1
|
Lah J, Hadži S. Thermodynamic Origin of the Linear Pressure Dependence of DNA Thermal Stability. J Phys Chem Lett 2024; 15:9064-9069. [PMID: 39194396 PMCID: PMC11382263 DOI: 10.1021/acs.jpclett.4c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
High pressure affects the structure and function of DNA and is a key parameter for studying the origin and physical limits of life. Different types of DNA structures systematically show a linear pressure dependence of thermal stability (up to ∼200 MPa), which is maintained even when the solution composition is changed. The reasons behind the linear pressure dependence are not understood. We have performed a thermodynamic analysis of the pressure-, temperature- and composition-dependent (un)folding of various polynucleotide duplexes and G-quadruplexes. We demonstrate that the reason for the observed linearity is the link between compressibility and expansibility, both of which largely depend on DNA hydration. We predicted the temperature and pressure dependence of compressibility and expansibility of (un)folding and explain how they affect the corresponding volume change and thermodynamic stability parameters. These predictions indicate the existence of a convergence temperature at which compressibility and volume of (un)folding simultaneously become equal to zero.
Collapse
Affiliation(s)
- Jurij Lah
- Faculty of Chemistry and Chemical technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - San Hadži
- Faculty of Chemistry and Chemical technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Peters J, Oliva R, Caliò A, Oger P, Winter R. Effects of Crowding and Cosolutes on Biomolecular Function at Extreme Environmental Conditions. Chem Rev 2023; 123:13441-13488. [PMID: 37943516 DOI: 10.1021/acs.chemrev.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The extent of the effect of cellular crowding and cosolutes on the functioning of proteins and cells is manifold and includes the stabilization of the biomolecular systems, the excluded volume effect, and the modulation of molecular dynamics. Simultaneously, it is becoming increasingly clear how important it is to take the environment into account if we are to shed light on biological function under various external conditions. Many biosystems thrive under extreme conditions, including the deep sea and subseafloor crust, and can take advantage of some of the effects of crowding. These relationships have been studied in recent years using various biophysical techniques, including neutron and X-ray scattering, calorimetry, FTIR, UV-vis and fluorescence spectroscopies. Combining knowledge of the structure and conformational dynamics of biomolecules under extreme conditions, such as temperature, high hydrostatic pressure, and high salinity, we highlight the importance of considering all results in the context of the environment. Here we discuss crowding and cosolute effects on proteins, nucleic acids, membranes, and live cells and explain how it is possible to experimentally separate crowding-induced effects from other influences. Such findings will contribute to a better understanding of the homeoviscous adaptation of organisms and the limits of life in general.
Collapse
Affiliation(s)
- Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, 140 rue de la physique, 38400 St Martin d'Hères, France
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Antonino Caliò
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Philippe Oger
- INSA Lyon, Universite Claude Bernard Lyon1, CNRS, UMR5240, 69621 Villeurbanne, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Dortmund, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| |
Collapse
|
3
|
Liu N, Jiang T, Cui WP, Qi XQ, Li XG, Lu Y, Wu LF, Zhang WJ. The TorRS two component system regulates expression of TMAO reductase in response to high hydrostatic pressure in Vibrio fluvialis. Front Microbiol 2023; 14:1291578. [PMID: 38029070 PMCID: PMC10662104 DOI: 10.3389/fmicb.2023.1291578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
High hydrostatic pressure (HHP) regulated gene expression is one of the most commonly adopted strategies for microbial adaptation to the deep-sea environments. Previously we showed that the HHP-inducible trimethylamine N-oxide (TMAO) reductase improves the pressure tolerance of deep-sea strain Vibrio fluvialis QY27. Here, we investigated the molecular mechanism of HHP-responsive regulation of TMAO reductase TorA. By constructing torR and torS deletion mutants, we demonstrated that the two-component regulator TorR and sensor TorS are responsible for the HHP-responsive regulation of torA. Unlike known HHP-responsive regulatory system, the abundance of torR and torS was not affected by HHP. Complementation of the ΔtorS mutant with TorS altered at conserved phosphorylation sites revealed that the three sites were indispensable for substrate-induced regulation, but only the histidine located in the alternative transmitter domain was involved in pressure-responsive regulation. Taken together, we demonstrated that the induction of TMAO reductase by HHP is mediated through the TorRS system and proposed a bifurcation of signal transduction in pressure-responsive regulation from the substrate-induction. This work provides novel knowledge of the pressure regulated gene expression and will promote the understanding of the microbial adaptation to the deep-sea HHP environment.
Collapse
Affiliation(s)
- Na Liu
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Jiang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Peng Cui
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| | - Yuan Lu
- College of Information Science & Engineering, Ocean University of China, Qingdao, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
- Aix Marseille University, CNRS, LCB, Marseille, France
| | - Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| |
Collapse
|
4
|
Sun Y, Liang M, Zhao F, Su L. Research Progress on Biological Accumulation, Detection and Inactivation Technologies of Norovirus in Oysters. Foods 2023; 12:3891. [PMID: 37959010 PMCID: PMC10649127 DOI: 10.3390/foods12213891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Noroviruses (NoVs) are major foodborne pathogens that cause acute gastroenteritis. Oysters are significant carriers of this pathogen, and disease transmission from the consumption of NoVs-infected oysters occurs worldwide. The review discusses the mechanism of NoVs bioaccumulation in oysters, particularly the binding of histo-blood group antigen-like (HBGA-like) molecules to NoVs in oysters. The review explores the factors that influence NoVs bioaccumulation in oysters, including temperature, precipitation and water contamination. The review also discusses the detection methods of NoVs in live oysters and analyzes the inactivation effects of high hydrostatic pressure, irradiation treatment and plasma treatment on NoVs. These non-thermal processing treatments can remove NoVs efficiently while retaining the original flavor of oysters. However, further research is needed to reduce the cost of these technologies to achieve large-scale commercial applications. The review aims to provide novel insights to reduce the bioaccumulation of NoVs in oysters and serve as a reference for the development of new, rapid and effective methods for detecting and inactivating NoVs in live oysters.
Collapse
Affiliation(s)
- Yiqiang Sun
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Amini M, Benson JD. Technologies for Vitrification Based Cryopreservation. Bioengineering (Basel) 2023; 10:bioengineering10050508. [PMID: 37237578 DOI: 10.3390/bioengineering10050508] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 05/28/2023] Open
Abstract
Cryopreservation is a unique and practical method to facilitate extended access to biological materials. Because of this, cryopreservation of cells, tissues, and organs is essential to modern medical science, including cancer cell therapy, tissue engineering, transplantation, reproductive technologies, and bio-banking. Among diverse cryopreservation methods, significant focus has been placed on vitrification due to low cost and reduced protocol time. However, several factors, including the intracellular ice formation that is suppressed in the conventional cryopreservation method, restrict the achievement of this method. To enhance the viability and functionality of biological samples after storage, a large number of cryoprotocols and cryodevices have been developed and studied. Recently, new technologies have been investigated by considering the physical and thermodynamic aspects of cryopreservation in heat and mass transfer. In this review, we first present an overview of the physiochemical aspects of freezing in cryopreservation. Secondly, we present and catalog classical and novel approaches that seek to capitalize on these physicochemical effects. We conclude with the perspective that interdisciplinary studies provide pieces of the cryopreservation puzzle to achieve sustainability in the biospecimen supply chain.
