1
|
Gupta S, Gupta A, Mukherjee M, Bose S, Sinha S. Chemical Insights into Oligonucleotide-Protein Binding for Therapeutic Applications. J Med Chem 2025; 68:9848-9863. [PMID: 40332202 DOI: 10.1021/acs.jmedchem.5c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Plasma protein binding is an important determinant in the clinical success of oligonucleotide-based drugs. Optimal protein binding of the oligonucleotide is critical to its tissue distribution and retention by preventing renal excretion. This property can be modulated through suitable chemical modifications depending on the oligonucleotide backbone to achieve a balanced pharmacokinetic profile and minimize off-target effects. The macromolecular structure of the oligonucleotide leads to dynamic protein binding characteristics as compared to small-molecule-based drugs, which are not associated with additional barriers such as intracellular delivery. This perspective provides insight into the diverse plasma protein interactions of various classes of oligonucleotides and explores chemical strategies for modulating these interactions. Furthermore, we have discussed different methods for the quantification of plasma protein binding along with the correlation of chemistry and therapeutic outcomes of FDA-approved oligonucleotides.
Collapse
Affiliation(s)
- Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhishek Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Maria Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sritama Bose
- Medical Research Council, Nucleic Acid Therapy Accelerator, (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Dhara D, Mulard LA, Hollenstein M. Natural, modified and conjugated carbohydrates in nucleic acids. Chem Soc Rev 2025; 54:2948-2983. [PMID: 39936337 DOI: 10.1039/d4cs00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Storage of genetic information in DNA occurs through a unique ordering of canonical base pairs. However, this would not be possible in the absence of the sugar-phosphate backbone which is essential for duplex formation. While over a hundred nucleobase modifications have been identified (mainly in RNA), Nature is rather conservative when it comes to alterations at the level of the (deoxy)ribose sugar moiety. This trend is not reflected in synthetic analogues of nucleic acids where modifications of the sugar entity is commonplace to improve the properties of DNA and RNA. In this review article, we describe the main incentives behind sugar modifications in nucleic acids and we highlight recent progress in this field with a particular emphasis on therapeutic applications, the development of xeno-nucleic acids (XNAs), and on interrogating nucleic acid etiology. We also describe recent strategies to conjugate carbohydrates and oligosaccharides to oligonucleotides since this represents a particularly powerful strategy to improve the therapeutic index of oligonucleotide drugs. The advent of glycoRNAs combined with progress in nucleic acid and carbohydrate chemistry, protein engineering, and delivery methods will undoubtedly yield more potent sugar-modified nucleic acids for therapeutic, biotechnological, and synthetic biology applications.
Collapse
Affiliation(s)
- Debashis Dhara
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Laurence A Mulard
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
3
|
Ahlskog N, Svrzikapa N, Abuhamdah R, Kye M, Jad Y, Feng N, Hanson B, Wood MJ, Roberts TC. uORF-targeting steric block antisense oligonucleotides do not reproducibly increase RNASEH1 expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102406. [PMID: 39759875 PMCID: PMC11697566 DOI: 10.1016/j.omtn.2024.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
Upstream open reading frames (uORFs) are cis-regulatory motifs that are predicted to occur in the 5' UTRs of the majority of human protein-coding transcripts and are typically associated with translational repression of the downstream primary open reading frame (pORF). Interference with uORF activity provides a potential mechanism for targeted upregulation of the expression of specific transcripts. It was previously reported that steric block antisense oligonucleotides (ASOs) can bind to and mask uORF start codons to inhibit translation initiation, and thereby disrupt uORF-mediated gene regulation. Given the relative maturity of the oligonucleotide field, such a uORF blocking mechanism might have widespread therapeutic utility. Here, we re-synthesized three of the most potent ASOs targeting the RNASEH1 uORF described in a study by Liang et al. and investigated their potential for RNASEH1 protein upregulation, with care taken to replicate the conditions of the original study. No upregulation (of endogenous or reporter protein expression) was observed with any of the oligonucleotides tested at doses ranging from 25 to 300 nM. Conversely, we observed downregulation of expression in some instances. We conclude that previously described RNASEH1 uORF-targeting steric block ASOs are incapable of upregulating pORF protein expression in our hands.
Collapse
Affiliation(s)
- Nina Ahlskog
- Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
| | - Nenad Svrzikapa
- Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK
- Wave Life Science, Cambridge, MA 02138, USA
- Orfonyx Bio Ltd., BioEscalator, University of Oxford, Innovation Building, Rm. 10.15, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Rushdie Abuhamdah
- Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
| | - Mahnseok Kye
- Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
| | - Yahya Jad
- Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
| | - Ning Feng
- Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
| | - Britt Hanson
- Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Matthew J.A. Wood
- Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, South Parks Road, Oxford OX3 7TY, UK
| | - Thomas C. Roberts
- Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, South Parks Road, Oxford OX3 7TY, UK
| |
Collapse
|
4
|
Leckie J, Yokota T. Integrating Machine Learning-Based Approaches into the Design of ASO Therapies. Genes (Basel) 2025; 16:185. [PMID: 40004514 PMCID: PMC11855077 DOI: 10.3390/genes16020185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Rare diseases impose a significant burden on affected individuals, caregivers, and healthcare systems worldwide. Developing effective therapeutics for these small patient populations presents substantial challenges. Antisense oligonucleotides (ASOs) have emerged as a promising therapeutic approach that targets the underlying genetic cause of disease at the RNA level. Several ASOs have gained FDA approval for the treatment of genetic conditions, including use in personalized N-of-1 trials. However, despite their potential, ASOs often exhibit limited clinical efficacy, and optimizing their design is a complex process influenced by numerous factors. Machine learning-based platforms, including eSkip-Finder and ASOptimizer, have been developed to address these challenges by predicting optimal ASO sequences and chemical modifications to enhance efficacy. eSkip-Finder focuses on exon-skipping applications, while ASOptimizer aims to optimize ASOs for RNA degradation. Preliminary in vitro results have demonstrated the promising predictive power of these platforms. However, limitations remain, including their generalizability to alternative targets and gaps in their consideration of all factors influencing ASO efficacy and safety. Continued advancements in machine learning models, alongside efforts to incorporate additional features affecting ASO efficacy and safety, hold significant promise for the field. These platforms have the potential to streamline ASO development, reduce associated costs, and improve clinical outcomes, positioning machine learning as a key tool in the future of ASO therapeutics.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
5
|
Tripathy RK, Pande AH. Nanobody-Oligonucleotide Conjugates (NucleoBodies): The Next Frontier in Oligonucleotide Therapy. Pharm Res 2025; 42:219-236. [PMID: 39953265 DOI: 10.1007/s11095-025-03829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
As of now, more than 15 oligonucleotide drugs, primarily small interfering RNAs and antisense oligonucleotide classes, have been approved by the US FDA for therapeutic use, and many more are under clinical trials. However, safe and effective delivery of the oligonucleotide-based drugs to the target tissue still remains a major challenge. For enhanced plasma half-life, effective endosomal release, and other multiple functionalities, various carrier molecules have been used over the years. The successful therapeutic application of antibody-drug conjugates has made antibodies a popular choice for the delivery of oligonucleotide payloads into the target tissues. Single-chain variable domains of heavy chain antibodies (nanobodies) have proven a promising alternative to antibodies in recent years due to their small size, high affinity for the target, cell-penetrating potency, simple and easy production. The present review highlights the oligonucleotide drug types and their conjugation with nanobodies called NucleoBodies for effective targeted delivery, detection and diagnostics.
Collapse
Affiliation(s)
- Rajan K Tripathy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
6
|
Tzaban S, Stern O, Zisman E, Eisenberg G, Klein S, Frankenburg S, Lotem M. Alternative splicing of modulatory immune receptors in T lymphocytes: a newly identified and targetable mechanism for anticancer immunotherapy. Front Immunol 2025; 15:1490035. [PMID: 39845971 PMCID: PMC11752881 DOI: 10.3389/fimmu.2024.1490035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Abstract
Alternative splicing (AS) is a mechanism that generates translational diversity within a genome. Equally important is the dynamic adaptability of the splicing machinery, which can give preference to one isoform over others encoded by a single gene. These isoform preferences change in response to the cell's state and function. Particularly significant is the impact of physiological alternative splicing in T lymphocytes, where specific isoforms can enhance or reduce the cells' reactivity to stimuli. This process makes splicing isoforms defining features of cell states, exemplified by CD45 splice isoforms, which characterize the transition from naïve to memory states. Two developments have accelerated the use of AS dynamics for therapeutic interventions: advancements in long-read RNA sequencing and progress in nucleic acid chemical modifications. Improved oligonucleotide stability has enabled their use in directing splicing to specific sites or modifying sequences to enhance or silence particular splicing events. This review highlights immune regulatory splicing patterns with potential significance for enhancing anticancer immunotherapy.
