1
|
Fuchs ACD. Enzymatic protein fusions with 100% product yield. eLife 2025; 13:RP102765. [PMID: 40167156 PMCID: PMC11961121 DOI: 10.7554/elife.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The protein ligase Connectase can be used to fuse proteins to small molecules, solid carriers, or other proteins. Compared to other protein ligases, it offers greater substrate specificity, higher catalytic efficiency, and catalyzes no side reactions. However, its reaction is reversible, resulting in only 50% fusion product from two equally abundant educts. Here, we present a simple method to reliably obtain 100% fusion product in 1:1 conjugation reactions. This method is efficient for protein-protein or protein-peptide fusions at the N- or C-termini. It enables the generation of defined and completely labeled antibody conjugates with one fusion partner on each chain. The reaction requires short incubation times with small amounts of enzyme and is effective even at low substrate concentrations and at low temperatures. With these characteristics, it presents a valuable new tool for bioengineering.
Collapse
Affiliation(s)
- Adrian CD Fuchs
- Department of Protein Evolution, Max Planck Institute for BiologyTübingenGermany
| |
Collapse
|
2
|
Wu X, Deng Y, Xu Y, Kang H, Hu JJ, Yoon J, Liang G. Activatable Fluorescence and Bio/Chemiluminescence Probes for Aminopeptidases: From Design to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409893. [PMID: 39235570 DOI: 10.1002/adma.202409893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aminopeptidases are exopeptidases that catalyze the cleavage of amino acid residues from the N-terminal fragment of protein or peptide substrates. Owing to their function, they play important roles in protein maturation, signal transduction, cell-cycle control, and various disease mechanisms, notably in cancer pathology. To gain better insights into their function, molecular imaging assisted by fluorescence and bio/chemiluminescence probes has become an indispensable method to their superiorities, including excellent sensitivity, selectivity, and real-time and noninvasive imaging. Numerous efforts are made to develop activatable probes that can effectively enhance efficiency and accuracy as well as minimize the side effects. This review is classified according to the type of aminopeptidases, summarizing some recent works on the design, work mechanism, and sensing, imaging, and theranostic performance of their activatable probe. Finally, the current challenges are outlined in developing activatable probes for aminopeptidases and provide possible solutions for future advancements.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ying Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
3
|
Niu L, Zuo CJ, Zhang YL, Ma CX, Zhou XW, Sun SR, Tang XX, Huang GQ, Zhai SC. Oxidative stress mediated decrement of spinal endomorphin-2 contributes to lumbar disc herniation sciatica in rats. Neurochem Int 2024; 177:105764. [PMID: 38729355 DOI: 10.1016/j.neuint.2024.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Increasing evidence supported that oxidative stress induced by herniated lumbar disc played important role in the formation of lumbar disc herniation sciatica (LDHS), however, the neural mechanisms underlying LDHS need further clarification. Endomorphin-2 (EM2) is the endogenous ligand for mu-opioid receptor (MOR), and there is increasing evidence implicating the involvement of spinal EM2 in neuropathic pain. In this study, using an nucleus pulposus implantation induced LDHS rat model that displayed obvious mechanical allodynia, it was found that the expression of EM2 in dorsal root ganglion (DRG) and spinal cord was significantly decreased. It was further found that oxidative stress in DRG and spinal cord was significantly increased in LDHS rats, and the reduction of EM2 in DRG and spinal cord was determined by oxidative stress dominated increment of dipeptidylpeptidase IV activity. A systemic treatment with antioxidant could prevent the forming of mechanical allodynia in LDHS rats. In addition, MOR expression in DRG and spinal cord remained unchanged in LDHS rats. Intrathecal injection of MOR antagonist promoted pain behavior in LDHS rats, and the analgesic effect of intrathecal injection of EM2 was stronger than that of endomorphin-1 and morphine. Taken together, our findings suggest that oxidative stress mediated decrement of EM2 in DRG and spinal cord causes the loss of endogenous analgesic effects and enhances the pain sensation of LDHS.
Collapse
Affiliation(s)
- Le Niu
- Haojing College of Shaanxi University of Science&Technology, Unified Avenue, Xianyang, 712046, PR China; The Xi'an DaXing Hospital, 353 Laodong North Road, Xi'an, 710016, PR China.
| | - Chun-Jiang Zuo
- Haojing College of Shaanxi University of Science&Technology, Unified Avenue, Xianyang, 712046, PR China
| | - Yong-Ling Zhang
- Haojing College of Shaanxi University of Science&Technology, Unified Avenue, Xianyang, 712046, PR China
| | - Cui-Xia Ma
- Haojing College of Shaanxi University of Science&Technology, Unified Avenue, Xianyang, 712046, PR China
| | - Xiang-Wen Zhou
- Haojing College of Shaanxi University of Science&Technology, Unified Avenue, Xianyang, 712046, PR China
| | - Shi-Ru Sun
- Haojing College of Shaanxi University of Science&Technology, Unified Avenue, Xianyang, 712046, PR China
| | - Xue-Xue Tang
- Haojing College of Shaanxi University of Science&Technology, Unified Avenue, Xianyang, 712046, PR China
| | - Guo-Quan Huang
- Haojing College of Shaanxi University of Science&Technology, Unified Avenue, Xianyang, 712046, PR China
| | - Si-Cheng Zhai
- Haojing College of Shaanxi University of Science&Technology, Unified Avenue, Xianyang, 712046, PR China.