Collapse
Affiliation(s)
- Mohammad Amini
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
6
|
Piezophilic Phenotype Is Growth Condition Dependent and Correlated with the Regulation of Two Sets of ATPase in Deep-Sea Piezophilic Bacterium Photobacterium profundum SS9. Microorganisms 2023; 11:microorganisms11030637. [PMID: 36985211 PMCID: PMC10054830 DOI: 10.3390/microorganisms11030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alteration of respiratory components as a function of pressure is a common strategy developed in deep-sea microorganisms, presumably to adapt to high hydrostatic pressure (HHP). While the electron transport chain and terminal reductases have been extensively studied in deep-sea bacteria, little is known about their adaptations for ATP generation. In this study, we showed that the deep-sea bacterium Photobacterium profundum SS9 exhibits a more pronounced piezophilic phenotype when grown in minimal medium supplemented with glucose (MG) than in the routinely used MB2216 complex medium. The intracellular ATP level varied with pressure, but with opposite trends in the two culture media. Between the two ATPase systems encoded in SS9, ATPase-I played a dominant role when cultivated in MB2216, whereas ATPase-II was more abundant in the MG medium, especially at elevated pressure when cells had the lowest ATP level among all conditions tested. Further analyses of the ΔatpI, ΔatpE1 and ΔatpE2 mutants showed that disrupting ATPase-I induced expression of ATPase-II and that the two systems are functionally redundant in MB2216. Collectively, we provide the first examination of the differences and relationships between two ATPase systems in a piezophilic bacterium, and expanded our understanding of the involvement of energy metabolism in pressure adaptation.
Collapse
|
7
|
Knop JM, Mukherjee S, Jaworek MW, Kriegler S, Manisegaran M, Fetahaj Z, Ostermeier L, Oliva R, Gault S, Cockell CS, Winter R. Life in Multi-Extreme Environments: Brines, Osmotic and Hydrostatic Pressure─A Physicochemical View. Chem Rev 2023; 123:73-104. [PMID: 36260784 DOI: 10.1021/acs.chemrev.2c00491] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life. We discuss the combined effects of osmotic (salts, organic cosolvents) and hydrostatic pressures on the structure, stability, and reactivity of biomolecular systems, including membranes, proteins, and nucleic acids. To this end, a variety of biophysical techniques have been applied, including calorimetry, UV/vis, FTIR and fluorescence spectroscopy, and neutron and X-ray scattering, in conjunction with high pressure techniques. Knowledge of these effects is essential to our understanding of life exposed to such harsh conditions, and of the physical limits of life in general. Finally, we discuss strategies that not only help us understand the adaptive mechanisms of organisms that thrive in such harsh geological settings but could also have important ramifications in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Jim-Marcel Knop
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Sanjib Mukherjee
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Michel W Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Simon Kriegler
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Magiliny Manisegaran
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Zamira Fetahaj
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Lena Ostermeier
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Rosario Oliva
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| |
Collapse
|
8
|
Rostamabadi H, Can Karaca A, Nowacka M, Mulla MZ, Al-attar H, Rathnakumar K, Gultekin Subasi B, Sehrawat R, Kheto A, Falsafi SR. How high hydrostatic pressure treatment modifies the physicochemical and nutritional attributes of polysaccharides? Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
9
|
Yan G, Lan Y, Sun J, Xu T, Wei T, Qian PY. Comparative transcriptomic analysis of in situ and onboard fixed deep-sea limpets reveals sample preparation-related differences. iScience 2022; 25:104092. [PMID: 35402864 PMCID: PMC8983377 DOI: 10.1016/j.isci.2022.104092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Precise gene expression reflects the molecular response of deep-sea organisms to their harsh living environments. However, changes in environmental factors during lifting samples from the deep sea to a research vessel can also affect gene expression. By using the transcriptomic approach, we compared the gene expression profiles of the onboard fixed with the in situ fixed samples of the deep-sea limpet Bathyacmaea lactea. Our results revealed that the concomitant stress during conventional deep-sea sampling without RNA in situ fixation greatly influenced the gene expression. Various biological activities, such as cell and tissue structure, lysosomal activity, fluid balance, and unsaturated fatty acid metabolism, were perturbed, suggesting that the sampling stress has exerted systemic impacts on the life of the limpets. These findings clearly illustrate that deep-sea samples without RNA in situ fixation can easily lead to biased results in gene expression analysis, which requires to be appropriately addressed in future studies.
Collapse
Affiliation(s)
- Guoyong Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tong Wei
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Corresponding author
| |
Collapse
|
10
|
Maiti A, Daschakraborty S. Can Urea and Trimethylamine- N-oxide Prevent the Pressure-Induced Phase Transition of Lipid Membrane? J Phys Chem B 2022; 126:1426-1440. [PMID: 35139638 DOI: 10.1021/acs.jpcb.1c08891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Organisms dwelling in ocean trenches are exposed to the high hydrostatic pressure of ocean water. Increasing pressure can alter the membrane packing density and fluidity and trigger the fluid-to-gel phase transition. To combat environmental stress, the organisms synthesize small polar solutes, which are known as osmolytes. Urea and trimethylamine-N-oxide (TMAO) are two such solutes found in deep-sea creatures. While TMAO stabilizes protein, urea induces protein denaturation. These solutes strongly influence the packing density and membrane fluidity of the lipid bilayer at different conditions. But can these solutes affect the pressure-induced phase transition of the lipid membrane? In the present work, we have studied the effect of these two solutes on pressure-induced fluid-to-gel phase transition based on the all-atom molecular dynamics (MD) simulation approach. A high-pressure-stimulated fluid-to-gel phase transition of the membrane is seen at 800 bar, which is consistent with previous experiments. We have also observed that in the low-pressure region (1-400 bar), urea slightly increases the membrane fluidity where TMAO decreases the same. However, the phase transition pressure remains almost unchanged on the addition of urea while TMAO shifts the phase transition toward a lower pressure. We have found that the hydrogen (H)-bond interaction between lipid and urea plays an important role in preserving the fluidity of the membrane in the low-pressure zone. However, at a higher pressure, both water and urea are excluded from the membrane surface. TMAO is also excluded from the interfacial region of the membrane at all pressures. Exclusion from the membrane surface further triggers the phase transition of the lipid membrane from the fluid to gel phase at a high pressure.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India
| | | |
Collapse
|
11
|
Pitino MA, Unger S, Gill A, McGeer AJ, Doyen A, Pouliot Y, Bazinet RP, Kothari A, Mazzulli T, Stone D, O'Connor DL. High pressure processing inactivates human cytomegalovirus and hepatitis A virus while preserving macronutrients and native lactoferrin in human milk. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Influence of iron binding in the structural stability and cellular internalization of bovine lactoferrin. Heliyon 2021; 7:e08087. [PMID: 34632151 PMCID: PMC8487029 DOI: 10.1016/j.heliyon.2021.e08087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/20/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023] Open
Abstract
Lactoferrin (Lf) is an iron-binding glycoprotein and a component of many external secretions with a wide diversity of functions. Structural studies are important to understand the mechanisms employed by Lf to exert so varied functions. Here, we used guanidine hydrochloride and high hydrostatic pressure to cause perturbations in the structure of bovine Lf (bLf) in apo and holo (unsaturated and iron-saturated, respectively) forms, and analyzed conformational changes by intrinsic and extrinsic fluorescence spectroscopy. Our results showed that the iron binding promotes changes on tertiary structure of bLf and increases its structural stability. In addition, we evaluated the effects of bLf structural change on the kinetics of bLf internalization in Vero cells by confocal fluorescence microscopy, and observed that the holo form was faster than the apo form. This finding may indicate that structural changes promoted by iron binding may play a key role in the intracellular traffic of bLf. Altogether, our data improve the comprehension of bLf stability and uptake, adding knowledge to its potential use as a biopharmaceutical.
