1
|
Zhou J, Wang Y, Xu G, Wu L, Han R, Schwaneberg U, Rao Y, Zhao YL, Zhou J, Ni Y. Structural Insight into Enantioselective Inversion of an Alcohol Dehydrogenase Reveals a "Polar Gate" in Stereorecognition of Diaryl Ketones. J Am Chem Soc 2018; 140:12645-12654. [PMID: 30247889 DOI: 10.1021/jacs.8b08640] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diaryl ketones are important building blocks for synthesizing pharmaceuticals and are generally regarded as "difficult-to-reduce" ketones due to the large steric hindrance of their two bulky aromatic side chains. Alcohol dehydrogenase from Kluyveromyces polyspora ( KpADH) has been identified as a robust biocatalyst due to its high conversion of diaryl ketone substrate (4-chlorophenyl)(pyridine-2-yl)ketone (CPMK) with a moderate R-selectivity of 82% ee. To modulate the stereoselectivity of KpADH, a "polarity scanning" strategy was proposed, in which six key residues inside and at the entrance of the substrate binding pocket were identified. After iterative combinatorial mutagenesis, variants Mu-R2 and Mu-S5 with enhanced (99.2% ee, R) and inverted (97.8% ee, S) stereoselectivity were obtained. The crystal structures of KpADH and two mutants in complex with NADPH were resolved to elucidate the evolution of enantioselective inversion. Based on MD simulation, Mu-R2-CPMKProR and Mu-S5-CPMKProS were more favorable in the formation of prereaction states. Interestingly, a quadrilateral plane formed by α-carbons of four residues (N136, V161, C237, and G214) was identified at the entrance of the substrate binding pocket of Mu-S5; this plane acts as a "polar gate" for substrates. Due to the discrepancy in charge characteristics between chlorophenyl and pyridine substituents, the pro- S orientation of CPMK is defined when it passes through the "polar gate" in Mu-S5, whereas the similar plane in wild-type is blocked by several aromatic residues. Our result paves the way for engineering stereocomplementary ADH toward bulky diaryl ketones and provides structural insight into the mechanism of stereoselective inversion.
Collapse
Affiliation(s)
- Jieyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Yue Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Lian Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Ruizhi Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringerweg 3 , 52074 Aachen , Germany
| | - Yijian Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| |
Collapse
|
2
|
Olucha J, Lamb AL. Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases. Bioorg Chem 2011; 39:171-7. [PMID: 21871647 PMCID: PMC3188341 DOI: 10.1016/j.bioorg.2011.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
The N-hydroxylating flavoprotein monooxygenases are siderophore biosynthetic enzymes that catalyze the hydroxylation of the sidechain amino-group of ornithine or lysine or the primary amino-group of putrescine. This hydroxylated product is subsequently formylated or acylated and incorporated into the siderophore. Importantly, the modified amino-group is a hydroxamate and serves as an iron chelating moiety in the siderophore. This review describes recent work to characterize the ornithine hydroxylases from Pseudomonas aeruginosa (PvdA) and Aspergillus fumigatus (SidA) and the lysine hydroxylase from Escherichia coli (IucD). This includes summaries of steady and transient state kinetic data for all three enzymes and the X-ray crystallographic structure of PvdA.
Collapse
Affiliation(s)
- Jose Olucha
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, Kansas
| | - Audrey L. Lamb
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, Kansas
| |
Collapse
|
3
|
Chocklett SW, Sobrado P. Aspergillus fumigatus SidA is a highly specific ornithine hydroxylase with bound flavin cofactor. Biochemistry 2010; 49:6777-83. [PMID: 20614882 DOI: 10.1021/bi100291n] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferrichrome is a hydroxamate-containing siderophore produced by the pathogenic fungus Aspergillus fumigatus under iron-limiting conditions. This siderophore contains N(5)-hydroxylated l-ornithines essential for iron binding. A. fumigatus siderophore A (Af SidA) catalyzes the flavin- and NADPH-dependent hydroxylation of l-ornithine in ferrichrome biosynthesis. Af SidA was recombinantly expressed and purified as a soluble tetramer and is the first member of this class of flavin monooxygenases to be isolated with a bound flavin cofactor. The enzyme showed typical saturation kinetics with respect to l-ornithine while substrate inhibition was observed at high concentrations of NADPH and NADH. Increasing amounts of hydrogen peroxide were measured as a function of reduced nicotinamide coenzyme concentration, indicating that inhibition was caused by increased uncoupling. Af SidA is highly specific for its amino acid substrate, only hydroxylating l-ornithine. An 8-fold preference in the catalytic efficiency was determined for NADPH compared to NADH. In the absence of substrate, Af SidA can be reduced by NADPH, and a C4a-(hydro)peroxyflavin intermediate is observed. The decay of this intermediate is accelerated by l-ornithine binding. This intermediate was only stabilized by NADPH and not by NADH, suggesting a role for NADP(+) in the stabilization of intermediates in the reaction of Af SidA. NADP(+) is a competitive inhibitor with respect to NADPH, demonstrating that Af SidA forms a ternary complex with NADP(+) and l-ornithine during catalysis. The data suggest that Af SidA likely proceeds by a sequential kinetic mechanism.