Collapse
Affiliation(s)
- Shay Tzaban
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Stern
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Zisman
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Eisenberg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shiri Klein
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shoshana Frankenburg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Lotem
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
- Hadassah Cancer Research Institute, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
7
|
Galindo-Murillo R, Cohen J, Akabayov B. Comparative molecular dynamics calculations of duplexation of chemically modified analogs of DNA used for antisense applications. NAR Genom Bioinform 2024; 6:lqae155. [PMID: 39633726 PMCID: PMC11616695 DOI: 10.1093/nargab/lqae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
We have subjected several analogs of DNA that have been widely used as antisense oligonucleotide (ASO) inhibitors of gene expression to comparative molecular dynamics (MD) calculations of their ability to form duplexes with DNA and RNA. The analogs included in this study are the phosphorothioate (PS), peptide nucleic acid (PNA), locked nucleic acid (LNA), morpholino nucleic acid (PMO), the 2'-OMe, 2'-F, 2'-methoxyethyl (2'-MOE) and the constrained cET analogs, as well as the natural phosphodiester (PO) as control, for a total of nine structures, in both XNA-DNA and XNA-RNA duplexes. This is intended as an objective criterion for their relative ability to duplex with an RNA complement and their comparative potential for antisense applications. We have found that the constrained furanose ring analogs show increased stability when considering this study's structural and energetic parameters. The 2'-MOE modification, even though energetically stable, has an elevated dynamic range and breathing properties due to the bulkier moiety in the C2' position of the furanose. The smaller modifications in the C2' position, 2'-F, 2'-OMe and PS also form stable and energetically favored duplexes with both DNA and RNA. The morpholino moiety allows for increased tolerance in accommodating either DNA or RNA and the PNA, with the PNA being the most energetically stable, although with a preference for the B-form DNA. In summary, we can rank the overall preference of hybrid strand formations as PNA > cET/LNA > PS/2'-F/2'-OMe > morpholino > 2'-MOE for the efficacy of duplex formation.
Collapse
Affiliation(s)
- Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Jack S Cohen
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Barak Akabayov
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
8
|
Pals MJ, Lindberg A, Velema WA. Chemical strategies for antisense antibiotics. Chem Soc Rev 2024; 53:11303-11320. [PMID: 39436264 PMCID: PMC11495246 DOI: 10.1039/d4cs00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 10/23/2024]
Abstract
Antibacterial resistance is a severe threat to modern medicine and human health. To stay ahead of constantly-evolving bacteria we need to expand our arsenal of effective antibiotics. As such, antisense therapy is an attractive approach. The programmability allows to in principle target any RNA sequence within bacteria, enabling tremendous selectivity. In this Tutorial Review we provide guidelines for devising effective antibacterial antisense agents and offer a concise perspective for future research. We will review the chemical architectures of antibacterial antisense agents with a special focus on the delivery and target selection for successful antisense design. This Tutorial Review will strive to serve as an essential guide for antibacterial antisense technology development.
Collapse
Affiliation(s)
- Mathijs J Pals
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Alexander Lindberg
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Kim D, Park SM, Lee SY, Kim J, Jung HB, Kim YS, Chung SK. Antisense-mediated splicing correction as a therapeutic approach for p53 K120R mutation. BMB Rep 2024; 57:503-508. [PMID: 39384177 PMCID: PMC11608855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024] Open
Abstract
The TP53 c.359A>G mutation significantly disrupts the expression of the major TP53 transcript variant encoding p53 K120R by generating a new splice donor site. An antisense morpholino oligomer (AMO) targeting this mutation successfully restored normal splicing and the expression of the major TP53 variant. Given that p53 exerts its tumor suppressor function by regulating target genes responsible for growth arrest or apoptosis, the p53 K120R protein enhanced by AMO exhibits impaired transcriptional regulation of CDKN1A, a key growth arrest gene, while maintaining normal induction of the pro-apoptotic BBC3 gene. As a result, the mutant p53 K120R protein shows a defective cell growth arrest phenotype but retains apoptotic function, suggesting that it may still possess some tumor suppressor activity. Furthermore, lysine 120, known to provide a critical acetylation site for p53 activation, highlights the relevance of acetylation in tumor suppression through studies of the p53 K120R mutant. However, our findings demonstrate that targeting mutant TP53 mRNA with AMO is essential for restoring p53 function. In conclusion, this study emphasizes the potential of AMO-mediated splice correction as a therapeutic approach for TP53 mutations. [BMB Reports 2024; 57(11): 503-508].
Collapse
Affiliation(s)
- Doyeong Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Seo-Young Lee
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Jinchul Kim
- Ageing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Han-Byul Jung
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Korean Convergence Medical Science, KIOM Campus, University of Science and Technology, Daejeon 34054, Korea
| | - Young Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Sun-Ku Chung
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Korean Convergence Medical Science, KIOM Campus, University of Science and Technology, Daejeon 34054, Korea
| |
Collapse
|
10
|
Wang M, O’Day B, Michaels B, Jurayj J, Cai BZ, Wei T. Sequencing of Phosphorodiamidate Morpholino Oligomers by Hydrophilic Interaction Chromatography Coupled to Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2490-2498. [PMID: 39213635 PMCID: PMC11450806 DOI: 10.1021/jasms.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Sequencing of phosphorodiamidate morpholino oligomers (PMOs) by hydrophilic interaction chromatography (HILIC) coupled to tandem mass spectrometry (MS/MS) is reported. The MS/MS analysis was performed using a quadrupole/time-of-flight (Q-ToF) mass analyzer and collision induced dissociation (CID) in negative ion mode. To improve MS sensitivity in negative ion mode, HILIC conditions, including the separation column, mobile phases, and MS parameters, were optimized. Using the developed HILIC-CID-MS/MS method, 100% sequence coverage was achieved for PMOs ranging from 18-mer to 25-mer. Additionally, the method was successfully applied to identifying positional isomers of n - 1 deletion impurities present in PMO drug substances.
Collapse
Affiliation(s)
- Mingming Wang
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts 02142, United States
| | - Brian O’Day
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts 02142, United States
| | - Brian Michaels
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts 02142, United States
| | - Jurjus Jurayj
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts 02142, United States
| | - Bao Zhong Cai
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts 02142, United States
| | - Tao Wei
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts 02142, United States
| |
Collapse
|
11
|
Miao Y, Fu C, Yu Z, Yu L, Tang Y, Wei M. Current status and trends in small nucleic acid drug development: Leading the future. Acta Pharm Sin B 2024; 14:3802-3817. [PMID: 39309508 PMCID: PMC11413693 DOI: 10.1016/j.apsb.2024.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Small nucleic acid drugs, composed of nucleotides, represent a novel class of pharmaceuticals that differ significantly from conventional small molecule and antibody-based therapeutics. These agents function by selectively targeting specific genes or their corresponding messenger RNAs (mRNAs), further modulating gene expression and regulating translation-related processes. Prominent examples within this category include antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), microRNAs (miRNAs), and aptamers. The emergence of small nucleic acid drugs as a focal point in contemporary biopharmaceutical research is attributed to their remarkable specificity, facile design, abbreviated development cycles, expansive target spectrum, and prolonged activity. Overcoming challenges such as poor stability, immunogenicity, and permeability issues have been addressed through the integration of chemical modifications and the development of drug delivery systems. This review provides an overview of the current status and prospective trends in small nucleic acid drug development. Commencing with a historical context, we introduce the primary classifications and mechanisms of small nucleic acid drugs. Subsequently, we delve into the advantages of the U.S. Food and Drug Administration (FDA) approved drugs and mainly discuss the challenges encountered during their development. Apart from researching chemical modification and delivery system that efficiently deliver and enrich small nucleic acid drugs to target tissues, promoting endosomal escape is a critical scientific question and important research direction in siRNA drug development. Future directions in this field will prioritize addressing these challenges to facilitate the clinical transformation of small nucleic acid drugs.
Collapse
Affiliation(s)
- Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
- Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Tang
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
- Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| |
Collapse
|
12
|
Bardhan A, Brown W, Albright S, Tsang M, Davidson LA, Deiters A. Direct Activation of Nucleobases with Small Molecules for the Conditional Control of Antisense Function. Angew Chem Int Ed Engl 2024; 63:e202318773. [PMID: 38411401 DOI: 10.1002/anie.202318773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Conditionally controlled antisense oligonucleotides provide precise interrogation of gene function at different developmental stages in animal models. Only one example of small molecule-induced activation of antisense function exist. This has been restricted to cyclic caged morpholinos that, based on sequence, can have significant background activity in the absence of the trigger. Here, we provide a new approach using azido-caged nucleobases that are site-specifically introduced into antisense morpholinos. The caging group design is a simple azidomethylene (Azm) group that, despite its very small size, efficiently blocks Watson-Crick base pairing in a programmable fashion. Furthermore, it undergoes facile decaging via Staudinger reduction when exposed to a small molecule phosphine, generating the native antisense oligonucleotide under conditions compatible with biological environments. We demonstrated small molecule-induced gene knockdown in mammalian cells, zebrafish embryos, and frog embryos. We validated the general applicability of this approach by targeting three different genes.
Collapse
Affiliation(s)
- Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Savannah Albright
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Michael Tsang
- Department of Cell Biology, Center for Integrative Organ Systems., University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Lance A Davidson
- Department of Bioengineering, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
13
|
MacLean MR, Walker OL, Arun RP, Fernando W, Marcato P. Informed by Cancer Stem Cells of Solid Tumors: Advances in Treatments Targeting Tumor-Promoting Factors and Pathways. Int J Mol Sci 2024; 25:4102. [PMID: 38612911 PMCID: PMC11012648 DOI: 10.3390/ijms25074102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/β-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.