Collapse
|
13
|
Barbhuiya RI, Singha P, Singh SK. A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Res Int 2021; 149:110647. [PMID: 34600649 DOI: 10.1016/j.foodres.2021.110647] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Non-thermal food processing is a viable alternative to traditional thermal processing to meet customer needs for high-quality, convenient and minimally processed foods. They are designed to eliminate elevated temperatures during processing and avoid the adverse effects of heat on food products. Numerous thermal and novel non-thermal technologies influence food structure at the micro and macroscopic levels. They affect several properties such as rheology, flavour, process stability, texture, and appearance at microscopic and macroscopic levels. This review presents existing knowledge and advances on the impact of non-thermal technologies, for instance, cold plasma treatment, irradiation, high-pressure processing, ultrasonication, pulsed light technology, high voltage electric field and pulsed electric field treatment on the structural changes of food components. An extensive review of the literature indicates that different non-thermal processing technologies can affect the food components, which significantly affects the structure of food. Applications of novel non-thermal technologies have shown considerable impact on food structure by altering protein structures via free radicals or larger or smaller molecules. Lipid oxidation is another process responsible for undesirable effects in food when treated with non-thermal techniques. Non-thermal technologies may also affect starch properties, reduce molecular weight, and change the starch granule's surface. Such modification of food structure could create novel food textures, enhance sensory properties, improve digestibility, improve water-binding ability and improve mediation of gelation processes. However, it is challenging to determine these technologies' influence on food components due to differences in their primary operation and equipment design mechanisms and different operating conditions. Hence, to get the most value from non-thermal technologies, more in-depth research about their effect on various food components is required.
Collapse
Affiliation(s)
- Rahul Islam Barbhuiya
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
14
|
Maiti A, Daschakraborty S. How Do Urea and Trimethylamine N-Oxide Influence the Dehydration-Induced Phase Transition of a Lipid Membrane? J Phys Chem B 2021; 125:10149-10165. [PMID: 34486370 DOI: 10.1021/acs.jpcb.1c05852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Living organisms are often exposed to extreme dehydration, which is detrimental to the structure and function of the cell membrane. The lipid membrane undergoes fluid-to-gel phase transition due to dehydration and thus loses fluidity and functionality. To protect the fluid phase of the bilayer these organisms adopt several strategies. Enhanced production of small polar organic solutes (also called osmolytes) is one such strategy. Urea and trimethylamine N-oxide (TMAO) are two osmolytes found in different organisms combating osmotic stress. Previous experiments have found that both these osmolytes have strong effects on lipid membrane under different hydration conditions. Urea prevents the dehydration-induced phase transition of the lipid membrane by directly interacting with the lipids, while TMAO does not inhibit the phase transition. To provide atomistic insights, we have carried out all-atom molecular dynamics (MD) simulation of a lipid membrane under varying hydration levels and studied the effect of these osmolytes on different structural and dynamic properties of the membrane. This study suggests that urea significantly inhibits the dehydration-induced fluid-to-gel phase transition by strongly interacting with the lipid membrane via hydrogen bonds, which balances the reduced lipid hydration due to the decreasing water content. In contrast, TMAO is excluded from the membrane surface due to unfavorable interaction with the lipids. This induces further dehydration of the lipids which reinforces the fluid-to-gel phase transition. We have also studied the counteractive role of TMAO on the effect of urea on lipid membrane when both the osmolytes are present. TMAO draws some urea molecules out of the membrane and thereby reduces the effect of urea on the lipid membrane at lower hydration levels. This is similar to the counteraction of urea's deleterious effects on protein by TMAO. All these observations are consistent with the experimental results and thus provide deep molecular insights into the role of these osmolytes in protecting the fluid phase of the membrane, the key survival strategy against osmotic-stress-induced dehydration.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India
| | | |
Collapse
|
15
|
Bajaj R, Singh N, Ghumman A, Kaur A, Mishra HN. Effect of High Pressure Treatment on Structural, Functional, and In‐Vitro Digestibility of Starches from Tubers, Cereals, and Beans. STARCH-STARKE 2021. [DOI: 10.1002/star.202100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ritika Bajaj
- Department of Food Science and Technology Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Narpinder Singh
- Department of Food Science and Technology Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Atinder Ghumman
- Department of Food Science and Technology Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Amritpal Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Hari Niwas Mishra
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal 721302 India
| |
Collapse
|
16
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
17
|
Comparative Assessment of NMR Probes for the Experimental Description of Protein Folding Pathways with High-Pressure NMR. BIOLOGY 2021; 10:biology10070656. [PMID: 34356511 PMCID: PMC8301334 DOI: 10.3390/biology10070656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022]
Abstract
Multidimensional NMR intrinsically provides multiple probes that can be used for deciphering the folding pathways of proteins: NH amide and CαHα groups are strategically located on the backbone of the protein, while CH3 groups, on the side-chain of methylated residues, are involved in important stabilizing interactions in the hydrophobic core. Combined with high hydrostatic pressure, these observables provide a powerful tool to explore the conformational landscapes of proteins. In the present study, we made a comparative assessment of the NH, CαHα, and CH3 groups for analyzing the unfolding pathway of ∆+PHS Staphylococcal Nuclease. These probes yield a similar description of the folding pathway, with virtually identical thermodynamic parameters for the unfolding reaction, despite some notable differences. Thus, if partial unfolding begins at identical pressure for these observables (especially in the case of backbone probes) and concerns similar regions of the molecule, the residues involved in contact losses are not necessarily the same. In addition, an unexpected slight shift toward higher pressure was observed in the sequence of the scenario of unfolding with CαHα when compared to amide groups.