| |
Collapse
|
4
|
Refaya AK, Vetrivel U, Palaniyandi K. Genomic Characterization of IS 6110 Insertions in Mycobacterium orygis. Evol Bioinform Online 2024; 20:11769343241240558. [PMID: 38586439 PMCID: PMC10996354 DOI: 10.1177/11769343241240558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Mycobacterium orygis, a subspecies of the Mycobacterium tuberculosis complex (MTBC), has emerged as a significant concern in the context of One Health, with implications for zoonosis or zooanthroponosis or both. MTBC strains are characterized by the unique insertion element IS6110, which is widely used as a diagnostic marker. IS6110 transposition drives genetic modifications in MTBC, imparting genome plasticity and profound biological consequences. While IS6110 insertions are customarily found in the MTBC genomes, the evolutionary trajectory of strains seems to correlate with the number of IS6110 copies, indicating enhanced adaptability with increasing copy numbers. Here, we present a comprehensive analysis of IS6110 insertions in the M. orygis genome, utilizing ISMapper, and elucidate their genetic consequences in promoting successful host adaptation. Our study encompasses a panel of 67 paired-end reads, comprising 11 isolates from our laboratory and 56 sequences downloaded from public databases. Among these sequences, 91% exhibited high-copy, 4.5% low-copy, and 4.5% lacked IS6110 insertions. We identified 255 insertion loci, including 141 intragenic and 114 intergenic insertions. Most of these loci were either unique or shared among a limited number of isolates, potentially influencing strain behavior. Furthermore, we conducted gene ontology and pathway analysis, using eggNOG-mapper 5.0, on the protein sequences disrupted by IS6110 insertions, revealing 63 genes involved in diverse functions of Gene Ontology and 45 genes participating in various KEGG pathways. Our findings offer novel insights into IS6110 insertions, their preferential insertion regions, and their impact on metabolic processes and pathways, providing valuable knowledge on the genetic changes underpinning IS6110 transposition in M. orygis.
Collapse
Affiliation(s)
- Ahmed Kabir Refaya
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Umashankar Vetrivel
- Department of Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| |
Collapse
|
5
|
Gu S, Yu J, Du L, Zhang D, Zhao L, Xie J. Characterization, Semirational Design for pH Robustness, and the Application in Bioactive Peptide Production of a X-Prolyl Dipeptidyl Aminopeptidase from Lactococcus lactis MY-3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7279-7290. [PMID: 38519413 DOI: 10.1021/acs.jafc.4c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
PepXLcMY-3, an X-prolyl dipeptidyl aminopeptidase derived from Lactobacillus lactis MY-3, was screened and recombinantly expressed in Escherichia coli. The enzyme could exhibit about 40% activity within the pH range of 6.0-10. To further improve the pH robustness, site E396 located in the active pocket was discovered through alanine scanning. The mutant E396I displayed both developed activity and kcat/Km. The optimal pH of E396I shifted from 6.0 to 10 compared to WT, with the relative activity within the pH range of 6.0-10 significantly increased. The site K648 was then proposed by semirational design. The activity of mutant E396I/K648D reached 4.03 U/mg. The optimal pH was restored to 6.0, and the pH stability was further improved. E396I/K648D could totally hydrolyze β-casomorphin 7 within 30 min. The hydrolysate showed 64.5% inhibition on angiotensin I converting enzyme, which was more efficient than those produced by E396I and WT, 23.2 and 44.7%, respectively.
Collapse
Affiliation(s)
- Shengdi Gu
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junjie Yu
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
- Shanghai Institute of Supervision and Inspection on Food Products and Cosmetics Quality, Shanghai 200233, P. R. China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, P. R. China
| | - Li Zhao
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, P. R. China
| |
Collapse
|
6
|
Pijning T, Vujičić‐Žagar A, van der Laan J, de Jong RM, Ramirez‐Palacios C, Vente A, Edens L, Dijkstra BW. Structural and time-resolved mechanistic investigations of protein hydrolysis by the acidic proline-specific endoprotease from Aspergillus niger. Protein Sci 2024; 33:e4856. [PMID: 38059672 PMCID: PMC10731622 DOI: 10.1002/pro.4856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Proline-specific endoproteases have been successfully used in, for example, the in-situ degradation of gluten, the hydrolysis of bitter peptides, the reduction of haze during beer production, and the generation of peptides for mass spectroscopy and proteomics applications. Here we present the crystal structure of the extracellular proline-specific endoprotease from Aspergillus niger (AnPEP), a member of the S28 peptidase family with rarely observed true proline-specific endoprotease activity. Family S28 proteases have a conventional Ser-Asp-His catalytic triad, but their oxyanion-stabilizing hole shows a glutamic acid, an amino acid not previously observed in this role. Since these enzymes have an acidic pH optimum, the presence of a glutamic acid in the oxyanion hole may confine their activity to an acidic pH. Yet, considering the presence of the conventional catalytic triad, it is remarkable that the A. niger enzyme remains active down to pH 1.5. The determination of the primary cleavage site of cytochrome c along with molecular dynamics-assisted docking studies indicate that the active site pocket of AnPEP can accommodate a reverse turn of approximately 12 amino acids with proline at the S1 specificity pocket. Comparison with the structures of two S28-proline-specific exopeptidases reveals not only a more spacious active site cavity but also the absence of any putative binding sites for amino- and carboxyl-terminal residues as observed in the exopeptidases, explaining AnPEP's observed endoprotease activity.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | - Andreja Vujičić‐Žagar
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | | | | | | | - Andre Vente
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Luppo Edens
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Bauke W. Dijkstra
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| |
Collapse
|
7
|
Aparicio A, Sun Z, Gold DR, Litonjua AA, Weiss ST, Lee-Sarwar K, Liu YY. Genotype-microbiome-metabolome associations in early childhood, and their link to BMI and childhood obesity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.13.23298467. [PMID: 38014043 PMCID: PMC10680902 DOI: 10.1101/2023.11.13.23298467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The influence of genotype on defining the human gut microbiome has been extensively studied, but definite conclusions have not yet been found. To fill this knowledge gap, we leverage data from children enrolled in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) from 6 months to 8 years old. We focus on a pool of 12 genes previously found to be associated with the gut microbiome in independent studies, establishing a Bonferroni corrected significance level of p-value < 2.29 × 10 -6 . We identified significant associations between SNPs in the FHIT gene (known to be associated with obesity and type 2 diabetes) and obesity-related microbiome features, and the children's BMI through their childhood. Based on these associations, we defined a set of SNPs of interest and a set of taxa of interest. Taking a multi-omics approach, we integrated plasma metabolome data into our analysis and found simultaneous associations among children's BMI, the SNPs of interest, and the taxa of interest, involving amino acids, lipids, nucleotides, and xenobiotics. Using our association results, we constructed a quadripartite graph where each disjoint node set represents SNPs in the FHIT gene, microbial taxa, plasma metabolites, or BMI measurements. Network analysis led to the discovery of patterns that identify several genetic variants, microbial taxa and metabolites as new potential markers for obesity, type 2 diabetes, or insulin resistance risk.