Collapse
Affiliation(s)
- Maya R. MacLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Olivia L. Walker
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Nova Scotia Health Authority, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
14
|
Das A, Gupta S, Shaw P, Sinha S. Synthesis of Self Permeable Antisense PMO Using C5-Guanidino-Functionalized Pyrimidines at the 5'-End Enables Sox2 Downregulation in Triple Negative Breast Cancer Cells. Mol Pharm 2024; 21:1256-1271. [PMID: 38324380 DOI: 10.1021/acs.molpharmaceut.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Delivery of macromolecular drugs inside cells has been a huge challenge in the field of oligonucleotide therapeutics for the past few decades. Earliest natural inspirations included the arginine rich stretch of cell permeable HIV-TAT peptide, which led to the design of several molecular transporters with varying numbers of rigid or flexible guanidinium units with different tethering groups. These transporters have been shown to efficiently deliver phosphorodiamidate morpholino oligonucleotides, which have a neutral backbone and cannot form lipoplexes. In this report, PMO based delivery agents having 3 or 4 guanidinium groups at the C5 position of the nucleobases of cytosine and uracil have been explored, which can be assimilated within the desired stretch of the antisense oligonucleotide. Guanidinium units have been connected by varying the flexibility with either a saturated (propyl) or an unsaturated (propargyl) spacer, which showed different serum dependency along with varied cytoplasmic distribution. The effect of cholesterol conjugation in the delivery agent as well as at the 5'-end of full length PMO in cellular delivery has also been studied. Finally, the efficacy of the delivery has been studied by the PMO mediated downregulation of the stemness marker Sox2 in the triple-negative breast cancer cell line MDA-MB 231. These results have validated the use of this class of delivery agents, which permit at a stretch PMO synthesis where the modified bases can also participate in Watson-Crick-Franklin base pairing for enhanced mRNA binding and protein downregulation and could solve the delivery problem of PMO.
Collapse
Affiliation(s)
- Arnab Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Pallab Shaw
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Hofman CR, Corey DR. Targeting RNA with synthetic oligonucleotides: Clinical success invites new challenges. Cell Chem Biol 2024; 31:125-138. [PMID: 37804835 PMCID: PMC10841528 DOI: 10.1016/j.chembiol.2023.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023]
Abstract
Synthetic antisense oligonucleotides (ASOs) and duplex RNAs (dsRNAs) are an increasingly successful strategy for drug development. After a slow start, the pace of success has accelerated since the approval of Spinraza (nusinersen) in 2016 with several drug approvals. These accomplishments have been achieved even though oligonucleotides are large, negatively charged, and have little resemblance to traditional small-molecule drugs-a remarkable achievement of basic and applied science. The goal of this review is to summarize the foundation underlying recent progress and describe ongoing research programs that may increase the scope and impact of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Cristina R Hofman
- The Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - David R Corey
- The Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
| |
Collapse
|
16
|
Lessl AL, Pöhmerer J, Lin Y, Wilk U, Höhn M, Hörterer E, Wagner E, Lächelt U. mCherry on Top: A Positive Read-Out Cellular Platform for Screening DMD Exon Skipping Xenopeptide-PMO Conjugates. Bioconjug Chem 2023; 34:2263-2274. [PMID: 37991502 PMCID: PMC10739591 DOI: 10.1021/acs.bioconjchem.3c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Phosphorodiamidate morpholino oligomers (PMOs) are a special type of antisense oligonucleotides (ASOs) that can be used as therapeutic modulators of pre-mRNA splicing. Application of nucleic-acid-based therapeutics generally requires suitable delivery systems to enable efficient transport to intended tissues and intracellular targets. To identify potent formulations of PMOs, we established a new in vitro-in vivo screening platform based on mdx exon 23 skipping. Here, a new in vitro positive read-out system (mCherry-DMDEx23) is presented that is sensitive toward the PMO(Ex23) sequence mediating DMD exon 23 skipping and, in this model, functional mCherry expression. After establishment of the reporter system in HeLa cells, a set of amphiphilic, ionizable xenopeptides (XPs) was screened in order to identify potent carriers for PMO delivery. The identified best-performing PMO formulation with high splice-switching activity at nanomolar concentrations in vitro was then translated to in vivo trials, where exon 23 skipping in different organs of healthy BALB/c mice was confirmed. The predesigned in vitro-in vivo workflow enables evaluation of PMO(Ex23) carriers without change of the PMO sequence and formulation composition. Furthermore, the identified PMO-XP conjugate formulation was found to induce highly potent exon skipping in vitro and redistributed PMO activity in different organs in vivo.
Collapse
Affiliation(s)
- Anna-Lina Lessl
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Jana Pöhmerer
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ulrich Wilk
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Elisa Hörterer
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
- Center
for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
- Center
for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
17
|
Lye J, Delaney DS, Leith FK, Sardesai VS, McLenachan S, Chen FK, Atlas MD, Wong EYM. Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss. Biomedicines 2023; 11:3347. [PMID: 38137568 PMCID: PMC10741758 DOI: 10.3390/biomedicines11123347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Up to 1.5 billion people worldwide suffer from various forms of hearing loss, with an additional 1.1 billion people at risk from various insults such as increased consumption of recreational noise-emitting devices and ageing. The most common type of hearing impairment is sensorineural hearing loss caused by the degeneration or malfunction of cochlear hair cells or spiral ganglion nerves in the inner ear. There is currently no cure for hearing loss. However, emerging frontier technologies such as gene, drug or cell-based therapies offer hope for an effective cure. In this review, we discuss the current therapeutic progress for the treatment of hearing loss. We describe and evaluate the major therapeutic approaches being applied to hearing loss and summarize the key trials and studies.
Collapse
Affiliation(s)
- Joey Lye
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Derek S. Delaney
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Fiona K. Leith
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Varda S. Sardesai
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
| | - Samuel McLenachan
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Fred K. Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
- Vitroretinal Surgery, Royal Perth Hospital, Perth, WA 6000, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Elaine Y. M. Wong
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
18
|
Pavlova N, Traykovska M, Penchovsky R. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development. Antibiotics (Basel) 2023; 12:1607. [PMID: 37998809 PMCID: PMC10668854 DOI: 10.3390/antibiotics12111607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial drug resistance has emerged as a significant challenge in contemporary medicine due to the proliferation of numerous bacterial strains resistant to all existing antibiotics. Meanwhile, riboswitches have emerged as promising targets for discovering antibacterial drugs. Riboswitches are regulatory elements in certain bacterial mRNAs that can bind to specific molecules and control gene expression via transcriptional termination, prevention of translation, or mRNA destabilization. By targeting riboswitches, we aim to develop innovative strategies to combat antibiotic-resistant bacteria and enhance the efficacy of antibacterial treatments. This convergence of challenges and opportunities underscores the ongoing quest to revolutionize medical approaches against evolving bacterial threats. For the first time, this innovative review describes the rational design and applications of chimeric antisense oligonucleotides as antibacterial agents targeting four riboswitches selected based on genome-wide bioinformatic analyses. The antisense oligonucleotides are coupled with the cell-penetrating oligopeptide pVEC, which penetrates Gram-positive and Gram-negative bacteria and specifically targets glmS, FMN, TPP, and SAM-I riboswitches in Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. The average antibiotic dosage of antisense oligonucleotides that inhibits 80% of bacterial growth is around 700 nM (4.5 μg/mL). Antisense oligonucleotides do not exhibit toxicity in human cell lines at this concentration. The results demonstrate that these riboswitches are suitable targets for antibacterial drug development using antisense oligonucleotide technology. The approach is fully rational because selecting suitable riboswitch targets and designing ASOs that target them are based on predefined criteria. The approach can be used to develop narrow or broad-spectrum antibiotics against multidrug-resistant bacterial strains for a short time. The approach is easily adaptive to new resistance using targeting NGS technology.
Collapse
Affiliation(s)
| | | | - Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
19
|
Das A, Ghosh A, Kundu J, Egli M, Manoharan M, Sinha S. Synthesis and Biophysical Studies of High-Affinity Morpholino Oligomers Containing G-Clamp Analogs. J Org Chem 2023; 88:15168-15175. [PMID: 37843026 DOI: 10.1021/acs.joc.3c01658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Successful syntheses of chlorophosphoramidate morpholino monomers containing tricyclic cytosine analogs phenoxazine, G-clamp, and G8AE-clamp were accomplished. These modified monomers were incorporated into 12-mer oligonucleotides using trityl-chemistry by an automated synthesizer. The resulting phosphorodiamidate morpholino oligomers, containing a single G-clamp, demonstrated notably higher affinity for complementary RNA and DNA compared to the unmodified oligomers under neutral and acidic conditions. The duplexes of RNA and DNA with G-clamp-modified oligomers adopt a B-type helical conformation, as evidenced by CD-spectra and show excellent base recognition properties. Binding affinities were sequence and position dependent.