Collapse
Affiliation(s)
- Samuel W Chocklett
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
4
|
Mayfield JA, Frederick RE, Streit BR, Wencewicz TA, Ballou DP, DuBois JL. Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase. J Biol Chem 2010; 285:30375-88. [PMID: 20650894 DOI: 10.1074/jbc.m110.157578] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many siderophores used for the uptake and intracellular storage of essential iron contain hydroxamate chelating groups. Their biosyntheses are typically initiated by hydroxylation of the primary amine side chains of l-ornithine or l-lysine. This reaction is catalyzed by members of a widespread family of FAD-dependent monooxygenases. Here the kinetic mechanism for a representative family member has been extensively characterized by steady state and transient kinetic methods, using heterologously expressed N(5)-l-ornithine monooxygenase from the pathogenic fungus Aspergillus fumigatus. Spectroscopic data and kinetic analyses suggest a model in which a molecule of hydroxylatable substrate serves as an activator for the reaction of the reduced flavin and O(2). The rate acceleration is only ∼5-fold, a mild effect of substrate on formation of the C4a-hydroperoxide that does not influence the overall rate of turnover. The effect is also observed with the bacterial ornithine monooxygenase PvdA. The C4a-hydroperoxide is stabilized in the absence of hydroxylatable substrate by the presence of bound NADP(+) (t(½) = 33 min, 25 °C, pH 8). NADP(+) therefore is a likely regulator of O(2) and substrate reactivity in the siderophore-associated monooxygenases. Aside from the activating effect of the hydroxylatable substrate, the siderophore-associated monooxygenases share a kinetic mechanism with the hepatic microsomal flavin monooxygenases and bacterial Baeyer-Villiger monooxygenases, with which they share only moderate sequence homology and from which they are distinguished by their acute substrate specificity. The remarkable specificity of the N(5)-l-ornithine monooxygenase-catalyzed reaction suggests added means of reaction control beyond those documented in related well characterized flavoenzymes.
Collapse
Affiliation(s)
- Jeffery A Mayfield
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
5
|
Meneely KM, Lamb AL. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism. Biochemistry 2007; 46:11930-7. [PMID: 17900176 PMCID: PMC2597334 DOI: 10.1021/bi700932q] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyoverdin is the hydroxamate siderophore produced by the opportunistic pathogen Pseudomonas aeruginosa under the iron-limiting conditions of the human host. This siderophore includes derivatives of ornithine in the peptide backbone that serve as iron chelators. PvdA is the ornithine hydroxylase, which performs the first enzymatic step in preparation of these derivatives. PvdA requires both flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) for activity; it was found to be a soluble monomer most active at pH 8.0. The enzyme demonstrated Michaelis-Menten kinetics in an NADPH oxidation assay, but a hydroxylation assay indicated substrate inhibition at high ornithine concentration. PvdA is highly specific for both substrate and coenzyme, and lysine was shown to be a nonsubstrate effector and mixed inhibitor of the enzyme with respect to ornithine. Chloride is a mixed inhibitor of PvdA with respect to ornithine but a competitive inhibitor with respect to NADPH, and a bulky mercurial compound (p-chloromercuribenzoate) is a mixed inhibitor with respect to ornithine. Steady-state experiments indicate that PvdA/FAD forms a ternary complex with NADPH and ornithine for catalysis. PvdA in the absence of ornithine shows slow substrate-independent flavin reduction by NADPH. Biochemical comparison of PvdA to p-hydroxybenzoate hydroxylase (PHBH, from Pseudomonas fluorescens) and flavin-containing monooxygenases (FMOs, from Schizosaccharomyces pombe and hog liver microsomes) leads to the hypothesis that PvdA catalysis proceeds by a novel reaction mechanism.