Collapse
|
18
|
Zhang WJ, Zhang C, Zhou S, Li XG, Mangenot S, Fouteau S, Guerin T, Qi XQ, Yang J, Bartlett DH, Wu LF. Comparative genomic analysis of obligately piezophilic Moritella yayanosii DB21MT-5 reveals bacterial adaptation to the Challenger Deep, Mariana Trench. Microb Genom 2021; 7:000591. [PMID: 34319226 PMCID: PMC8477399 DOI: 10.1099/mgen.0.000591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/20/2021] [Indexed: 01/19/2023] Open
Abstract
Hadal trenches are the deepest but underexplored ecosystems on the Earth. Inhabiting the trench bottom is a group of micro-organisms termed obligate piezophiles that grow exclusively under high hydrostatic pressures (HHP). To reveal the genetic and physiological characteristics of their peculiar lifestyles and microbial adaptation to extreme high pressures, we sequenced the complete genome of the obligately piezophilic bacterium Moritella yayanosii DB21MT-5 isolated from the deepest oceanic sediment at the Challenger Deep, Mariana Trench. Through comparative analysis against pressure sensitive and deep-sea piezophilic Moritella strains, we identified over a hundred genes that present exclusively in hadal strain DB21MT-5. The hadal strain encodes fewer signal transduction proteins and secreted polysaccharases, but has more abundant metal ion transporters and the potential to utilize plant-derived saccharides. Instead of producing osmolyte betaine from choline as other Moritella strains, strain DB21MT-5 ferments on choline within a dedicated bacterial microcompartment organelle. Furthermore, the defence systems possessed by DB21MT-5 are distinct from other Moritella strains but resemble those in obligate piezophiles obtained from the same geographical setting. Collectively, the intensive comparative genomic analysis of an obligately piezophilic strain Moritella yayanosii DB21MT-5 demonstrates a depth-dependent distribution of energy metabolic pathways, compartmentalization of important metabolism and use of distinct defence systems, which likely contribute to microbial adaptation to the bottom of hadal trench.
Collapse
Affiliation(s)
- Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, PR China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France / IDSSE-CAS, Sanya, PR China
- Institution of Deep-Sea Life Sciences, Hainan Deep-Sea Technology Laboratory, Sanya, PR China
| | - Chan Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, PR China
- Present address: College of Horticulture, Hainan University, No. 58, Renmin Avenue, Haikou, PR China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, PR China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France / IDSSE-CAS, Sanya, PR China
- Institution of Deep-Sea Life Sciences, Hainan Deep-Sea Technology Laboratory, Sanya, PR China
| | - Sophie Mangenot
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Stéphanie Fouteau
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Thomas Guerin
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, PR China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France / IDSSE-CAS, Sanya, PR China
- Institution of Deep-Sea Life Sciences, Hainan Deep-Sea Technology Laboratory, Sanya, PR China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Douglas H. Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | - Long-Fei Wu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France / IDSSE-CAS, Sanya, PR China
- Aix-Marseille Université, CNRS, LCB UMR 7257, IMM, IM2B, Marseille, France
| |
Collapse
|
19
|
Fernández Del Río B, Rey A. Behavior of Proteins under Pressure from Experimental Pressure-Dependent Structures. J Phys Chem B 2021; 125:6179-6191. [PMID: 34100621 PMCID: PMC8478274 DOI: 10.1021/acs.jpcb.1c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-based models are coarse-grained representations of the interactions responsible for the protein folding process. In their simplest form, they use only the native contact map of a given protein to predict the main features of its folding process by computer simulation. Given their limitations, these models are frequently complemented with sequence-dependent contributions or additional information. Specifically, to analyze the effect of pressure on the folding/unfolding transition, special forms of these interaction potentials are employed, which may a priori determine the outcome of the simulations. In this work, we have tried to keep the original simplicity of structure-based models. Therefore, we have used folded structures that have been experimentally determined at different pressures to define native contact maps and thus interactions dependent on pressure. Despite the apparently tiny structural differences induced by pressure, our simulation results provide different thermodynamic and kinetic behaviors, which roughly correspond to experimental observations (when there is a possible comparison) of two proteins used as benchmarks, hen egg-white lysozyme and dihydrofolate reductase. Therefore, this work shows the feasibility of using experimental native structures at different pressures to analyze the global effects of this physical property on the protein folding process.
Collapse
Affiliation(s)
- Beatriz Fernández Del Río
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Antonio Rey
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
20
|
|
21
|
Larrea-Wachtendorff D, Di Nobile G, Ferrari G. Effects of processing conditions and glycerol concentration on rheological and texture properties of starch-based hydrogels produced by high pressure processing (HPP). Int J Biol Macromol 2020; 159:590-597. [PMID: 32428592 DOI: 10.1016/j.ijbiomac.2020.05.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
Starch-based hydrogels are natural polymeric structures which could be potentially utilized in food, pharma and cosmetic sectors to produce creams, gels and ointments, as well as functional foods and products for personalized nutrition. In this paper, the effects of processing conditions (pressure levels and holding time) on gelation of corn and rice starch solutions were evaluated also in presence of glycerol. Considering the utmost importance of humectants as active moisturizers in gels, their addition in starch solutions has been investigated in view of the industrial exploitation of HPP starch-based hydrogels. Experimental results demonstrated that at 600 MPa the gelation of the formulations tested was homogenous and the hydrogels formed were stable. However, glycerol at 10% concentration played an antagonistic role, being longer processing times necessary to form gels. Viscosity and G' values of rice and corn starch HPP hydrogels decreased with increasing glycerol concentration, particularly for corn starch hydrogels. At all HPP processing conditions investigated, rice starch solutions containing the humectant were more prone to gelation and the hydrogels formed had better texture properties than those based on corn starch. 5% glycerol concentration was identified as the critical value to obtain stable HPP hydrogels with good rheological and texture properties.
Collapse
Affiliation(s)
| | - Gino Di Nobile
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; ProdAl Scarl c/o University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
22
|
Bucka-Kolendo J, Sokołowska B, Winiarczyk S. Influence of High Hydrostatic Pressure on the Identification of Lactobacillus by MALDI-TOF MS- Preliminary Study. Microorganisms 2020; 8:E813. [PMID: 32481763 PMCID: PMC7356497 DOI: 10.3390/microorganisms8060813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
In the present study, we assessed the ability of MALDI-TOF MS (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) to identify microbial strains subjected to high hydrostatic pressure (HHP) as a stress factor. Protein changes induced by HHP can affect the identification of microorganisms when the identification technique is based on the protein profile. We evaluated two methods, namely MALDI-TOF MS and 16S rDNA sequencing, as a valuable tool to identify Lactobacillus species isolated from spoiled food, juices and beers. The data obtained from the protein mass fingerprint analysis of some of the lactobacilli strains showed differences in unpressured and pressured mass spectrum profiles (MSPs), which influenced the results of the identification. Four out of 13 strains (30%) showed different MSP results for unpressured and pressured samples and these results did not overlap with the 16S rDNA identification results. The 16S rDNA sequencing method revealed that five unpressured strains (38%) and four pressured strains (40%) were identified correctly by MALDI-TOF MS. Both methods showed compatible results in 38% of unpressured strains and in 30% of pressured strains. Stress factors, cultivation methods or the natural environment from which the bacteria were derived can affect their protein profile and thus change the mass spectrum. It is necessary to expand the database with a wide range of mass spectra dedicated to a high-throughput study of the microorganisms derived from different environments.