Collapse
Affiliation(s)
- Arnab Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Atanu Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jayanta Kundu
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
20
|
Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J 2023; 42:e114760. [PMID: 37728251 PMCID: PMC10620767 DOI: 10.15252/embj.2023114760] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
RNA-based therapeutics have the potential to revolutionize the treatment and prevention of human diseases. While early research faced setbacks, it established the basis for breakthroughs in RNA-based drug design that culminated in the extraordinarily fast development of mRNA vaccines to combat the COVID-19 pandemic. We have now reached a pivotal moment where RNA medicines are poised to make a broad impact in the clinic. In this review, we present an overview of different RNA-based strategies to generate novel therapeutics, including antisense and RNAi-based mechanisms, mRNA-based approaches, and CRISPR-Cas-mediated genome editing. Using three rare genetic diseases as examples, we highlight the opportunities, but also the challenges to wide-ranging applications of this class of drugs.
Collapse
Affiliation(s)
- Anke Sparmann
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
| | - Jörg Vogel
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
- Institute of Molecular Infection Biology (IMIB)University of WürzburgWürzburgGermany
| |
Collapse
|
21
|
Lui A, Patel RS, Krause-Hauch M, Sparks RP, Patel NA. Regulation of Human Sortilin Alternative Splicing by Glucagon-like Peptide-1 (GLP1) in Adipocytes. Int J Mol Sci 2023; 24:14324. [PMID: 37762628 PMCID: PMC10531797 DOI: 10.3390/ijms241814324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease with no cure. Adipose tissue is a major site of systemic insulin resistance. Sortilin is a central component of the glucose transporter -Glut4 storage vesicles (GSV) which translocate to the plasma membrane to uptake glucose from circulation. Here, using human adipocytes we demonstrate the presence of the alternatively spliced, truncated sortilin variant (Sort_T) whose expression is significantly increased in diabetic adipose tissue. Artificial-intelligence-based modeling, molecular dynamics, intrinsically disordered region analysis, and co-immunoprecipitation demonstrated association of Sort_T with Glut4 and decreased glucose uptake in adipocytes. The results show that glucagon-like peptide-1 (GLP1) hormone decreases Sort_T. We deciphered the molecular mechanism underlying GLP1 regulation of alternative splicing of human sortilin. Using splicing minigenes and RNA-immunoprecipitation assays, the results show that GLP1 regulates Sort_T alternative splicing via the splice factor, TRA2B. We demonstrate that targeted antisense oligonucleotide morpholinos reduces Sort_T levels and improves glucose uptake in diabetic adipocytes. Thus, we demonstrate that GLP1 regulates alternative splicing of sortilin in human diabetic adipocytes.
Collapse
Affiliation(s)
- Ashley Lui
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.L.); (M.K.-H.)
| | - Rekha S. Patel
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (R.S.P.); (R.P.S.)
| | - Meredith Krause-Hauch
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.L.); (M.K.-H.)
| | - Robert P. Sparks
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (R.S.P.); (R.P.S.)
- Department of Medicine, Division of Gastroenterology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Niketa A. Patel
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.L.); (M.K.-H.)
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (R.S.P.); (R.P.S.)
| |
Collapse
|
22
|
Israel LL, Sun T, Braubach O, Cox A, Shatalova ES, Rashid HM, Galstyan A, Grodzinski Z, Song XY, Chepurna O, Ljubimov VA, Chiechi A, Sharma S, Phebus C, Wang Y, Ljubimova JY, Black KL, Holler E. β-Amyloid targeting nanodrug for neuron-specific delivery of nucleic acids in Alzheimer's disease mouse models. J Control Release 2023; 361:636-658. [PMID: 37544515 DOI: 10.1016/j.jconrel.2023.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Delivery of therapeutic substances into the brain poses a significant challenge in the treatment of neurological disorders. This is primarily due to the blood-brain barrier (BBB), which restricts access, alongside the limited stability and distribution of these agents within the brain tissue. Here we demonstrate an efficient delivery of microRNA (miRNA) and antisense RNA preferentially to neurons compared to astroglia in the brain of healthy and Alzheimer's disease mice, via disulfide-linked conjugation with poly(ß-L-malic acid-trileucine)-copolymer a biodegradable, amphiphilic, and multivalent platform. By conjugating a D-configured (D3)-peptide (vector) for specific targeting, highly efficient delivery across the BBB is achieved through the Low-Density Lipoprotein Receptor-Related Protein-1 (LRP-1) transcytosis pathway, amyloid beta (Aβ) peptides. Nanodrug distribution was determined by fluorescent labeling and analyzed by microscopy in neurons, astroglia, and in extracellular amyloid plaques typical for Alzheimer's disease. Whereas D-configured BBB-vectors can efficiently target neurons, L-configured (e.g., AP2-peptide) guided vector can only cross BBB but not seem to bind neurons. An analysis of post-injection fluorescence distribution, and RNA-seq followed by real-time PCR validation, confirmed a successful in vivo delivery of morpholino-miRNA-186 nanoconjugates into mouse brain. The size and fluorescence intensity of the intracellular nanodrug particulates were analyzed and verified by a competition with non-fluorescent conjugates. Differentially expressed genes (DEGs) from RNA-seq were identified in the nanodrug injected mice, and the changes of selected DEGs related to Alzheimer's disease were further validated by western blot and real-time PCR. Collectively, these results demonstrated that D3-peptide-conjugated nanopolymer drug is able to achieve neuron-selective delivery of miRNA and can serve as an efficient brain delivery vehicle in Alzheimer's disease (AD) mouse models.
Collapse
Affiliation(s)
- Liron L Israel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Oliver Braubach
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Alysia Cox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | | | | | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Zachary Grodzinski
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Xue Ying Song
- Cedars-Sinai Cancer Applied Genomics Shared Resource, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Oksana Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Sachin Sharma
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Connor Phebus
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Yizhou Wang
- Cedars-Sinai Cancer Applied Genomics Shared Resource, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Julia Y Ljubimova
- Terasaki Institute of Biomedical Innovation, Los Angeles, 90024, USA..
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles 90048, USA.
| | - Eggehard Holler
- Terasaki Institute of Biomedical Innovation, Los Angeles, 90024, USA..
| |
Collapse
|
23
|
Tsurusaki T, Sato K, Imai H, Hirai K, Takahashi D, Wada T. Convergent synthesis of phosphorodiamidate morpholino oligonucleotides (PMOs) by the H-phosphonate approach. Sci Rep 2023; 13:12576. [PMID: 37537221 PMCID: PMC10400599 DOI: 10.1038/s41598-023-38698-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Phosphorodiamidate morpholino oligonucleotides (PMOs) are a promising type of antisense oligonucleotides, but their challenging synthesis makes them difficult to access. This research presents an efficient synthetic approach for PMOs using the H-phosphonate approach. The use of phosphonium-type condensing reagents significantly reduced coupling times compared with the current synthetic approach. Furthermore, phosphonium-type condensing reagents facilitated the fragment condensation of PMO, synthesizing up to 8-mer containing all four nucleobases with remarkable coupling efficacy. This is the first report on the convergent synthesis of PMOs. This approach would facilitate the large-scale synthesis of PMOs and accelerate their popularity and accessibility as a next-generation therapy.
Collapse
Affiliation(s)
- Taiki Tsurusaki
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazuki Sato
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroki Imai
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kunihiro Hirai
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, Kanagawa, 210-8681, Japan
| | - Daisuke Takahashi
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, Kanagawa, 210-8681, Japan
| | - Takeshi Wada
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
24
|
Villegas-Esguevillas M, Cho S, Vera-Zambrano A, Kwon JW, Barreira B, Telli G, Navarro-Dorado J, Morales-Cano D, de Olaiz B, Moreno L, Greenwood I, Pérez-Vizcaíno F, Kim SJ, Climent B, Cogolludo A. The novel K V7 channel activator URO-K10 exerts enhanced pulmonary vascular effects independent of the KCNE4 regulatory subunit. Biomed Pharmacother 2023; 164:114952. [PMID: 37295249 DOI: 10.1016/j.biopha.2023.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
KV7 channels exert a pivotal role regulating vascular tone in several vascular beds. In this context, KV7 channel agonists represent an attractive strategy for the treatment of pulmonary arterial hypertension (PAH). Therefore, in this study, we have explored the pulmonary vascular effects of the novel KV7 channel agonist URO-K10. Consequently, the vasodilator and electrophysiological effects of URO-K10 were tested in rat and human pulmonary arteries (PA) and PA smooth muscle cells (PASMC) using myography and patch-clamp techniques. Protein expression was also determined by Western blot. Morpholino-induced knockdown of KCNE4 was assessed in isolated PA. PASMC proliferation was measured by BrdU incorporation assay. In summary, our data show that URO-K10 is a more effective relaxant of PA than the classical KV7 activators retigabine and flupirtine. URO-K10 enhanced KV currents in PASMC and its electrophysiological and relaxant effects were inhibited by the KV7 channel blocker XE991. The effects of URO-K10 were confirmed in human PA. URO-K10 also exhibited antiproliferative effects in human PASMC. Unlike retigabine and flupirtine, URO-K10-induced pulmonary vasodilation was not affected by morpholino-induced knockdown of the KCNE4 regulatory subunit. Noteworthy, the pulmonary vasodilator efficacy of this compound was considerably increased under conditions mimicking the ionic remodelling (as an in vitro model of PAH) and in PA from monocrotaline-induced pulmonary hypertensive rats. Taking all together, URO-K10 behaves as a KCNE4-independent KV7 channel activator with much increased pulmonary vascular effects compared to classical KV7 channel activators. Our study identifies a promising new drug in the context of PAH.