Collapse
|
8
|
Mansouri M, Daware K, Webb CT, McGowan S. Understanding the structure and function of Plasmodium aminopeptidases to facilitate drug discovery. Curr Opin Struct Biol 2023; 82:102693. [PMID: 37657352 DOI: 10.1016/j.sbi.2023.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Malaria continues to be the most widespread parasitic disease affecting humans globally. As parasites develop drug resistance at an alarming pace, it has become crucial to identify novel drug targets. Over the last decade, the metalloaminopeptidases have gained importance as potential targets for new antimalarials. These enzymes are responsible for removing the N-terminal amino acids from proteins and peptides, and their restricted specificities suggest that many perform unique and essential roles within the malaria parasite. This mini-review focuses on the recent progress in structure and functional data relating to the Plasmodium metalloaminopeptidases that have been validated or shown promise as new antimalarial drug targets.
Collapse
Affiliation(s)
- Mahta Mansouri
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia. https://twitter.com/Mahta__Mansouri
| | - Kajal Daware
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia
| | - Chaille T Webb
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia.
| |
Collapse
|
9
|
Zerikiotis S, Efentakis P, Dapola D, Agapaki A, Seiradakis G, Kostomitsopoulos N, Skaltsounis AL, Tseti I, Triposkiadis F, Andreadou I. Synergistic Pulmonoprotective Effect of Natural Prolyl Oligopeptidase Inhibitors in In Vitro and In Vivo Models of Acute Respiratory Distress Syndrome. Int J Mol Sci 2023; 24:14235. [PMID: 37762537 PMCID: PMC10531912 DOI: 10.3390/ijms241814235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a highly morbid inflammatory lung disease with limited pharmacological interventions. The present study aims to evaluate and compare the potential pulmonoprotective effects of natural prolyl oligopeptidase (POP) inhibitors namely rosmarinic acid (RA), chicoric acid (CA), epigallocatechin-3-gallate (EGCG) and gallic acid (GA), against lipopolysaccharide (LPS)-induced ARDS. Cell viability and expression of pro-inflammatory mediators were measured in RAW264.7 cells and in primary murine lung epithelial and bone marrow cells. Nitric oxide (NO) production was also assessed in unstimulated and LPS-stimulated RAW264.7 cells. For subsequent in vivo experiments, the two natural products (NPs) with the most favorable effects, RA and GA, were selected. Protein, cell content and lipid peroxidation levels in bronchoalveolar lavage fluid (BALF), as well as histopathological changes and respiratory parameters were evaluated in LPS-challenged mice. Expression of key mediators involved in ARDS pathophysiology was detected by Western blotting. RA and GA favorably reduced gene expression of pro-inflammatory mediators in vitro, while GA decreased NO production in macrophages. In LPS-challenged mice, RA and GA co-administration improved respiratory parameters, reduced cell and protein content and malondialdehyde (MDA) levels in BALF, decreased vascular cell adhesion molecule-1 (VCAM-1) and the inducible nitric oxide synthase (iNOS) protein expression, activated anti-apoptotic mechanisms and down-regulated POP in the lung. Conclusively, these synergistic pulmonoprotective effects of RA and GA co-administration could render them a promising prophylactic/therapeutic pharmacological intervention against ARDS.
Collapse
Affiliation(s)
- Stelios Zerikiotis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Danai Dapola
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Anna Agapaki
- Histochemistry Facility, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
| | - Georgios Seiradakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
| | - Alexios-Leandros Skaltsounis
- Section of Pharmacognosy and Natural Product Chemistry Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece;
| | | | - Filippos Triposkiadis
- Department of Cardiology, University General Hospital of Larissa, 413 34 Larissa, Greece;
- Faculty of Health Sciences, University of Thessaly, 413 34 Larissa, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| |
Collapse
|
10
|
D’Amico V, Gänzle M, Call L, Zwirzitz B, Grausgruber H, D’Amico S, Brouns F. Does sourdough bread provide clinically relevant health benefits? Front Nutr 2023; 10:1230043. [PMID: 37545587 PMCID: PMC10399781 DOI: 10.3389/fnut.2023.1230043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.
Collapse
Affiliation(s)
- Vera D’Amico
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lisa Call
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Benjamin Zwirzitz
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefano D’Amico
- Institute for Animal Nutrition and Feed, AGES–Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
11
|
Lloyd AC, Gregory KS, Isaac RE, Acharya KR. A Molecular Analysis of the Aminopeptidase P-Related Domain of PID-5 from Caenorhabditis elegans. Biomolecules 2023; 13:1132. [PMID: 37509168 PMCID: PMC10377022 DOI: 10.3390/biom13071132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
A novel protein, PID-5, has been shown to be a requirement for germline immortality and has recently been implicated in RNA-induced epigenetic silencing in the Caenorhabditis elegans embryo. Importantly, it has been shown to contain both an eTudor and aminopeptidase P-related domain. However, the silencing mechanism has not yet been fully characterised. In this study, bioinformatic tools were used to compare pre-existing aminopeptidase P molecular structures to the AlphaFold2-predicted aminopeptidase P-related domain of PID-5 (PID-5 APP-RD). Structural homology, metal composition, inhibitor-bonding interactions, and the potential for dimerisation were critically assessed through computational techniques, including structural superimposition and protein-ligand docking. Results from this research suggest that the metallopeptidase-like domain shares high structural homology with known aminopeptidase P enzymes and possesses the canonical 'pita-bread fold'. However, the absence of conserved metal-coordinating residues indicates that only a single Zn2+ may be bound at the active site. The PID-5 APP-RD may form transient interactions with a known aminopeptidase P inhibitor and may therefore recognise substrates in a comparable way to the known structures. However, loss of key catalytic residues suggests the domain will be inactive. Further evidence suggests that heterodimerisation with C. elegans aminopeptidase P is feasible and therefore PID-5 is predicted to regulate proteolytic cleavage in the silencing pathway. PID-5 may interact with PID-2 to bring aminopeptidase P activity to the Z-granule, where it could influence WAGO-4 activity to ensure the balanced production of 22G-RNA signals for transgenerational silencing. Targeted experiments into APPs implicated in malaria and cancer are required in order to build upon the biological and therapeutic significance of this research.