Collapse
Affiliation(s)
- Joanna Bucka-Kolendo
- Department of Microbiology, Institute of Agriculture and Food Biotechnology, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Institute of Agriculture and Food Biotechnology, 02-532 Warsaw, Poland;
- Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland
| | - Stanisław Winiarczyk
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland;
| |
Collapse
|
23
|
Chen J, Liang L, Li Y, Zhang H. Molecular Response to High Hydrostatic Pressure: Time-Series Transcriptomic Analysis of Shallow-Water Sea Cucumber Apostichopus japonicus. Front Genet 2020; 11:355. [PMID: 32425972 PMCID: PMC7203883 DOI: 10.3389/fgene.2020.00355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Hydrostatic pressure is a key environmental factor constraining the benthic migration of shallow-water invertebrates. Although many studies have examined the physiological effects of high hydrostatic pressure on shallow-water invertebrates, the molecular response to high pressure is not fully understood. This question has received increasing attention because ocean warming is forcing the bathymetric migrations of shallow-water invertebrates. Here, we applied time-series transcriptomic analysis to high-pressure incubated and atmospheric pressure-recovered shallow-water sea cucumber (Apostichopus japonicus) to address this question. A total of 44 samples from 15 experimental groups were sequenced. Our results showed that most genes responded to pressure stress at the beginning when pressure was changed, but significant differences of gene expression appeared after 4 to 6 h. Transcription was the most sensitive biological process responding to high-pressure exposure, which was enriched among up-regulated genes after 2 h, followed by ubiquitination (4 h), endocytosis (6 h), stress response (6 h), methylation regulation (24 h), and transmembrane transportation (24 h). After high-pressure incubation, all these biological processes remained up-regulated within 4–6 h at atmospheric pressure. Overall, our results revealed the dynamic transcriptional response of A. japonicus to high-pressure exposure. Additionally, few quantitative or functional responses related to A. japonicus on transcriptional level were introduced by hydrostatic pressure changes after 1 h, and main biological responses were introduced after 4 h, suggesting that, when hydrostatic pressure is the mainly changed environmental factor, it will be better to fix sea cucumber samples for transcriptomic analysis within 1 h, but 4 h will be also acceptable.
Collapse
Affiliation(s)
- Jiawei Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linying Liang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
24
|
Kristl A, Lukšič M, Pompe M, Podgornik A. Effect of Pressure Increase on Macromolecules' Adsorption in Ion Exchange Chromatography. Anal Chem 2020; 92:4527-4534. [PMID: 32075366 PMCID: PMC7307832 DOI: 10.1021/acs.analchem.9b05729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In this study a new
method for evaluating the pressure effect on
separations of oligonucleotides and proteins on an anion exchange
column was developed. The pressure rise of up to 500 bar was attained
by coupling restriction capillaries to the column outlet to minimize
differences in pressure over the column. Using pH transient measurements
it was demonstrated that no shift in ion exchange equilibria occurs
due to a pressure increase. Results from isocratic and gradient separations
of oligonucleotides (model compounds) were evaluated by stoichiometric
displacement and linear gradient elution model, respectively. Both
elution modes demonstrated that for smaller oligonucleotides the number
of binding sites remained unchanged with pressure rise while an increase
for large oligonucleotides was observed, indicating their alignment
over the stationary phase. From the obtained model parameters and
their pressure dependencies, a thermodynamic description was made
and compared between the elution modes. A complementary pattern of
a linear increase of partial molar volume change with a pressure rise
was established. Furthermore, estimation of the pressure effect was
performed for bovine serum albumin and thyroglobulin that required
gradient separations. Again, a raise in binding site number was found
with pressure increase. The partial molar volume changes of BSA and
Tg at the maximal investigated pressure and minimal salt concentration
were −31.6 and −34.4 cm3/mol, respectively,
indicating a higher rigidity of Tg. The proposed approach provides
an insight into the molecule deformation over a surface at high pressures
under nondenaturing conditions. The information enables a more comprehensive
UHPLC method development.
Collapse
Affiliation(s)
- Anja Kristl
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Miha Lukšič
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Matevž Pompe
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Aleš Podgornik
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.,COBIK, Tovarniška 26, 5270 Ajdovščina, Slovenia
| |
Collapse
|
25
|
Molecular dynamics in cells: A neutron view. Biochim Biophys Acta Gen Subj 2020; 1864:129475. [DOI: 10.1016/j.bbagen.2019.129475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 11/21/2022]
|
26
|
Bundgaard L, Savickas S, Auf dem Keller U. Mapping the N-Terminome in Tissue Biopsies by PCT-TAILS. Methods Mol Biol 2020; 2043:285-296. [PMID: 31463921 DOI: 10.1007/978-1-4939-9698-8_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteases play pivotal roles in multiple biological processes in all living organisms and are tightly regulated under normal conditions, but alterations in the proteolytic system and uncontrolled protease activity result in multiple pathological conditions. A disease will most often be defined by an ensemble of cleavage events-a proteolytic signature, thus the system-wide study of protease substrates has gained significant attention and identification of disease specific clusters of protease substrates holds great promise as targets for diagnostics and therapy.In this chapter we describe a method that enables fast and reproducible analysis of protease substrates and proteolytic products in an amount of tissue less than the quantity obtained by a standard biopsy. The method combines tissue disruption and protein extraction by pressure cycling technology (PCT), N-terminal enrichment by tandem mass tag (TMT)-terminal amine isotopic labeling of substrates (TAILS), peptide analysis by mass spectrometry (MS), and a general pipeline for interpretation of the data.
Collapse
Affiliation(s)
- Louise Bundgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
27
|
Maurel MC, Leclerc F, Hervé G. Ribozyme Chemistry: To Be or Not To Be under High Pressure. Chem Rev 2019; 120:4898-4918. [DOI: 10.1021/acs.chemrev.9b00457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, EPHE, F-75005 Paris, France
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Guy Hervé
- Laboratoire BIOSIPE, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Campus Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
28
|
A novel ER membrane protein Ehg1/May24 plays a critical role in maintaining multiple nutrient permeases in yeast under high-pressure perturbation. Sci Rep 2019; 9:18341. [PMID: 31797992 PMCID: PMC6892922 DOI: 10.1038/s41598-019-54925-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Previously, we isolated 84 deletion mutants in Saccharomyces cerevisiae auxotrophic background that exhibited hypersensitive growth under high hydrostatic pressure and/or low temperature. Here, we observed that 24 deletion mutants were rescued by the introduction of four plasmids (LEU2, HIS3, LYS2, and URA3) together to grow at 25 MPa, thereby suggesting close links between the genes and nutrient uptake. Most of the highly ranked genes were poorly characterized, including MAY24/YPR153W. May24 appeared to be localized in the endoplasmic reticulum (ER) membrane. Therefore, we designated this gene as EHG (ER-associated high-pressure growth gene) 1. Deletion of EHG1 led to reduced nutrient transport rates and decreases in the nutrient permease levels at 25 MPa. These results suggest that Ehg1 is required for the stability and functionality of the permeases under high pressure. Ehg1 physically interacted with nutrient permeases Hip1, Bap2, and Fur4; however, alanine substitutions for Pro17, Phe19, and Pro20, which were highly conserved among Ehg1 homologues in various yeast species, eliminated interactions with the permeases as well as the high-pressure growth ability. By functioning as a novel chaperone that facilitated coping with high-pressure-induced perturbations, Ehg1 could exert a stabilizing effect on nutrient permeases when they are present in the ER.