Collapse
Affiliation(s)
- Marta Villegas-Esguevillas
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Suhan Cho
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Alba Vera-Zambrano
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Jae Won Kwon
- Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bianca Barreira
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Göcken Telli
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Jorge Navarro-Dorado
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Daniel Morales-Cano
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Beatriz de Olaiz
- Department of Thoracic Surgery, Hospital Universitario de Getafe, Getafe, Spain
| | - Laura Moreno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Iain Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, United Kingdom
| | - Francisco Pérez-Vizcaíno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Sung Joon Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | - Angel Cogolludo
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| |
Collapse
|
25
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
26
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
27
|
Fang Z, Dantsu Y, Chen C, Zhang W, Huang Z. Syntheses of Pyrimidine-Modified Seleno-DNAs as Stable Antisense Molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539140. [PMID: 37205589 PMCID: PMC10187239 DOI: 10.1101/2023.05.02.539140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chemically modified antisense oligonucleotides (ASO) currently in pre-clinical and clinical experiments mainly focus on the 2'-position derivatizations to enhance stability and targeting affinity. Considering the possible incompatibility of 2'-modifications with RNase H stimulation and activity, we have hypothesized that the atom specific modifications on nucleobases can retain the complex structure and RNase H activity, while enhancing ASO's binding affinity, specificity, and stability against nucleases. Herein we report a novel strategy to explore our hypothesis by synthesizing the deoxynucleoside phosphoramidite building block with the seleno-modification at 5-position of thymidine, as well as its Se-oligonucleotides. Via X-ray crystal structural study, we found that the Se-modification was located in the major groove of nucleic acid duplex and didn't cause the thermal and structural perturbations. Surprisingly, our nucleobase-modified Se-DNAs were exceptionally resistant to nuclease digestion, while compatible with RNase H activity. This affords a novel avenue for potential antisense modification in the form of Se-antisense oligonucleotides (Se-ASO).
Collapse
Affiliation(s)
- Ziyuan Fang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cen Chen
- Firebird Biomolecular Sciences LLC, Alachua, FL 32615, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, Sichuan, 618000, P. R. China
| |
Collapse
|
28
|
Maksudov F, Kliuchnikov E, Pierson D, Ujwal M, Marx KA, Chanda A, Barsegov V. Therapeutic phosphorodiamidate morpholino oligonucleotides: Physical properties, solution structures, and folding thermodynamics. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:631-647. [PMID: 36910708 PMCID: PMC9996446 DOI: 10.1016/j.omtn.2023.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Elucidating the structure-function relationships for therapeutic RNA mimicking phosphorodiamidate morpholino oligonucleotides (PMOs) is challenging due to the lack of information about their structures. While PMOs have been approved by the US Food and Drug Administration for treatment of Duchenne muscular dystrophy, no structural information on these unique, charge-neutral, and stable molecules is available. We performed circular dichroism and solution viscosity measurements combined with molecular dynamics simulations and machine learning to resolve solution structures of 22-mer, 25-mer, and 30-mer length PMOs. The PMO conformational dynamics are defined by the competition between non-polar nucleobases and uncharged phosphorodiamidate groups for shielding from solvent exposure. PMO molecules form non-canonical, partially helical, stable folded structures with a small 1.4- to 1.7-nm radius of gyration, low count of three to six base pairs and six to nine base stacks, characterized by -34 to -51 kcal/mol free energy, -57 to -103 kcal/mol enthalpy, and -23 to -53 kcal/mol entropy for folding. The 4.5- to 6.2-cm3/g intrinsic viscosity and Huggins constant of 4.5-9.9 are indicative of extended and aggregating systems. The results obtained highlight the importance of the conformational ensemble view of PMO solution structures, thermodynamic stability of their non-canonical structures, and concentration-dependent viscosity properties. These principles form a paradigm to understand the structure-properties-function relationship for therapeutic PMOs to advance the design of new RNA-mimic-based drugs.
Collapse
Affiliation(s)
- Farkhad Maksudov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | | | - Daniel Pierson
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | | | - Kenneth A. Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
- Inciton, Inc., Andover, MA 01854, USA
| | - Arani Chanda
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
- Corresponding author: Arani Chanda, Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA.
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
- Inciton, Inc., Andover, MA 01854, USA
- Corresponding author: Valeri Barsegov, Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA.
| |
Collapse
|
29
|
Debreczeni N, Hotzi J, Bege M, Lovas M, Mező E, Bereczki I, Herczegh P, Kiss L, Borbás A. N-Fluoroalkylated Morpholinos - a New Class of Nucleoside Analogues. Chemistry 2023; 29:e202203248. [PMID: 36437234 DOI: 10.1002/chem.202203248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022]
Abstract
The first concise and efficient synthesis of some fluorine-containing morpholino nucleosides has been developed. One synthetic strategy was based on the oxidative ring cleavage of the vicinal diol unit of uridine, cytidine adenosine and guanosine derivatives, followed by cyclisation of the dialdehyde intermediates by double reductive amination with fluorinated primary amines to obtain various N-fluoroalkylated morpholinos. Another approach involved cyclisation of the diformyl intermediates with ammonia source, followed by dithiocarbamate formation and desulfurization-fluorination with diethylaminosulfur trifluoride yielding the corresponding morpholine-based nucleoside analogues with a N-CF3 element in their structure.
Collapse
Affiliation(s)
- Nóra Debreczeni
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Judit Hotzi
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary.,Institute of Healthcare Industry, University of Debrecen, 4032, Debrecen, Nagyerdei krt. 98, Hungary.,MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Miklós Lovas
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Erika Mező
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary.,Pharmamodul Research Group, University of Debrecen, 4032, Debrecen, Nagyerdei krt. 98, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Loránd Kiss
- Institute of Organic Chemistry, Stereochemistry Research Group, Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| |
Collapse
|
30
|
Ghosh A, Akabane-Nakata M, Kundu J, Harp JM, Madaoui M, Egli M, Manoharan M, Sinha S. Synthesis and Biophysical Properties of Phosphorodiamidate Piperidino Oligomers. Org Lett 2023; 25:901-906. [PMID: 36734846 DOI: 10.1021/acs.orglett.2c04067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report the synthesis of piperidino nucleoside phosphoramidates functionalized with uracil, cytosine, guanine, and adenine and their incorporation into oligomers. High-performance liquid chromatography analyses demonstrated that a phosphorodiamidate piperidino oligomer (PPO) is more lipophilic than a phosphorodiamidate morpholino oligomer (PMO) of the same tetrameric sequence. A PMO containing piperidino residues formed duplexes with both DNA and RNA, and the PPO had higher stability at endosomolytic pH and higher hydrophobicity than the PMO.
Collapse
Affiliation(s)
- Atanu Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | - Jayanta Kundu
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Joel M Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mimouna Madaoui
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
31
|
Ghosh U, Gupta S, Sinha S. Synthesis of 5'-Thiol Functionalized Morpholino Oligo-Nucleotide and Subsequent Conjugation with IGT to Improve Delivery and Antisense Efficacy In Vitro. Bioconjug Chem 2023; 34:174-180. [PMID: 36538654 DOI: 10.1021/acs.bioconjchem.2c00587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thiol functionalized oligonucleotides are useful intermediates for a wide range of applications including DNA nanobiotechnology field through conjugation with various types of probes and cargos. Due to the limitation of synthetic process, phosphorodiamidate morpholino oligonucleotides (PMOs) have not been explored like other oligonucleotides through SH conjugation as mentioned above. In this paper, we report the synthesis of 5'-SH functionalized PMO using a solid support synthesis protocol with an optimized cysteine derived linker so that loading and coupling efficiency of morpholino monomers were effective enough to get a 25-mer 5'-SH functionalized PMO against human Nanog. The PMO with SH functionality was subsequently conjugated with our previously reported Internal Oligo-guanidinium Transporter (IGT) in solution phase to obtain the IGT-PMO conjugate. Interestingly, 5'-conjugated PMO (IGT-PMO) showed 2.5 times better antisense efficacy than 3'-conjugated PMO with IGT (PMO-IGT). 5'-Conjugation enables us to use IGT-PMO for further conjugation at the 3'-N terminal of PMO which was not possible earlier with 5'-OH-PMO-IGT. PMO has become an important class of antisense reagents because four PMO-based drugs have been approved for the treatment of Duchenne muscular dystrophy; hence such an improved result with 5'-modified PMO could be useful for enhancing the therapeutic efficacy of DMD drugs. Similarly, thiol-modified PMO could also be explored like other thiol-containing oligonucleotides for various other applications.