Collapse
Affiliation(s)
- Anna C. Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (A.C.L.); (K.S.G.)
| | - Kyle S. Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (A.C.L.); (K.S.G.)
| | - R. Elwyn Isaac
- School of Biology, University of Leeds, Leeds LS2 9JT, UK;
| | - K. Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (A.C.L.); (K.S.G.)
| |
Collapse
|
12
|
Toppila M, Hytti M, Korhonen E, Ranta-Aho S, Harju N, Forsberg MM, Kaarniranta K, Jalkanen A, Kauppinen A. The Prolyl Oligopeptidase Inhibitor KYP-2047 Is Cytoprotective and Anti-Inflammatory in Human Retinal Pigment Epithelial Cells with Defective Proteasomal Clearance. Antioxidants (Basel) 2023; 12:1279. [PMID: 37372009 DOI: 10.3390/antiox12061279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Increased oxidative stress, dysfunctional cellular clearance, and chronic inflammation are associated with age-related macular degeneration (AMD). Prolyl oligopeptidase (PREP) is a serine protease that has numerous cellular functions, including the regulation of oxidative stress, protein aggregation, and inflammation. PREP inhibition by KYP-2047 (4-phenylbutanoyl-L-prolyl1(S)-cyanopyrrolidine) has been associated with clearance of cellular protein aggregates and reduced oxidative stress and inflammation. Here, we studied the effects of KYP-2047 on inflammation, oxidative stress, cell viability, and autophagy in human retinal pigment epithelium (RPE) cells with reduced proteasomal clearance. MG-132-mediated proteasomal inhibition in ARPE-19 cells was used to model declined proteasomal clearance in the RPEs of AMD patients. Cell viability was assessed using LDH and MTT assays. The amounts of reactive oxygen species (ROS) were measured using 2',7'-dichlorofluorescin diacetate (H2DCFDA). ELISA was used to determine the levels of cytokines and activated mitogen-activated protein kinases. The autophagy markers p62/SQSTM1 and LC3 were measured with the western blot method. MG-132 induced LDH leakage and increased ROS production in the ARPE-19 cells, and KYP-2047 reduced MG-132-induced LDH leakage. Production of the proinflammatory cytokine IL-6 was concurrently alleviated by KYP-2047 when compared with cells treated only with MG-132. KYP-2047 had no effect on autophagy in the RPE cells, but the phosphorylation levels of p38 and ERK1/2 were elevated upon KYP-2047 exposure, and the inhibition of p38 prevented the anti-inflammatory actions of KYP-2047. KYP-2047 showed cytoprotective and anti-inflammatory effects on RPE cells suffering from MG-132-induced proteasomal inhibition.
Collapse
Affiliation(s)
- Maija Toppila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Eveliina Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Sofia Ranta-Aho
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
13
|
Battini V, Rocca S, Guarnieri G, Bombelli A, Gringeri M, Mosini G, Pozzi M, Nobile M, Radice S, Clementi E, Schindler A, Carnovale C, Pizzorni N. On the potential of drug repurposing in dysphagia treatment: New insights from a real-world pharmacovigilance study and a systematic review. Front Pharmacol 2023; 14:1057301. [PMID: 36937893 PMCID: PMC10022593 DOI: 10.3389/fphar.2023.1057301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Polypharmacy is common in patients with dysphagia. Routinely used drugs may influence swallowing function either improving or worsening it. We aimed to explore the potential effects of three commonly used drug classes on dysphagia and aspiration pneumonia through a systematic review and a real-world data analysis to probe the possibility of drug repurposing for dysphagia treatment. Material and Methods: Five electronic databases were searched. Studies on adults at risk for dysphagia, treated with Dipeptidyl-Peptidase IV Inhibitors (DPP-4i), Adrenergic Beta-Antagonists (beta-blockers), or Angiotensin-Converting Enzyme Inhibitors (ACEi), and reporting outcomes on dysphagia or aspiration pneumonia were included. A nested case/non-case study was performed on adverse events recorded in the FDA Adverse Event Reporting System (FAERS) on patients >64 years. Cases (dysphagia or aspiration pneumonia) were compared between patients only treated with Levodopa and patients who were concomitantly treated with the drugs of interest. Results: Twenty studies were included in the review (17 on ACEi, 2 on beta-blockers, and 1 on DPP-4i). Contrasting findings on the effects of ACEi were found, with a protective effect mainly reported in Asian studies on neurological patients. Beta-blockers were associated with a reduced dysphagia rate. The study on DPP-4i suggested no effect on dysphagia and an increased risk of aspiration pneumonia. The FAERS analysis showed a reduction of the risk for dysphagia/aspiration pneumonia with ACEi, beta-blockers, and DPP-4i. Conclusion: Our study explores the potential drug repurposing of ACEi, beta-blockers and DPP-4i in neurological patients with dysphagia to improve swallowing function and reduce aspiration pneumonia risk. Future randomized controlled studies should confirm these results and clarify the underlying mechanisms of action.
Collapse
Affiliation(s)
- Vera Battini
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Sara Rocca
- Phoniatric Unit, Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Greta Guarnieri
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Anna Bombelli
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Michele Gringeri
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mosini
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini(LC), Italy
| | - Maria Nobile
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini(LC), Italy
| | - Sonia Radice
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini(LC), Italy
| | - Antonio Schindler
- Phoniatric Unit, Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Nicole Pizzorni
- Phoniatric Unit, Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Ido F, Tessier S, Yoder N, Ramzy J, Longo S. Prolidase deficiency: A novel PEPD missense variant in exon 2. Am J Med Genet A 2023; 191:1388-1394. [PMID: 36757671 DOI: 10.1002/ajmg.a.63137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/10/2023]
Abstract
Prolidase deficiency is an autosomal recessive disease that causes impaired collagen degradation. Altered collagen homeostasis results in the intracellular accumulation of imidodipeptides, which contain proline and hydroxyproline. The many clinical manifestations of prolidase deficiency include dysmorphic facial features, skeletal deformities, hepatosplenomegaly, necrotizing skin ulcers, and recurrent infections. Current clinical knowledge of this genetic disease relies upon few case reports due to its extreme rarity. Diagnosis is dependent on the detection of a pathologic gene variant. Additional diagnostic confirmation may be provided by urine amino acid quantification or reduced in vitro prolidase activity. We present a case of prolidase deficiency caused by a novel variant manifested by skeletal malformations and lifelong multisystemic infections. Genetic testing revealed a homozygous missense variant in the PEPD gene at nucleotide position 200, whereby adenine was replaced by guanine (c.200A > G). The corresponding amino acid change replaced glutamine with arginine at codon 67 (p.Gln67Arg). After boiling the urine sample for hydrolysis, quantitative urine amino acids demonstrated a markedly elevated proline level, confirming the diagnosis. We also provide a discussion of the pathophysiology, clinical manifestations, diagnostic testing, and clinical management of this disease.