Collapse
|
29
|
Salvador-Castell M, Golub M, Martinez N, Ollivier J, Peters J, Oger P. The first study on the impact of osmolytes in whole cells of high temperature-adapted microorganisms. SOFT MATTER 2019; 15:8381-8391. [PMID: 31613294 DOI: 10.1039/c9sm01196j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hyperthermophilic piezophile, Thermococcus barophilus displays a strong stress response characterized by the accumulation of the organic osmolyte, mannosylglycerate during growth under sub-optimal pressure conditions (0.1 MPa). Taking advantage of this known effect, the impact of osmolytes in piezophiles in an otherwise identical cellular context was investigated, by comparing T. barophilus cells grown under low or optimal pressures (40 MPa). Using neutron scattering techniques, we studied the molecular dynamics of live cells of T. barophilus at different pressures and temperatures. We show that in the presence of osmolytes, cells present a higher diffusion coefficient of hydration water and an increase of bulk water motions at a high temperature. In the absence of osmolytes, the T. barophilus cellular dynamics is more responsive to high temperature and high hydrostatic pressure. These results therefore give clear evidence for a protecting effect of osmolytes on proteins.
Collapse
|
30
|
Hata H, Nishiyama M, Kitao A. Molecular dynamics simulation of proteins under high pressure: Structure, function and thermodynamics. Biochim Biophys Acta Gen Subj 2019; 1864:129395. [PMID: 31302180 DOI: 10.1016/j.bbagen.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations. SCOPE OF REVIEW First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure. MAJOR CONCLUSIONS Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening. GENERAL SIGNIFICANCE MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.
Collapse
Affiliation(s)
- Hiroaki Hata
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama, 2-12-1 Meguro-ku, Tokyo 152-8550, Japan
| | - Masayoshi Nishiyama
- Department of Physics, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama, 2-12-1 Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
31
|
Winter R. Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation. Annu Rev Biophys 2019; 48:441-463. [DOI: 10.1146/annurev-biophys-052118-115601] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High hydrostatic pressure affects the structure, dynamics, and stability of biomolecular systems and is a key parameter in the context of the exploration of the origin and the physical limits of life. This review lays out the conceptual framework for exploring the conformational fluctuations, dynamical properties, and activity of biomolecular systems using pressure perturbation. Complementary pressure-jump relaxation studies are useful tools to study the kinetics and mechanisms of biomolecular phase transitions and structural transformations, such as membrane fusion or protein and nucleic acid folding. Finally, the advantages of using pressure to explore biomolecular assemblies and modulate enzymatic reactions are discussed.
Collapse
Affiliation(s)
- Roland Winter
- Faculty of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44227 Dortmund, Germany
| |
Collapse
|
32
|
DiCaprio E, Ye M, Chen H, Li J. Inactivation of Human Norovirus and Tulane Virus by High Pressure Processing in Simple Mediums and Strawberry Puree. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
|
34
|
Chen J, Liu H, Cai S, Zhang H. Comparative transcriptome analysis of Eogammarus possjeticus at different hydrostatic pressure and temperature exposures. Sci Rep 2019; 9:3456. [PMID: 30837550 PMCID: PMC6401005 DOI: 10.1038/s41598-019-39716-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Hydrostatic pressure is an important environmental factor affecting the vertical distribution of marine organisms. Laboratory-based studies have shown that many extant shallow-water marine benthic invertebrates can tolerate hydrostatic pressure outside their known natural distributions. However, only a few studies have focused on the molecular mechanisms of pressure acclimatisation. In the present work, we examined the pressure tolerance of the shallow-water amphipod Eogammarus possjeticus at various temperatures (5, 10, 15, and 20 °C) and hydrostatic pressures (0.1–30 MPa) for 16 h. Six of these experimental groups were used for transcriptome analysis. We found that 100% of E. possjeticus survived under 20 MPa at all temperature conditions for 16 h. Sequence assembly resulted in 138, 304 unigenes. Results of differential expression analysis revealed that 94 well-annotated genes were up-regulated under high pressure. All these findings indicated that the pressure tolerance of E. possjeticus was related to temperature. Several biological processes including energy metabolism, antioxidation, immunity, lipid metabolism, membrane-related process, genetic information processing, and DNA repair are probably involved in the acclimatisation in deep-sea environments.
Collapse
Affiliation(s)
- Jiawei Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Helu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
35
|
Torrent J, Martin D, Igel-Egalon A, Béringue V, Rezaei H. High-Pressure Response of Amyloid Folds. Viruses 2019; 11:v11030202. [PMID: 30823361 PMCID: PMC6466028 DOI: 10.3390/v11030202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
The abnormal protein aggregates in progressive neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and prion diseases, adopt a generic structural form called amyloid fibrils. The precise amyloid fold can differ between patients and these differences are related to distinct neuropathological phenotypes of the diseases. A key focus in current research is the molecular mechanism governing such structural diversity, known as amyloid polymorphism. In this review, we focus on our recent work on recombinant prion protein (recPrP) and the use of pressure as a variable for perturbing protein structure. We suggest that the amyloid polymorphism is based on volumetric features. Accordingly, pressure is the thermodynamic parameter that fits best to exploit volume differences within the states of a chemical reaction, since it shifts the equilibrium constant to the state that has the smaller volume. In this context, there are analogies with the process of correct protein folding, the high pressure-induced effects of which have been studied for more than a century and which provides a valuable source of inspiration. We present a short overview of this background and review our recent results regarding the folding, misfolding, and aggregation-disaggregation of recPrP under pressure. We present preliminary experiments aimed at identifying how prion protein fibril diversity is related to the quaternary structure by using pressure and varying protein sequences. Finally, we consider outstanding questions and testable mechanistic hypotheses regarding the multiplicity of states in the amyloid fold.