Collapse
Affiliation(s)
- Ujjwal Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, West Bengal, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, West Bengal, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, West Bengal, India
| |
Collapse
|
32
|
Wang F, Calvo-Roitberg E, Rembetsy-Brown JM, Fang M, Sousa J, Kartje Z, Krishnamurthy PM, Lee J, Green M, Pai A, Watts J. G-rich motifs within phosphorothioate-based antisense oligonucleotides (ASOs) drive activation of FXN expression through indirect effects. Nucleic Acids Res 2022; 50:12657-12673. [PMID: 36511872 PMCID: PMC9825156 DOI: 10.1093/nar/gkac1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Friedreich's ataxia is an incurable disease caused by frataxin (FXN) protein deficiency, which is mostly induced by GAA repeat expansion in intron 1 of the FXN gene. Here, we identified antisense oligonucleotides (ASOs), complementary to two regions within the first intron of FXN pre-mRNA, which could increase FXN mRNA by ∼2-fold in patient fibroblasts. The increase in FXN mRNA was confirmed by the identification of multiple overlapping FXN-activating ASOs at each region, two independent RNA quantification assays, and normalization by multiple housekeeping genes. Experiments on cells with the ASO-binding sites deleted indicate that the ASO-induced FXN activation was driven by indirect effects. RNA sequencing analyses showed that the two ASOs induced similar transcriptome-wide changes, which did not resemble the transcriptome of wild-type cells. This RNA-seq analysis did not identify directly base-paired off-target genes shared across ASOs. Mismatch studies identified two guanosine-rich motifs (CCGG and G4) within the ASOs that were required for FXN activation. The phosphorodiamidate morpholino oligomer analogs of our ASOs did not activate FXN, pointing to a PS-backbone-mediated effect. Our study demonstrates the importance of multiple, detailed control experiments and target validation in oligonucleotide studies employing novel mechanisms such as gene activation.
Collapse
Affiliation(s)
- Feng Wang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ezequiel Calvo-Roitberg
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Julia M Rembetsy-Brown
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Minggang Fang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Zachary J Kartje
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
33
|
Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res 2022; 426:108523. [PMID: 35649738 DOI: 10.1016/j.heares.2022.108523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Hearing loss affects more than 430 million people, worldwide, and is the third most common chronic physical condition in the United States and Europe (GBD Hearing Loss Collaborators, 2021; NIOSH, 2021; WHO, 2021). The loss of hearing significantly impacts motor and cognitive development, communication, education, employment, and overall quality of life. The inner ear houses the sensory organs for both hearing and balance and provides an accessible target for therapeutic delivery. Antisense oligonucleotides (ASOs) use various mechanisms to manipulate gene expression and can be tailor-made to treat disorders with defined genetic targets. In this review, we discuss the preclinical advancements within the field of the highly promising ASO-based therapies for hereditary hearing loss disorders. Particular focus is on ASO mechanisms of action, preclinical studies on ASO treatments of hearing loss, timing of therapeutic intervention, and delivery routes to the inner ear.
Collapse
Affiliation(s)
| | - Erik de Vrieze
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL.
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSUHSC, New Orleans, LA, USA; Department of Otorhinolaryngology, LSUHSC, 2020 Gravier Street, Lions Building, Room 795, New Orleans, LA, USA.
| |
Collapse
|
34
|
Liu J, Zhang X, Zhang Q, Wang R, Ma J, Bai X, Wang D. Loxhd1b inhibits the hair cell development in zebrafish: Possible relation to the BDNF/TrkB/ERK pathway. Front Cell Neurosci 2022; 16:1065309. [PMID: 36505516 PMCID: PMC9729270 DOI: 10.3389/fncel.2022.1065309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mutations in lipoxygenase homology domain 1 (LOXHD1) cause autosomal recessive inheritance, leading to high-frequency and intermediate-frequency hearing losses in patients. To date, studies on the localization of LOXHD1 gene expression are limited. In this study, we aimed to observe the expressions of Loxhd1b in zebrafish, C57BL/6 murine cochlea, and HEI-OC1 cells. Methods The expression of Loxhd1b in the auditory system of zebrafish was explored by in situ hybridization experiments of zebrafish embryos. The expression of Loxhd1b in cochlear and HEI-OC1 cells of C57BL/6 mice was analyzed by immunofluorescence staining. Confocal microscopic in vivo imaging was used to detect the number and morphological characteristics of lateral line neuromasts and inner ear hair cells in zebrafish that knocked down Loxhd1b gene. The effect of knockdown Loxhd1b gene on the development of zebrafish otolith and semicircular canal was observed using microscopic. Transcriptome sequencing was used to identify downstream molecules and associated signaling pathways and validated by western blotting, immunostaining, and rescue experiments. Results Results of the in situ hybridization with zebrafish embryos at different time points showed that Loxhd1b was expressed in zebrafish at the inner ear and olfactory pores, while the immunostaining showed that Loxhd1 was expressed in both C57BL/6 mouse cochlea and HEI-OC1 cells. Loxhd1b knockdown causes a decrease in the number of spinal and lateral line neuromasts in the inner ear of zebrafish, accompanied by weakened hearing function, and also leads to developmental defects of otoliths and ear follicles. The results of transcriptomics analysis revealed the downstream molecule brain-derived neurotrophic factor (BDNF) and verified that Loxhd1b and BDNF regulate the formation of zebrafish hair cells by synergistic regulation of BDNF/TrkB/ERK pathway based on western blotting, immunostaining, and rescue experiments. Conclusion This was the first time that the BDNF/TrkB/ERK pathway was identified to play a critical role in the molecular regulation of the development of zebrafish hair cells and the auditory development by Loxhd1b.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Ophthalmology, Jinan Second People’s Hospital, Jinan, China
| | - Xu Zhang
- Translational Medical Research Center, Wuxi No.2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China,Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qingchen Zhang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyu Ma
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaohui Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dawei Wang
- Department of Orthopedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Dawei Wang,
| |
Collapse
|
35
|
Brown W, Bardhan A, Darrah K, Tsang M, Deiters A. Optical Control of MicroRNA Function in Zebrafish Embryos. J Am Chem Soc 2022; 144:16819-16826. [PMID: 36073798 DOI: 10.1021/jacs.2c04479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MicroRNAs play crucial and dynamic roles in vertebrate development and diseases. Some, like miR-430, are highly expressed during early embryo development and regulate hundreds of transcripts, which can make it difficult to study their role in the timing and location of specific developmental processes using conventional morpholino oligonucleotide (MO) knockdown or genetic deletion approaches. We demonstrate that light-activated circular morpholino oligonucleotides (cMOs) can be applied to the conditional control of microRNA function. We targeted miR-430 in zebrafish embryos to study its role in the development of the embryo body and the heart. Using 405 nm irradiation, precise spatial and temporal control over miR-430 function was demonstrated, offering insight into the cell populations and developmental timepoints involved in each process.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kristie Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
36
|
Liu J, Bailbé D, Raynal S, Carbonne C, Zhen D, Dairou J, Gausseres B, Armanet M, Domet T, Pitasi CL, Movassat J, Lim CK, Guillemin GJ, Autier V, Kergoat M, Portha B. Kynurenine-3-monooxygenase expression is activated in the pancreatic endocrine cells by diabetes and its blockade improves glucose-stimulated insulin secretion. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166509. [PMID: 35914653 DOI: 10.1016/j.bbadis.2022.166509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
Type 2 diabetes is associated with an inflammatory phenotype in the pancreatic islets. We previously demonstrated that proinflammatory cytokines potently activate the tryptophan/kynurenine pathway (TKP) in INS-1 cells and in normal rat islets. Here we examined: (1) the TKP enzymes expression in the diabetic GK islets; (2) the TKP enzymes expression profiles in the GK islets before and after the onset of diabetes; (3) The glucose-stimulated insulin secretion (GSIS) in vitro in GK islets after KMO knockdown using specific morpholino-oligonucleotides against KMO or KMO blockade using the specific inhibitor Ro618048; (4) The glucose tolerance and GSIS after acute in vivo exposure to Ro618048 in GK rats. We report a remarkable induction of the kmo gene in GK islets and in human islets exposed to proinflammatory conditions. It occurred prominently in beta cells. The increased expression and activity of KMO reflected an acquired adaptation. Both KMO knockdown and specific inhibitor Ro618048 enhanced GSIS in vitro in GK islets. Moreover, acute administration of Ro618048 in vivo improved glucose tolerance, GSIS and basal blood glucose levels in GK rats. These results demonstrate that targeting islet TKP is able to correct defective GSIS. KMO inhibition could represent a potential therapeutic strategy for type 2 diabetes.
