process, subjected to random variation due to the combined factors that constitute the so-called developmental noise. The effects of early developmental noise may have long-term consequences resulting from slight differences in the make-up and organisation of the former developing system. Here we present evidence suggesting that cancer is not an acquired but an intrinsic process resulting from random factors acting during early development, thus leading to a mixture of susceptibility types that may develop cancer sooner or later, depending on the combination of the environment acting upon such different susceptibility types. We discuss evidence suggesting that some supposedly tumour-suppressor functions, such as those associated with the p53 protein, actually evolved as buffering functions against the early effects of developmental noise that might compromise the stability of embryonic cells and hence of development. Ageing is a stochastic process characterised by progressive failure of somatic maintenance and repair. We put forth the notion that progressive loss of the morphological coherence of the organism (morphological disorder) is a form of ageing, and that morphological disorder is the common theme of most types of cancer. Thus, we suggest that the exhaustion of both developmental constraints and buffering developmental mechanisms link ageing and cancer. Moreover, we propose that cancer may represent one of the most radical forms of ageing, because it generally satisfies the criteria of senescence: intrinsicality, progressiveness and deleteriousness.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Apartado Postal 428, C.P. 50000, Toluca, Edo. México, Mexico.
| | | |
Collapse
|
11
|
Abstract
Complex living organisms possess qualities that cannot be reduced to the simple addition of quantities. Among such qualities are a specific form and a specific organization. Thinking about morphological aspects is a prime example of the qualitative approach to biological matters. Such a morphogenetic perspective has been continuously developed, both theoretically and experimentally, along the past century, even though it is now rather marginal within a mainstream dominated by molecular biology. However, the morphogenetic outlook can be applied to the understanding of complex biological phenomena, such as cancer. This phenomenon is currently explained as a cellular problem caused by specific gene mutations and/or specific loss of gene regulation. Nevertheless, cancer is a problem that affects the whole organism. Contemporary research based on the genetic paradigm of cancer causation has led to paradoxes and anomalies that cannot be explained within such a reductionist paradigm. Here it is proposed that real, non-experimental, sporadic cancer may be understood as a conflict between an organized morphology (the organism) and a part of such a morphology that drifts towards an amorphous state (the tumour). Thus, rare, sporadic cancer in children can be the result of early disruption of the developmental constraints before the organism has achieved its morphological maturity. While common sporadic cancer in aged individuals may ensue as a result of the weakening or exhaustion of the developmental constraints that determine the morphological stability of the organism, once the organism is past its reproductive prime.
Collapse
Affiliation(s)
- A Aranda-Anzaldo
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico.
| |
Collapse
|
12
|
Whittle CA, Beardmore T, Johnston MO. Is G1 arrest in plant seeds induced by a p53-related pathway? TRENDS IN PLANT SCIENCE 2001; 6:248-251. [PMID: 11378465 DOI: 10.1016/s1360-1385(01)01952-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In mammals, p53 is crucial for inducing the genes that lead to G1 arrest following DNA damage, enabling DNA repair. However, the possibility that such a system exists in plants has attracted little attention. Even though some plant cDNA sequences with partial homology to p53 have been reported recently, there has been little analysis of how these molecules might relate to DNA damage. The lack of investigation into whether a DNA-damage-induced, p53-mediated G1-arrest pathway might exist in plants is remarkable given that plant DNA, like that of all organisms, is continually under the threat of attack.
Collapse
Affiliation(s)
- C A Whittle
- Dept Biology, Dalhousie University, 1355 Oxford St, NS, E3H 4J1, Halifax, Canada.
| | | | | |
Collapse
|
13
|
McKay BC, Chen F, Perumalswami CR, Zhang F, Ljungman M. The tumor suppressor p53 can both stimulate and inhibit ultraviolet light-induced apoptosis. Mol Biol Cell 2000; 11:2543-51. [PMID: 10930452 PMCID: PMC14938 DOI: 10.1091/mbc.11.8.2543] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously shown that the tumor suppressor p53 can play a protective role against UV-induced apoptosis in human fibroblasts. In the present study, we investigated whether the protective function of p53 expression is established before or after UV irradiation. Using a stable human cell line expressing a murine temperature-sensitive p53 in which p53 function could be tightly and reversibly regulated, we found that functional p53 stimulated the induction of apoptosis when expressed for as little as 4-12 h after UV irradiation and that this induction was not dependent on de novo protein synthesis. In contrast, expression of p53 for 12 h or more before UV irradiation reduced the extent of apoptosis even when functional p53 expression was maintained after irradiation. The protection conferred by p53 required ongoing protein synthesis and correlated with enhanced recovery of mRNA synthesis. Together, these results suggest that p53 induces distinct proapoptotic and antiapoptotic signals and that these opposing activities can be separated both temporally and by their requirement for de novo protein synthesis. These findings may have important implications for the refinement of gene therapy approaches combining p53 with pharmacological agents that target transcription or translation.
Collapse
Affiliation(s)
- B C McKay
- Department of Radiation Oncology, Division of Cancer Biology, University of Michigan Comprehensive Cancer Center, Ann Arbor 48109-0936, USA
| | | | | | | | | |
Collapse
|