Collapse
Affiliation(s)
- Kathleen M. Meneely
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Audrey L. Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| |
Collapse
|
6
|
Dick S, Siemann S, Frey HE, Lepock JR, Viswanatha T. Recombinant lysine:N(6)-hydroxylase: effect of cysteine-->alanine replacements on structural integrity and catalytic competence. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:219-33. [PMID: 11904218 DOI: 10.1016/s0167-4838(01)00305-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recombinant lysine:N(6)-hydroxylase, rIucD, catalyzes the hydroxylation of L-lysine to its N(6)-hydroxy derivative, with NADPH and FAD serving as cofactors in the reaction. The five cysteine residues present in rIucD can be replaced, individually or in combination, with alanine without effecting a major change in the thermal stability, the affinity for L-lysine and FAD, as well as the k(cat) for mono-oxygenase activity of the protein. However, when the susceptibility to modification by either 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or 2,6-dichlorophenol indophenol (DPIP) serves as the criterion for monitoring conformational change(s) in rIucD and its muteins, Cys146-->Ala and Cys166-->Ala substitutions are found to induce an enhancement in the reactivity of one of the protein's remaining cysteine residues with concomitant diminution of mono-oxygenase function. In addition, the systematic study of cysteine-->alanine replacement has led to the identification of rIucD's Cys166 as the exposed residue which is detectable during the reaction of the protein with DTNB but not with iodoacetate. Substitution of Cys51 of rIucD with alanine results in an increase in mono-oxygenase activity (approx. 2-fold). Such replacement, unlike those of other cysteine residues, also enables the covalent DPIP conjugate of the protein to accommodate FAD in its catalytic function. A possible role of rIucD's Cys51 in the modulation of its mono-oxygenase function is discussed.
Collapse
Affiliation(s)
- Scott Dick
- Department of Chemistry, University of Waterloo, ON, Canada
| | | | | | | | | |
Collapse
|
7
|
Dick S, Marrone L, Duewel H, Beecroft M, McCourt J, Viswanatha T. Lysine: N6-hydroxylase: stability and interaction with ligands. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:893-903. [PMID: 10839627 DOI: 10.1023/a:1020639514998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recombinant lysine:N6-hydroxylase, rIucD, which is isolated as an apoenzyme, requires FAD and NADPH for its catalytic function. rIucD preparations have been found to undergo time-dependent loss in monooxygenase function due to aggregation from the initial tetrameric state to a polytetrameric form(s), a process which is reversible by treatment with thiols. Ligand-induced conformational changes in rIucD were assessed by monitoring its CD spectra, DSC profile, and susceptibility to both endo- as well as exopeptidases. The first two methods indicated the absence of any significant conformational change in rIucD, while the last approach revealed that FAD, and its analog ADP, can protect the protein from the deleterious action of proteases. NADPH was partially effective and L-lysine was ineffective in this regard. Deletion of the C-terminal segment, either by treatment with carboxypeptidase Y or by mutagenesis of iucD, results in the loss of rIucD's monooxygenase activity. These findings demonstrate the crucial role of the C-terminal segment in maintaining rIucD in its native conformation.
Collapse
Affiliation(s)
- S Dick
- Department of Chemistry, University of Waterloo, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Stehr M, Smau L, Singh M, Seth O, Macheroux P, Ghisla S, Diekmann H. Studies with lysine N6-hydroxylase. Effect of a mutation in the assumed FAD binding site on coenzyme affinities and on lysine hydroxylating activity. Biol Chem 1999; 380:47-54. [PMID: 10064136 DOI: 10.1515/bc.1999.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The proposed FAD binding site of L-lysine N6-hydroxylase (EC 1.14.13.99) exhibits an unusual proline in a position where a highly conserved glycine is found in other FAD dependent hydroxylases. We have studied the role of this proline by mutating it to glycine in [P14G]aerA, which was expressed in Escherichia coli M15-2 and purified to homogeneity. The mutation has marked effects on the affinities of the cofactors FAD and NADPH as well as the substrate, lysine. Compared to the wild-type enzyme, the activity vs. pH profile of the mutant protein indicates a shift of the apparent pK'(a)s (7.8 and 8.7 for wild-type and 6.8 and 7.7 for the P14G-mutant enzyme) and of the activity maximum (pH 8 for wild-type and pH 7 for the P14G-mutant enzyme). While the activity of the mutant enzyme is much lower under conditions found to be optimal for the wild-type enzyme, adjustment of substrate and cofactor concentrations and pH leads to comparable activities for the mutant enzyme. These results suggest that the proline fulfils an important structural role in the proposed FAD binding site.
Collapse
Affiliation(s)
- M Stehr
- Institut für Mikrobiologie, Universität Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|