Collapse
Affiliation(s)
- Junjun Liu
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS UMR 8251, Université Paris-Cité, Paris, France; Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China; MetaBrain Research, Maisons-Alfort, France.
| | - Danielle Bailbé
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS UMR 8251, Université Paris-Cité, Paris, France
| | | | | | - Delong Zhen
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris-Cité, Paris, France
| | - Blandine Gausseres
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS UMR 8251, Université Paris-Cité, Paris, France
| | - Mathieu Armanet
- Cell Therapy Unit, Hôpital Saint-Louis, AP-HP, Université Paris-Cité, Paris, France
| | - Thomas Domet
- Cell Therapy Unit, Hôpital Saint-Louis, AP-HP, Université Paris-Cité, Paris, France
| | - Caterina L Pitasi
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS UMR 8251, Université Paris-Cité, Paris, France
| | - Jamileh Movassat
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS UMR 8251, Université Paris-Cité, Paris, France
| | - Chai K Lim
- Neuroinflammation Group, Macquarie Medicine School, Macquarie University, Sydney, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medicine School, Macquarie University, Sydney, Australia
| | | | | | - Bernard Portha
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS UMR 8251, Université Paris-Cité, Paris, France.
| |
Collapse
|
37
|
Tanner AR, Kennedy VC, Lynch CS, Hord TK, Winger QA, Rozance PJ, Anthony RV. In vivo investigation of ruminant placenta function and physiology-a review. J Anim Sci 2022; 100:skac045. [PMID: 35648127 PMCID: PMC9159061 DOI: 10.1093/jas/skac045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The placenta facilitates the transport of nutrients to the fetus, removal of waste products from the fetus, immune protection of the fetus and functions as an endocrine organ, thereby determining the environment for fetal growth and development. Additionally, the placenta is a highly metabolic organ in itself, utilizing a majority of the oxygen and glucose derived from maternal circulation. Consequently, optimal placental function is required for the offspring to reach its genetic potential in utero. Among ruminants, pregnant sheep have been used extensively for investigating pregnancy physiology, in part due to the ability to place indwelling catheters within both maternal and fetal vessels, allowing for steady-state investigation of blood flow, nutrient uptakes and utilization, and hormone secretion, under non-stressed and non-anesthetized conditions. This methodology has been applied to both normal and compromised pregnancies. As such, our understanding of the in vivo physiology of pregnancy in sheep is unrivalled by any other species. However, until recently, a significant deficit existed in determining the specific function or significance of individual genes expressed by the placenta in ruminants. To that end, we developed and have been using in vivo RNA interference (RNAi) within the sheep placenta to examine the function and relative importance of genes involved in conceptus development (PRR15 and LIN28), placental nutrient transport (SLC2A1 and SLC2A3), and placenta-derived hormones (CSH). A lentiviral vector is used to generate virus that is stably integrated into the infected cell's genome, thereby expressing a short-hairpin RNA (shRNA), that when processed within the cell, combines with the RNA Induced Silencing Complex (RISC) resulting in specific mRNA degradation or translational blockage. To accomplish in vivo RNAi, day 9 hatched and fully expanded blastocysts are infected with the lentivirus for 4 to 5 h, and then surgically transferred to synchronized recipient uteri. Only the trophectoderm cells are infected by the replication deficient virus, leaving the inner cell mass unaltered, and we often obtain ~70% pregnancy rates following transfer of a single blastocyst. In vivo RNAi coupled with steady-state study of blood flow and nutrient uptake, transfer and utilization can now provide new insight into the physiological consequences of modifying the translation of specific genes expressed within the ruminant placenta.
Collapse
Affiliation(s)
- Amelia R Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Victoria C Kennedy
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Cameron S Lynch
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Taylor K Hord
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Quinton A Winger
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Paul J Rozance
- Department of Pediatrics, Division of Neonatology, College of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Russell V Anthony
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
38
|
Sasso J, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022; 65:6975-7015. [PMID: 35533054 PMCID: PMC9115888 DOI: 10.1021/acs.jmedchem.2c00024] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Barbara J. B. Ambrose
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Rumiana Tenchov
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Ruchira S. Datta
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Matthew T. Basel
- College
of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Nanotechnology
Innovation Center Kansas State, Kansas State
University, Manhattan, Kansas 66506, United States
| | - Qiongqiong Angela Zhou
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
39
|
Jahan J, Monte de Oca I, Meissner B, Joshi S, Maghrabi A, Quiroz-Olvera J, Lopez-Yang C, Bartelmez SH, Garcia C, Jarajapu YP. Transforming growth factor-β1/Thrombospondin-1/CD47 axis mediates dysfunction in CD34 + cells derived from diabetic older adults. Eur J Pharmacol 2022; 920:174842. [PMID: 35217004 PMCID: PMC8967481 DOI: 10.1016/j.ejphar.2022.174842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Aging with diabetes is associated with impaired vasoprotective functions and decreased nitric oxide (NO) generation in CD34+ cells. Transforming growth factor- β1 (TGF-β1) is known to regulate hematopoietic functions. This study tested the hypothesis that transforming growth factor- β1 (TGF-β1) is upregulated in diabetic CD34+ cells and impairs NO generation via thrombospondin-1 (TSP-1)/CD47/NO pathway. CD34+ cells from nondiabetic (ND) (n=58) or diabetic older adults (DB) (both type 1 and type 2) (n=62) were isolated from peripheral blood. TGF-β1 was silenced by using an antisense delivered as phosphorodiamidate morpholino oligomer (PMO-TGF-β1). Migration and proliferation in response to stromal-derived factor-1α (SDF-1α) were evaluated. NO generation and eNOS phosphorylation were determined by flow cytometry. CD34+ cells from older, but not younger, diabetics have higher expression of TGF-β1 compared to that observed in cells derived from healthy individuals (P<0.05, n=14). TSP-1 expression was higher (n=11) in DB compared to ND cells. TGFβ1-PMO decreased the secretion of TGF-β1, which was accompanied with decreased TSP-1 expression. Impaired proliferation, migration and NO generation in response to SDF-1α in DB cells were reversed by TGF-β1-PMO (n=6). TSP-1 inhibited migration and proliferation of nondiabetic CD34+ cells that was reversed by CD47-siRNA, which also restored these responses in diabetic CD34+ cells. TSP-1 opposed SDF-1α-induced eNOS phosphorylation at Ser1177 that was reversed by CD47-siRNA. These results infer that increased TGF-β1 expression in CD34+ cells induces dysfunction in CD34+ cells from diabetic older adults via TSP-1/CD47-dependent inhibition of NO generation.
Collapse
Affiliation(s)
- Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Brian Meissner
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | | | | | | | | | | | - Yagna P Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
40
|
Vasyutina M, Alieva A, Reutova O, Bakaleiko V, Murashova L, Dyachuk V, Catapano AL, Baragetti A, Magni P. The zebrafish model system for dyslipidemia and atherosclerosis research: Focus on environmental/exposome factors and genetic mechanisms. Metabolism 2022; 129:155138. [PMID: 35051509 DOI: 10.1016/j.metabol.2022.155138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Dyslipidemias and atherosclerosis play a pivotal role in cardiovascular risk and disease. Although some pathophysiological mechanisms underlying these conditions have been unveiled, several knowledge gaps still remain. Experimental models, both in vitro and in vivo, have been instrumental to our better understanding of such complex processes. The latter have often been based on rodent species, either wild-type or, in several instances, genetically modified. In this context, the zebrafish may represent an additional very useful in vivo experimental model for dyslipidemia and atherosclerosis. Interestingly, the lipid metabolism of zebrafish shares several features with that present in humans, recapitulating some molecular features and pathophysiological aspects in a better way than that of rodents. The zebrafish model may be of help to address questions related to exposome factors as well as to genetic features, aiming to dissect selected aspects of the more complex scenario observed in humans. Indeed, exposome-related dyslipidemia/atherosclerosis research in zebrafish may target different scientific questions, related to nutrition, microbiota, temperature, light exposure at the larval stage, exposure to chemicals and epigenetic consequences of such external factors. Addressing genetic features related to dyslipidemia/atherosclerosis using the zebrafish model is already a reality and active research is now ongoing in this promising area. Novel technologies (gene and genome editing) may help to identify new candidate genes involved in dyslipidemia and dyslipidemia-related diseases. Based on these considerations, the zebrafish experimental model appears highly suitable for the study of exposome factors, genes and molecules involved in the development of atherosclerosis-related disease as well as for the validation of novel potential treatment options.
Collapse
Affiliation(s)
- Marina Vasyutina
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia.
| | - Asiiat Alieva
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | - Olga Reutova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Lada Murashova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Alberico L Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Andrea Baragetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
41
|
Kupryushkin MS, Filatov AV, Mironova NL, Patutina OA, Chernikov IV, Chernolovskaya EL, Zenkova MA, Pyshnyi DV, Stetsenko DA, Altman S, Vlassov VV. Antisense oligonucleotide gapmers containing phosphoryl guanidine groups reverse MDR1-mediated multiple drug resistance of tumor cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:211-226. [PMID: 34976439 PMCID: PMC8693280 DOI: 10.1016/j.omtn.2021.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/28/2021] [Indexed: 10/26/2022]
Abstract
Antisense gapmer oligonucleotides containing phosphoryl guanidine (PG) groups, e.g., 1,3-dimethylimidazolidin-2-imine, at three to five internucleotidic positions adjacent to the 3' and 5' ends were prepared via the Staudinger chemistry, which is compatible with conditions of standard automated solid-phase phosphoramidite synthesis for phosphodiester and, notably, phosphorothioate linkages, and allows one to design a variety of gapmeric structures with alternating linkages, and deoxyribose or 2'-O-methylribose backbone. PG modifications increased nuclease resistance in serum-containing medium for more than 21 days. Replacing two internucleotidic phosphates by PG groups in phosphorothioate-modified oligonucleotides did not decrease their cellular uptake in the absence of lipid carriers. Increasing the number of PG groups from two to seven per oligonucleotide reduced their ability to enter the cells in the carrier-free mode. Cationic liposomes provided similar delivery efficiency of both partially PG-modified and unmodified oligonucleotides. PG-gapmers were designed containing three to four PG groups at both wings and a central "window" of seven deoxynucleotides with either phosphodiester or phosphorothioate linkages targeted to MDR1 mRNA providing multiple drug resistance of tumor cells. Gapmers efficiently silenced MDR1 mRNA and restored the sensitivity of tumor cells to chemotherapeutics. Thus, PG-gapmers can be considered as novel, promising types of antisense oligonucleotides for targeting biologically relevant RNAs.