Collapse
Affiliation(s)
- Firas Ido
- Department of Pulmonary and Critical Care, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Steven Tessier
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Nicole Yoder
- Department of Pulmonary and Critical Care, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Joseph Ramzy
- Department of Pulmonary and Critical Care, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Santo Longo
- Department of Pathology, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| |
Collapse
|
15
|
Khalifa J, Bourgault S, Gaudreault R. Interactions of Polyphenolic Gallotannins with Amyloidogenic Polypeptides Associated with Alzheimer's Disease: From Molecular Insights to Physiological Significance. Curr Alzheimer Res 2023; 20:603-617. [PMID: 38270140 DOI: 10.2174/0115672050277001231213073043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024]
Abstract
Polyphenols are natural compounds abundantly found in plants. They are known for their numerous benefits to human health, including antioxidant properties and anti-inflammatory activities. Interestingly, many studies have revealed that polyphenols can also modulate the formation of amyloid fibrils associated with disease states and can prevent the formation of cytotoxic oligomer species. In this review, we underline the numerous effects of four hydrolysable gallotannins (HGTs) with high conformational flexibility, low toxicity, and multi-targeticity, e.g., tannic acid, pentagalloyl glucose, corilagin, and 1,3,6-tri-O-galloyl-β-D-glucose, on the aggregation of amyloidogenic proteins associated with the Alzheimer's Disease (AD). These HGTs have demonstrated interesting abilities to reduce, at different levels, the formation of amyloid fibrils involved in AD, including those assembled from the amyloid β-peptide, the tubulin-associated unit, and the islet amyloid polypeptide. HGTs were also shown to disassemble pre-formed fibrils and to diminish cognitive decline in mice. Finally, this manuscript highlights the importance of further investigating these naturally occurring HGTs as promising scaffolds to design molecules that can interfere with the formation of proteotoxic oligomers and aggregates associated with AD pathogenesis.
Collapse
Affiliation(s)
- Jihane Khalifa
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
| | - Roger Gaudreault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| |
Collapse
|
16
|
Baghal Behyar M, Hasanzadeh M, Seidi F, Shadjou N. Sensing of Amino Acids: Critical role of nanomaterials for the efficient biomedical analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Complex of Proline-Specific Peptidases in the Genome and Gut Transcriptomes of Tenebrionidae Insects and Their Role in Gliadin Hydrolysis. Int J Mol Sci 2022; 24:ijms24010579. [PMID: 36614021 PMCID: PMC9820350 DOI: 10.3390/ijms24010579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
A detailed analysis of the complexes of proline-specific peptidases (PSPs) in the midgut transcriptomes of the larvae of agricultural pests Tenebrio molitor and Tribolium castaneum and in the genome of T. castaneum is presented. Analysis of the T. castaneum genome revealed 13 PSP sequences from the clans of serine and metal-dependent peptidases, of which 11 sequences were also found in the gut transcriptomes of both tenebrionid species' larvae. Studies of the localization of PSPs, evaluation of the expression level of their genes in gut transcriptomes, and prediction of the presence of signal peptides determining secretory pathways made it possible to propose a set of peptidases that can directly participate in the hydrolysis of food proteins in the larvae guts. The discovered digestive PSPs of tenebrionids in combination with the post-glutamine cleaving cysteine cathepsins of these insects effectively hydrolyzed gliadins, which are the natural food substrates of the studied pests. Based on the data obtained, a hypothetical scheme for the complete hydrolysis of immunogenic gliadin peptides by T. molitor and T. castaneum digestive peptidases was proposed. These results show promise regarding the development of a drug based on tenebrionid digestive enzymes for the enzymatic therapy of celiac disease and gluten intolerance.
Collapse
|
18
|
Prolyl aminopeptidases: Reclassification, properties, production and industrial applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Khan A, Waqas M, Khan M, Halim SA, Rehman NU, Al-Harrasi A. Identification of novel prolyl oligopeptidase inhibitors from resin of Boswella papyrifera (Del.) Hochst. and their mechanism: Virtual and biochemical studies. Int J Biol Macromol 2022; 213:751-767. [DOI: 10.1016/j.ijbiomac.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022]
|
20
|
The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success. Genes (Basel) 2022; 13:genes13030446. [PMID: 35328000 PMCID: PMC8956072 DOI: 10.3390/genes13030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.
Collapse
|
21
|
Silva N, Castellano-Pozo M, Matsuzaki K, Barroso C, Roman-Trufero M, Craig H, Brooks DR, Isaac RE, Boulton SJ, Martinez-Perez E. Proline-specific aminopeptidase P prevents replication-associated genome instability. PLoS Genet 2022; 18:e1010025. [PMID: 35081133 PMCID: PMC8820600 DOI: 10.1371/journal.pgen.1010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/07/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1’s role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication. The accurate duplication of DNA that occurs before cells divide is an essential aspect of the cell cycle that is also crucial for the correct development of multicellular organisms. Mutations that compromise the normal function of the DNA replication machinery can lead to the accumulation of replication-related DNA damage, a known cause of human disease and a common feature of cancer and precancerous cells. Therefore, identifying factors that prevent replication-related DNA damage is highly relevant for human health. In this manuscript, we identify aminopeptidase P, an enzyme involved in the breakdown of proteins containing the amino acid Proline at their N-terminus, as a novel factor that prevents replication-related DNA damage. Analysis of C. elegans nematodes lacking aminopeptidase P reveals that this protein is required for normal fertility and development, and that in its absence proliferating germ cells display DNA replication defects, including cell cycle arrest and accumulation of extensive DNA damage. We also show that removal of aminopeptidase P induces DNA damage in proliferating human cells, suggesting that its role in preventing replication defects is evolutionarily conserved. These findings uncover functional connections between aminopeptidase-mediated protein degradation and DNA replication.