Collapse
Affiliation(s)
- Joan Torrent
- MMDN, Univ. Montpellier, EPHE, INSERM, U1198, F-34095 Montpellier, France.
| | - Davy Martin
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| | - Angélique Igel-Egalon
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| |
Collapse
|
36
|
Zubair M, Ullah A. Recent advances in protein derived bionanocomposites for food packaging applications. Crit Rev Food Sci Nutr 2019; 60:406-434. [DOI: 10.1080/10408398.2018.1534800] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Saricaoglu FT, Gul O, Besir A, Atalar I. Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Lehofer B, Golub M, Kornmueller K, Kriechbaum M, Martinez N, Nagy G, Kohlbrecher J, Amenitsch H, Peters J, Prassl R. High Hydrostatic Pressure Induces a Lipid Phase Transition and Molecular Rearrangements in Low-Density Lipoprotein Nanoparticles. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2018; 35:1800149. [PMID: 30283212 PMCID: PMC6166783 DOI: 10.1002/ppsc.201800149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Low-density lipoproteins (LDL) are natural lipid transporter in human plasma whose chemically modified forms contribute to the progression of atherosclerosis and cardiovascular diseases accounting for a vast majority of deaths in westernized civilizations. For the development of new treatment strategies, it is important to have a detailed picture of LDL nanoparticles on a molecular basis. Through the combination of X-ray and neutron small-angle scattering (SAS) techniques with high hydrostatic pressure (HHP) this study describes structural features of normolipidemic, triglyceride-rich and oxidized forms of LDL. Due to the different scattering contrasts for X-rays and neutrons, information on the effects of HHP on the internal structure determined by lipid rearrangements and changes in particle shape becomes accessible. Independent pressure and temperature variations provoke a phase transition in the lipid core domain. With increasing pressure an inter-related anisotropic deformation and flattening of the particle are induced. All LDL nanoparticles maintain their structural integrity even at 3000 bar and show a reversible response toward pressure variations. The present work depicts the complementarity of pressure and temperature as independent thermodynamic parameters and introduces HHP as a tool to study molecular assembling and interaction processes in distinct lipoprotein particles in a nondestructive manner.
Collapse
Affiliation(s)
- Bernhard Lehofer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Maksym Golub
- Institut Laue-Langevin, 71 avenue des Martyrs, 38044 Grenoble, France; Univ. Grenoble Alpes, CNRS + CEA, IBS, 38000 Grenoble, France
| | - Karin Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Nicolas Martinez
- Institut Laue-Langevin, 71 avenue des Martyrs, 38044 Grenoble, France; Univ. Grenoble Alpes, CNRS + CEA, IBS, 38000 Grenoble, France
| | - Gergely Nagy
- Paul Scherrer Institut, 5232 Villigen, Switzerland; Wigner Research Centre for Physics, 1121 Budapest, Hungary; European Spallation Source ERIC, 22363 Lund, Sweden
| | | | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Judith Peters
- Institut Laue-Langevin, 71 avenue des Martyrs, 38044 Grenoble, France; Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| |
Collapse
|
39
|
Skvarnavičius G, Toleikis Z, Grigaliūnas M, Smirnovienė J, Norvaišas P, Cimmperman P, Matulis D, Petrauskas V. High pressure spectrofluorimetry – a tool to determine protein-ligand binding volume. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/950/4/042001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Schott AS, Behr J, Geißler AJ, Kuster B, Hahne H, Vogel RF. Quantitative Proteomics for the Comprehensive Analysis of Stress Responses of Lactobacillus paracasei subsp. paracasei F19. J Proteome Res 2017; 16:3816-3829. [PMID: 28862000 DOI: 10.1021/acs.jproteome.7b00474] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lactic acid bacteria are broadly employed as starter cultures in the manufacture of foods. Upon technological preparation, they are confronted with drying stress that amalgamates numerous stress conditions resulting in losses of fitness and survival. To better understand and differentiate physiological stress responses, discover general and specific markers for the investigated stress conditions, and predict optimal preconditioning for starter cultures, we performed a comprehensive genomic and quantitative proteomic analysis of a commonly used model system, Lactobacillus paracasei subsp. paracasei TMW 1.1434 (isogenic with F19) under 11 typical stress conditions, including among others oxidative, osmotic, pH, and pressure stress. We identified and quantified >1900 proteins in triplicate analyses, representing 65% of all genes encoded in the genome. The identified genes were thoroughly annotated in terms of subcellular localization prediction and biological functions, suggesting unbiased and comprehensive proteome coverage. In total, 427 proteins were significantly differentially expressed in at least one condition. Most notably, our analysis suggests that optimal preconditioning toward drying was predicted to be alkaline and high-pressure stress preconditioning. Taken together, we believe the presented strategy may serve as a prototypic example for the analysis and utility of employing quantitative-mass-spectrometry-based proteomics to study bacterial physiology.
Collapse
Affiliation(s)
- Ann-Sophie Schott
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany
| | - Jürgen Behr
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany.,Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Freising 85354, Germany
| | - Andreas J Geißler
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany
| | - Bernhard Kuster
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Freising 85354, Germany.,Chair of Proteomics and Bioanalytics, Technische Universität München , Freising 85354, Germany.,Center for Integrated Protein Science Munich, Freising 85354, Germany
| | | | - Rudi F Vogel
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany
| |
Collapse
|
41
|
Lemaire B, Karchner SI, Goldstone JV, Lamb DC, Drazen JC, Rees JF, Hahn ME, Stegeman JJ. Molecular adaptation to high pressure in cytochrome P450 1A and aryl hydrocarbon receptor systems of the deep-sea fish Coryphaenoides armatus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:155-165. [PMID: 28694077 DOI: 10.1016/j.bbapap.2017.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/19/2023]
Abstract
Limited knowledge of the molecular evolution of deep-sea fish proteomes so far suggests that a few widespread residue substitutions in cytosolic proteins binding hydrophilic ligands contribute to resistance to the effects of high hydrostatic pressure (HP). Structure-function studies with additional protein systems, including membrane bound proteins, are essential to provide a more general picture of adaptation in these extremophiles. We explored molecular features of HP adaptation in proteins binding hydrophobic ligands, either in lipid bilayers (cytochrome P450 1A - CYP1A) or in the cytosol (the aryl hydrocarbon receptor - AHR), and their partners P450 oxidoreductase (POR) and AHR nuclear translocator (ARNT), respectively. Cloning studies identified the full-length coding sequence of AHR, CYP1A and POR, and a partial sequence of ARNT from Coryphaenoides armatus, an abyssal gadiform fish thriving down to 5000m depth. Inferred protein sequences were aligned with many non-deep-sea homologs to identify unique amino acid substitutions of possible relevance in HP adaptation. Positionally unique substitutions of various physicochemical properties were found in all four proteins, usually at sites of strong-to-absolute residue conservation. Some were in domains deemed important for protein-protein interaction or ligand binding. In addition, some involved removal or addition of beta-branched residues; local modifications of beta-branched residue patterns could be important to HP adaptation. In silico predictions further suggested that some unique substitutions might substantially modulate the flexibility of the polypeptide segment in which they are found. Repetitive motifs unique to the abyssal fish AHR were predicted to be rich in glycosylation sites, suggesting that post-translational changes could be involved in adaptation as well. Recombinant CYP1A and AHR showed functional properties (spectral characteristics, catalytic activity and ligand binding) that demonstrate proper folding at 1atm, indicating that they could be used as deep-sea fish protein models to further evaluate protein function under pressure. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone".