Collapse
Affiliation(s)
- Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Anton V Filatov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Nadezhda L Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Olga A Patutina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Ivan V Chernikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Dmitry A Stetsenko
- Department of Physics, Novosibirsk State University, Pirogov Str. 2, Novosibirsk 630090, Russia.,Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk 630090, Russia
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.,Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Montreal Clinical Research Institute, Montreal QC H2W 1R7, Canada
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
42
|
Feng C, Nita-Lazar M, González-Montalbán N, Wang J, Mancini J, Wang S, Ravindran C, Ahmed H, Vasta GR. Manipulating Galectin Expression in Zebrafish (Danio rerio). Methods Mol Biol 2022; 2442:425-443. [PMID: 35320539 DOI: 10.1007/978-1-0716-2055-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Techniques for disrupting gene expression are invaluable tools for the analysis of the biological role of a gene product. Because of its genetic tractability and multiple advantages over conventional mammalian models, the zebrafish (Danio rerio) is recognized as a powerful system for gaining new insight into diverse aspects of human health and disease. Among the multiple mammalian gene families for which the zebrafish has shown promise as an invaluable model for functional studies, the galectins have attracted great interest due to their participation in early development, regulation of immune homeostasis, and recognition of microbial pathogens. Galectins are β-galactosyl-binding lectins with a characteristic sequence motif in their carbohydrate recognition domains (CRDs), that constitute an evolutionary conserved family ubiquitous in eukaryotic taxa. Galectins are emerging as key players in the modulation of many important pathological processes, which include acute and chronic inflammatory diseases, autoimmunity and cancer, thus making them potential molecular targets for innovative drug discovery. Here, we provide a review of the current methods available for the manipulation of gene expression in the zebrafish, with a focus on gene knockdown [morpholino (MO)-derived antisense oligonucleotides] and knockout (CRISPR-Cas) technologies.
Collapse
Affiliation(s)
- Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Mihai Nita-Lazar
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Nuria González-Montalbán
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Jingyu Wang
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Justin Mancini
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Sheng Wang
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chinnarajan Ravindran
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
- Department of Marine Biotechnology, National Institute of Oceanography (CSIR), Dona Paula, Goa, India
| | - Hafiz Ahmed
- Department of Biochemistry, School of Medicine, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
43
|
Asanuma H, Kamiya Y, Kashida H, Murayama K. Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties. Chem Commun (Camb) 2022; 58:3993-4004. [DOI: 10.1039/d1cc05868a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA and RNA have significance as a genetic materials, therapeutic potential, and supramolecular properties. Advances in nucleic acid chemistry have enabled large-scale synthesis of DNA and RNA oligonucleotides and oligomers...
Collapse
|
44
|
Abstract
This introduction charts the history of the development of the major chemical modifications that have influenced the development of nucleic acids therapeutics focusing in particular on antisense oligonucleotide analogues carrying modifications in the backbone and sugar. Brief mention is made of siRNA development and other applications that have by and large utilized the same modifications. We also point out the pitfalls of the use of nucleic acids as drugs, such as their unwanted interactions with pattern recognition receptors, which can be mitigated by chemical modification or used as immunotherapeutic agents.
Collapse
|
45
|
Debreczeni N, Bege M, Borbás A. Synthesis of Potential Glycosyl Transferase Inhibitors by Thio‐Click Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nóra Debreczeni
- Department of Pharmaceutical Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
- Doctoral School of Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
- Institute of Healthcare Industry University of Debrecen 4032 Debrecen, Nagyerdei körút 98 Hungary
| | - Miklós Bege
- Department of Pharmaceutical Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
- Institute of Healthcare Industry University of Debrecen 4032 Debrecen, Nagyerdei körút 98 Hungary
- MTA-DE Molecular Recognition and Interaction Research Group University of Debrecen Egyetem tér 1 4032 Debrecen Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry University of Debrecen 4032 Debrecen, Egyetem tér 1 Hungary
| |
Collapse
|
46
|
Crouzier L, Richard EM, Sourbron J, Lagae L, Maurice T, Delprat B. Use of Zebrafish Models to Boost Research in Rare Genetic Diseases. Int J Mol Sci 2021; 22:13356. [PMID: 34948153 PMCID: PMC8706563 DOI: 10.3390/ijms222413356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Elodie M. Richard
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| |
Collapse
|
47
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
48
|
An in vitro system to silence mitochondrial gene expression. Cell 2021; 184:5824-5837.e15. [PMID: 34672953 DOI: 10.1016/j.cell.2021.09.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022]
Abstract
The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.
Collapse
|
49
|
Shadid M, Badawi M, Abulrob A. Antisense oligonucleotides: absorption, distribution, metabolism, and excretion. Expert Opin Drug Metab Toxicol 2021; 17:1281-1292. [PMID: 34643122 DOI: 10.1080/17425255.2021.1992382] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Antisense oligonucleotides (ASOs) have emerged as a promising novel drug modality that aims to address unmet medical needs. A record of six ASO drugs have been approved since 2016, and more candidates are in clinical development. ASOs are the most advanced class within the RNA-based therapeutics field. AREAS COVERED This review highlights the two major backbones that are currently used to build the most advanced ASO platforms - the phosphorodiamidate morpholino oligomers (PMOs) and the phosphorothioates (PSs). The absorption, distribution, metabolism, and excretion (ADME) properties of the PMO and PS platforms are discussed in detail. EXPERT OPINION Understanding the ADME properties of existing ASOs can foster further improvement of this cutting-edge therapy, thereby enabling researchers to safely develop ASO drugs and enhancing their ability to innovate. ABBREVIATIONS 2'-MOE, 2'-O-methoxyethyl; 2'PS, 2 modified PS; ADME, absorption, distribution, metabolism, and excretion; ASO, antisense oligonucleotide; AUC, area under the curve; BNA, bridged nucleic acid; CPP, cell-penetrating peptide; CMV, cytomegalovirus; CNS, central nervous system; CYP, cytochrome P; DDI, drug-drug interaction; DMD, Duchenne muscular dystrophy; FDA, Food and Drug Administration; GalNAc3, triantennary N-acetyl galactosamine; IT, intrathecal; IV, intravenous; LNA, locked nucleic acid; mRNA, messenger RNA; NA, not applicable; PBPK, physiologically based pharmacokinetics; PD, pharmacodynamic; PK, pharmacokinetic; PMO, phosphorodiamidate morpholino oligomer; PMOplus, PMOs with positionally specific positive molecular charges; PPMO, peptide-conjugated PMO; PS, phosphorothioate; SC, subcutaneous; siRNA, small-interfering RNA; SMA, spinal muscular atrophy.
Collapse
Affiliation(s)
- Mohammad Shadid
- Nonclinical Development, Sarepta Therapeutics, Inc, Cambridge, MA, USA
| | - Mohamed Badawi
- Clinical Pharmacology Fellow, Ohio State University, Columbus, OH, USA
| | - Abedelnasser Abulrob
- Senior Research Officer, Human Health Therapeutics Centre, Translational Bioscience, National Research Council Canada, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
50
|
Debreczeni N, Bege M, Herczeg M, Bereczki I, Batta G, Herczegh P, Borbás A. Tightly linked morpholino-nucleoside chimeras: new, compact cationic oligonucleotide analogues. Org Biomol Chem 2021; 19:8711-8721. [PMID: 34586122 DOI: 10.1039/d1ob01174j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The polyanionic phosphodiester backbone of nucleic acids contributes to high nuclease sensitivity and low cellular uptake and is therefore a major obstacle to the biological application of native oligonucleotides. Backbone modifications, particularly charge alterations is a proven strategy to provide artificial oligonucleotides with improved properties. Here, we describe the synthesis of a new type of oligonucleotide analogues consisting of a morpholino and a ribo- or deoxyribonucleoside in which the 5'-amino group of the nucleoside unit provides the nitrogen of the morpholine ring. The synthetic protocol is compatible with trityl and dimethoxytrityl protecting groups and azido functionality, and was extended to the synthesis of higher oligomers. The chimeras are positively charged in aqueous medium, due to the N-alkylated tertiary amine structure of the morpholino unit.
Collapse
Affiliation(s)
- Nóra Debreczeni
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- Doctoral School of Chemistry, University of Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, H-4032, Debrecen, Nagyerdei körút 98, Hungary
| | - Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- Institute of Healthcare Industry, University of Debrecen, H-4032, Debrecen, Nagyerdei körút 98, Hungary
- MTA-DE Molecular Recognition and Interaction Research Group, UD, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- Research Group for Oligosaccharide Chemistry of HAS, UD, H-4032, Debrecen, Egyetem tér 1, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- National Virology Laboratory, Szentágothai Research Centre, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- National Virology Laboratory, Szentágothai Research Centre, Ifjúság útja 20, H-7624 Pécs, Hungary
| |
Collapse
|