Collapse
Affiliation(s)
- Nicola Silva
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | - Consuelo Barroso
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom
| | - Monica Roman-Trufero
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom
| | - Hannah Craig
- School of Biology, University of Leeds, Leeds, United Kingdom
| | - Darren R. Brooks
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - R. Elwyn Isaac
- School of Biology, University of Leeds, Leeds, United Kingdom
| | | | - Enrique Martinez-Perez
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Abstract
Aminopeptidase P (APPro, E.C 3.4.11.9) cleaves N-terminal amino acids from peptides and proteins where the penultimate residue is proline. This metal-ion-dependent enzyme shares a similar fold, catalytic mechanism, and substrate specificity with methionine aminopeptidase and prolidase. It adopts a canonical pita bread fold that serves as a structural basis for the metal-dependent catalysis and assembles as a tetramer in crystals. Similar to other metalloaminopeptidase, APPro requires metal ions for its maximal enzymatic activity, with manganese being the most preferred cation. Microbial aminopeptidase possesses unique characteristics compared with aminopeptidase from other sources, making it a great industrial enzyme for various applications. This review provides a summary of recent progress in the study of the structure and function of aminopeptidase P and describes its various applications in different industries as well as its significance in the environment.
Collapse
|
23
|
Ngetich E, Lapolla P, Chandrashekar A, Handa A, Lee R. The role of dipeptidyl peptidase-IV in abdominal aortic aneurysm pathogenesis: A systematic review. Vasc Med 2021; 27:77-87. [PMID: 34392748 PMCID: PMC8808362 DOI: 10.1177/1358863x211034574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abdominal aortic aneurysm (AAA) is an important vascular disease carrying significant mortality implications due to the risk of aneurysm rupture. Current management relies exclusively on surgical repair as there is no effective medical therapy. A key element of AAA pathogenesis is the chronic inflammation mediated by inflammatory cells releasing proteases, including the enzyme dipeptidyl peptidase IV (DPP-IV). This review sought to recapitulate available evidence on the involvement of DPP-IV in AAA development. Further, we assessed the experimental use of currently available DPP-IV inhibitors for AAA management in murine models. Embase, Medline, PubMed, and Web of Science databases were utilised to access the relevant studies. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). A narrative synthesis approach was used. Sixty-four studies were identified from the searched databases; a final 11 were included in the analysis. DPP-IV was reported to be significantly increased in both AAA tissue and plasma of patients and correlated with AAA growth. DPP-IV inhibitors (sitagliptin, vildagliptin, alogliptin, and teneligliptin) were all shown to attenuate AAA formation in murine models by reducing monocyte differentiation, the release of reactive oxygen species (ROS), and metalloproteinases (MMP-2 and MMP-9). DPP-IV seems to play a role in AAA pathogenesis by propagating the inflammatory microenvironment. This is supported by observations of decreased AAA formation and reduction in macrophage infiltration, ROS, matrix MMPs, and interleukins following the use of DPP-IV inhibitors in murine models. There is an existing translational gap from preclinical observations to clinical trials in this important and novel mechanism of AAA pathogenesis. This prior literature highlights the need for further research on molecular targets involved in AAA formation.
Collapse
Affiliation(s)
- Elisha Ngetich
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Anirudh Chandrashekar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
24
|
Kordasht HK, Hasanzadeh M, Seidi F, Alizadeh PM. Poly (amino acids) towards sensing: Recent progress and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Du J, Zhu S, Lim RR, Chao JR. Proline metabolism and transport in retinal health and disease. Amino Acids 2021; 53:1789-1806. [PMID: 33871679 PMCID: PMC8054134 DOI: 10.1007/s00726-021-02981-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
The retina is one of the most energy-demanding tissues in the human body. Photoreceptors in the outer retina rely on nutrient support from the neighboring retinal pigment epithelium (RPE), a monolayer of epithelial cells that separate the retina and choroidal blood supply. RPE dysfunction or cell death can result in photoreceptor degeneration, leading to blindness in retinal degenerative diseases including some inherited retinal degenerations and age-related macular degeneration (AMD). In addition to having ready access to rich nutrients from blood, the RPE is also supplied with lactate from adjacent photoreceptors. Moreover, RPE can phagocytose lipid-rich outer segments for degradation and recycling on a daily basis. Recent studies show RPE cells prefer proline as a major metabolic substrate, and they are highly enriched for the proline transporter, SLC6A20. In contrast, dysfunctional or poorly differentiated RPE fails to utilize proline. RPE uses proline to fuel mitochondrial metabolism, synthesize amino acids, build the extracellular matrix, fight against oxidative stress, and sustain differentiation. Remarkably, the neural retina rarely imports proline directly, but it uptakes and utilizes intermediates and amino acids derived from proline catabolism in the RPE. Mutations of genes in proline metabolism are associated with retinal degenerative diseases, and proline supplementation is reported to improve RPE-initiated vision loss. This review will cover proline metabolism in RPE and highlight the importance of proline transport and utilization in maintaining retinal metabolism and health.
Collapse
Affiliation(s)
- Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,One Medical Center Dr, WVU Eye Institute, PO Box 9193, Morgantown, WV, 26505, USA.