Collapse
Affiliation(s)
- Benjamin Lemaire
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - David C Lamb
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Jeffrey C Drazen
- Department of Oceanography, University of Hawaii, Honolulu, HI 96822, USA
| | - Jean François Rees
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
42
|
Leite TS, de Jesus ALT, Schmiele M, Tribst AA, Cristianini M. High pressure processing (HPP) of pea starch: Effect on the gelatinization properties. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.07.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
High hydrostatic pressure inactivation of murine norovirus and human noroviruses on green onions and in salsa. Int J Food Microbiol 2017; 242:1-6. [DOI: 10.1016/j.ijfoodmicro.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/31/2016] [Accepted: 11/06/2016] [Indexed: 01/14/2023]
|
44
|
Variable High-Pressure-Processing Sensitivities for Genogroup II Human Noroviruses. Appl Environ Microbiol 2016; 82:6037-45. [PMID: 27474724 DOI: 10.1128/aem.01575-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human norovirus (HuNoV) is a leading cause of foodborne diseases worldwide. High-pressure processing (HPP) is one of the most promising nonthermal technologies for the decontamination of viral pathogens in foods. However, the survival of HuNoVs after HPP is poorly understood because these viruses cannot be propagated in vitro In this study, we estimated the survival of different HuNoV strains within genogroup II (GII) after HPP treatment using viral receptor-binding ability as an indicator. Four HuNoV strains (one GII genotype 1 [GII.1] strain, two GII.4 strains, and one GII.6 strain) were treated at high pressures ranging from 200 to 600 MPa. After treatment, the intact viral particles were captured by porcine gastric mucin-conjugated magnetic beads (PGM-MBs) that contained histo-blood group antigens, the functional receptors for HuNoVs. The genomic RNA copies of the captured HuNoVs were quantified by real-time reverse transcriptase PCR (RT-PCR). Two GII.4 HuNoVs had similar sensitivities to HPP. The resistance of HuNoV strains against HPP ranked as follows: GII.1 > GII.6 > GII.4, with GII.4 being the most sensitive. Evaluation of temperature and matrix effects on HPP-mediated inactivation of HuNoV GII.4, GII.1, and GII.6 strains showed that HuNoV was more easily inactivated at lower temperatures and at a neutral pH. In addition, phosphate-buffered saline (PBS) and minimal essential medium (MEM) can provide protective effects against HuNoV inactivation compared to H2O. Collectively, this study demonstrated that (i) different HuNoV strains within GII exhibited different sensitivities to high pressure, and (ii) HPP is capable of inactivating HuNoV GII strains by optimizing pressure parameters. IMPORTANCE Human norovirus (HuNoV) is a leading cause of foodborne disease worldwide. Noroviruses are highly diverse, both antigenically and genetically. Genogroup II (GII) contains the majority of HuNoVs, with GII genotype 4 (GII.4) being the most prevalent. Recently, GII.1 and GII.6 have emerged and caused many outbreaks worldwide. However, the survival of these GII HuNoVs is poorly understood because they are uncultivable in vitro Using a novel receptor-binding assay conjugated with real-time RT-PCR, we found that GII HuNoVs had variable susceptibilities to high-pressure processing (HPP), which is one of the most promising food-processing technologies. The resistance of HuNoV strains to HPP ranked as follows: GII.1 > GII.6 > GII.4. This study highlights the ability of HPP to inactivate HuNoV and the need to optimize processing conditions based on HuNoV strain variability and sample matrix.
Collapse
|
45
|
Zink J, Wyrobnik T, Prinz T, Schmid M. Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review. Int J Mol Sci 2016; 17:E1376. [PMID: 27563881 PMCID: PMC5037656 DOI: 10.3390/ijms17091376] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/17/2016] [Accepted: 08/15/2016] [Indexed: 12/03/2022] Open
Abstract
Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films.
Collapse
Affiliation(s)
- Joël Zink
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, Freising 85354, Germany.
| | - Tom Wyrobnik
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, Freising 85354, Germany.
| | - Tobias Prinz
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, Freising 85354, Germany.
| | - Markus Schmid
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, Freising 85354, Germany.
- Chair of Food Packaging Technology, Technische Universität München, Weihenstephaner Steig 22, Freising 85354, Germany.
| |
Collapse
|
46
|
Cario A, Jebbar M, Thiel A, Kervarec N, Oger PM. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus. Sci Rep 2016; 6:29483. [PMID: 27378270 PMCID: PMC4932500 DOI: 10.1038/srep29483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022] Open
Abstract
The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response.
Collapse
Affiliation(s)
- Anaïs Cario
- Univ Lyon, ENS de Lyon, CNRS UMR 5276, Lyon, France
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France
| | - Axel Thiel
- Univ Brest, CNRS, Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France
| | - Nelly Kervarec
- Univ Brest, PLATE-FORME TECHNOLOGIQUE RMN-RPE-SM, UFR Sciences et Techniques, Avenue Le Gorgeu, Brest, France
| | - Phil M Oger
- Univ Lyon, ENS de Lyon, CNRS UMR 5276, Lyon, France.,Univ Lyon, INSA de Lyon, CNRS UMR 5240, Lyon, France
| |
Collapse
|
47
|
Johnson QR, Lindsay RJ, Nellas RB, Shen T. Pressure-induced conformational switch of an interfacial protein. Proteins 2016; 84:820-7. [DOI: 10.1002/prot.25031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/04/2016] [Accepted: 03/01/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Quentin R. Johnson
- UT-ORNL Graduate School of Genome Science and Technology; University of Tennessee; Knoxville Tennessee 37996
- Oak Ridge National Laboratory; Center for Molecular Biophysics; Oak Ridge Tennessee 37830
| | - Richard J. Lindsay
- Oak Ridge National Laboratory; Center for Molecular Biophysics; Oak Ridge Tennessee 37830
- Department of Biochemistry and Cellular & Molecular Biology; University of Tennessee; Knoxville Tennessee 37996
| | - Ricky B. Nellas
- Institute of Chemistry, University of the Philippines Diliman; Quezon City Philippines
| | - Tongye Shen
- Oak Ridge National Laboratory; Center for Molecular Biophysics; Oak Ridge Tennessee 37830
- Department of Biochemistry and Cellular & Molecular Biology; University of Tennessee; Knoxville Tennessee 37996
| |
Collapse
|
48
|
|
49
|
|
50
|
Morris JP, Thatje S, Cottin D, Oliphant A, Brown A, Shillito B, Ravaux J, Hauton C. The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150472. [PMID: 26716003 PMCID: PMC4680618 DOI: 10.1098/rsos.150472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms' thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts.
Collapse
Affiliation(s)
- J. P. Morris
- Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - S. Thatje
- Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - D. Cottin
- Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - A. Oliphant
- Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - A. Brown
- Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - B. Shillito
- UPMC Université Paris 06, UMR-CNRS 7208, 7 Quai St-Bernard, Paris 75005, France
| | - J. Ravaux
- UPMC Université Paris 06, UMR-CNRS 7208, 7 Quai St-Bernard, Paris 75005, France
| | - C. Hauton
- Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| |
Collapse
|