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
26
|
Computer-Aided Drug Discovery Identifies Alkaloid Inhibitors of Parkinson's Disease Associated Protein, Prolyl Oligopeptidase. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6687572. [PMID: 33897801 PMCID: PMC8052153 DOI: 10.1155/2021/6687572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/25/2020] [Accepted: 02/19/2021] [Indexed: 01/18/2023]
Abstract
Parkinson's disease is a common neurodegenerative disorder marked by the accumulation of the protein alpha synuclein. Studies have indicated the role of prolyl oligopeptidase (POP), a serine protease, in alpha synuclein accumulation. Therefore, POP emerges as an attractive medicinal target. Traditionally, most of the early medicines have been plant-based owing to their ready availability and negligible side effects. Alkaloids owing to their neurotransmitter modulatory, anti-amyloid, anti-oxidant, and anti-inflammatory activities have shown potential in neurodegenerative disease. In this work, we computationally evaluated alkaloid class of phytochemicals for their therapeutic efficacy against POP. Alkaloids were retrieved from the publically available database, Chemical Entities of Biological Interest (ChEBI), and screened for their drug likeness (Lipinski's rule of 5) and absorption, distribution, metabolism, and excretion, and toxicity (ADMET) in Discovery Studio by ensuring parameters suitable for a central nervous system disease such as blood-brain barrier (BBB) level set to ≤2, absorption level set to 0 and solubility level permitted set to 2, 3, or 4. Next, molecular docking was performed to learn about the affinity of the filtered alkaloids with the POP. Subsequently, molecular dynamic simulations were conducted to assess the reliability and stability of the alkaloid-protein complex. Our study identified metergoline, pipercallosine, celacinnine, lobeline, cystodytin G, lycoperine A, hookerianamide J, and martefragin A as putative lead compounds against POP. Among these, metergoline, pipercallosine, hookerianamide J, and lobeline showed the most promising results. These compounds demonstrated better or equivalent molecular docking scores in comparison to three POP inhibitors that had reached clinical trials, i.e., Z-321, S-17092, and JTP-4819. MD simulations indicated that these compounds remained intact at the active site while adhering to the binding mode and interaction patterns as that of the reported inhibitors. The research conducted here, therefore, provides evidence for conducting in vitro POP inhibitory studies of these newly identified plant-based POP inhibitors.
Collapse
|
27
|
Mills B, Isaac RE, Foster R. Metalloaminopeptidases of the Protozoan Parasite Plasmodium falciparum as Targets for the Discovery of Novel Antimalarial Drugs. J Med Chem 2021; 64:1763-1785. [PMID: 33534577 DOI: 10.1021/acs.jmedchem.0c01721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Malaria poses a significant threat to approximately half of the world's population with an annual death toll close to half a million. The emergence of resistance to front-line antimalarials in the most lethal human parasite species, Plasmodium falciparum (Pf), threatens progress made in malaria control. The prospect of losing the efficacy of antimalarial drugs is driving the search for small molecules with new modes of action. Asexual reproduction of the parasite is critically dependent on the recycling of amino acids through catabolism of hemoglobin (Hb), which makes metalloaminopeptidases (MAPs) attractive targets for the development of new drugs. The Pf genome encodes eight MAPs, some of which have been found to be essential for parasite survival. In this article, we discuss the biological structure and function of each MAP within the Pf genome, along with the drug discovery efforts that have been undertaken to identify novel antimalarial candidates of therapeutic value.
Collapse
Affiliation(s)
- Belinda Mills
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| | - R Elwyn Isaac
- School of Biology, University of Leeds, Leeds, U.K., LS2 9JT
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| |
Collapse
|
28
|
Changes in Proline Levels during Seed Development of Orthodox and Recalcitrant Seeds of Genus Acer in a Climate Change Scenario. FORESTS 2020. [DOI: 10.3390/f11121362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the present study, we examined the utility of proline usage as a biochemical indicator of metabolic changes caused by climate change (mean temperature and precipitation) during seed development of two Acer species differing in desiccation tolerance: Norway maple (Acer platanoides L.—desiccation tolerant—orthodox) and sycamore (Acer pseudoplatanus L.—desiccation sensitive—recalcitrant). In plants, proline is an element of the antioxidant system, which has a role in response to water loss and high temperatures. Our study considered whether proline could be treated as an indicator of tree seed viability, crucial for genetic resources conservation. Proline content was measured biweekly in developing seeds (between 11 and 23 weeks after flowering) collected in consecutive years (2017, 2018, and 2019). We showed that proline concentrations in recalcitrant seeds were positively correlated with mean two-week temperature. In contrast, in orthodox seeds no such relationship was found. Proline content proved to be sensitive to thermal-moisture conditions changes, which makes it a promising biochemical marker of seed desiccation tolerance in different climatic conditions.
Collapse
|
29
|
Ghifari AS, Teixeira PF, Kmiec B, Pružinská A, Glaser E, Murcha MW. A mitochondrial prolyl aminopeptidase PAP2 releases N-terminal proline and regulates proline homeostasis during stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1182-1194. [PMID: 32920905 DOI: 10.1111/tpj.14987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Most mitochondrial proteins are synthesised in the cytosol and targeted into the organelle via N-terminal targeting peptides that are cleaved upon import. The free targeting peptide is subsequently processed in a stepwise manner, with single amino acids released as final products. Here, we have characterised a proline-cleaving aminopeptidase in Arabidopsis thaliana, prolyl aminopeptidase-2 (PAP2, At3g61540). Activity assays show that PAP2 has a preferred activity to hydrolyse N-terminal proline. Protein localisation studies revealed that PAP2 is exclusively targeted to mitochondria. Characterisation of pap2 mutants show defective pollen, enhanced dark-induced senescence and increased susceptibility to abiotic stresses, which are likely attributed to a reduced level of accumulated free proline. Taken together, these results demonstrate the role of PAP2 in proline cleavage from mitochondrial peptides and proline homeostasis, which is required for the development of male gametophyte, tolerance to abiotic stresses, and leaf senescence.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Adriana Pružinská
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| |
Collapse
|
30
|
Dunaevsky YE, Tereshchenkova VF, Oppert B, Belozersky MA, Filippova IY, Elpidina EN. Human proline specific peptidases: A comprehensive analysis. Biochim Biophys Acta Gen Subj 2020; 1864:129636. [DOI: 10.1016/j.bbagen.2020.129636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
|
31
|
Current Understanding of the Emerging Role of Prolidase in Cellular Metabolism. Int J Mol Sci 2020; 21:ijms21165906. [PMID: 32824561 PMCID: PMC7460564 DOI: 10.3390/ijms21165906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Prolidase [EC 3.4.13.9], known as PEPD, cleaves di- and tripeptides containing carboxyl-terminal proline or hydroxyproline. For decades, prolidase has been thoroughly investigated, and several mechanisms regulating its activity are known, including the activation of the β1-integrin receptor, insulin-like growth factor 1 receptor (IGF-1) receptor, and transforming growth factor (TGF)-β1 receptor. This process may result in increased availability of proline in the mitochondrial proline cycle, thus making proline serve as a substrate for the resynthesis of collagen, an intracellular signaling molecule. However, as a ligand, PEPD can bind directly to the epidermal growth factor receptor (EGFR, epidermal growth factor receptor 2 (HER2)) and regulate cellular metabolism. Recent reports have indicated that PEPD protects p53 from uncontrolled p53 subcellular activation and its translocation between cellular compartments. PEPD also participates in the maturation of the interferon α/β receptor by regulating its expression. In addition to the biological effects, prolidase demonstrates clinical significance reflected in the disease known as prolidase deficiency. It is also known that prolidase activity is affected in collagen metabolism disorders, metabolic, and oncological conditions. In this article, we review the latest knowledge about prolidase and highlight its biological function, and thus provide an in-depth understanding of prolidase as a dipeptidase and protein regulating the function of key biomolecules in cellular metabolism.
Collapse
|
32
|
Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110963. [DOI: 10.1016/j.msec.2020.110963] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
|
33
|
Ali A, Alzeyoudi SAR, Almutawa SA, Alnajjar AN, Vijayan R. Molecular basis of the therapeutic properties of hemorphins. Pharmacol Res 2020; 158:104855. [PMID: 32438036 DOI: 10.1016/j.phrs.2020.104855] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022]
Abstract
Hemorphins are endogenous peptides, 4-10 amino acids long, belonging to the family of atypical opioid peptides released during the sequential cleavage of hemoglobin protein. Hemorphins have been shown to exhibit diverse therapeutic effects in both human and animal models. However, the precise cellular and molecular mechanisms involved in such effects remain elusive. In this review, we summarize and propose potential mechanisms based on studies that investigated the biological activity of hemorphins of different lengths on multiple therapeutic targets. Special emphasis is given to molecular events related to renin-angiotensin system (RAS), opioid receptors and insulin-regulated aminopeptidase receptor (IRAP). This review provides a comprehensive coverage of the molecular mechanisms that underpin the therapeutic potential of hemorphins. Furthermore, it highlights the role of various hemorphin residues in pathological conditions, which could be explored further for therapeutic purposes.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | | | - Shamma Abdulla Almutawa
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Alya Nasir Alnajjar
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
34
|
Noguchi Y, Esaki H, Murayama A, Sugioka M, Koyama A, Tachi T, Teramachi H. Association between dipeptidyl peptidase-4 inhibitor and aspiration pneumonia: disproportionality analysis using the spontaneous reporting system in Japan. Eur J Clin Pharmacol 2019; 76:299-304. [PMID: 31822955 DOI: 10.1007/s00228-019-02794-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Dipeptidyl peptidase-4 inhibitor (DPP-4-Is), a kind of drug used for the treatment of diabetes, is considered to prevent the degradation of substance P that suppresses the occurrence of dysphagia. On the other hand, DPP-4 inhibitors are also known to act on the immune system. In this study, we used a spontaneous reporting system to evaluate the signals for dysphagia and aspiration pneumonia with DPP-4-Is. METHODS We calculated reporting odds ratio (ROR) and information coefficients (IC) as disproportionality analysis to evaluate DPP-4-Is induced dysphagia and aspiration pneumonia using the Japanese Adverse Drug Event Report (JADER) database. RESULTS For DPP-4-Is as a class, no signals were detected for dysphagia, but the signal for aspiration pneumonia was detected at ROR 1.67 (95% confidence interval [95% CI]: 1.20 to 2.34) and IC 0.70 (95% CI: 0.21 to 1.19). For aspiration pneumonia, trelagliptin was the only drug among the DPP-4-Is for which both ROR and IC signals were detected (ROR 9.99, 95% CI: 4.10 to 24.36; IC: 1.98, 95% CI: 0.78 to 3.18). ROR signals, but not IC signals, were detected for linagliptin (ROR 2.66, 95% CI: 1.19 to 5.94; IC: 1.09, 95% CI: - 0.004 to 2.19) and sitagliptin (ROR 1.84, 95% CI: 1.04 to 3.25; IC: 0.78, 95% CI: - 0.03 to 1.58). CONCLUSION Since DPP-4 inhibitors prevent the degradation of substance P involved in swallowing reflex, DPP-4 inhibitors were expected to prevent dysphagia and aspiration pneumonia. However, this study revealed that DPP-4 inhibitors strongly were associated with onset rather than preventing aspiration pneumonia. This result suggests that DPP-4 inhibitors may affect the immune function associated with the development of aspiration pneumonia. Furthermore, there is a possibility that the amount of DPP-4-Is used clinically cannot increase the amount of substance P in sufficient quantity to prevent aspiration pneumonia.
Collapse
Affiliation(s)
- Yoshihiro Noguchi
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan.
| | - Hiroki Esaki
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan.,Department of Pharmacy, Ichinomiya Municipal Hospital, Ichinomiya, Aichi, Japan
| | - Azusa Murayama
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Mayuko Sugioka
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Aisa Koyama
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomoya Tachi
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Hitomi Teramachi
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan. .,Laboratory of Community Healthcare Pharmacy, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
35
|
|
36
|
Rohm F, Daniel H, Spanier B. Transport Versus Hydrolysis: Reassessing Intestinal Assimilation of Di- and Tripeptides by LC-MS/MS Analysis. Mol Nutr Food Res 2019; 63:e1900263. [PMID: 31394017 DOI: 10.1002/mnfr.201900263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/27/2019] [Indexed: 11/06/2022]
Abstract
SCOPE The role of PEPT1 in the uptake of intact peptides as compared to hydrolysis prior to uptake of their constituents is unknown. Here, dipeptides, tripeptides, and amino acids are quantified to study the fate of selected peptides in different intestinal models. METHODS AND RESULTS An LC-MS/MS-based method is applied for the simultaneous assessment of rates of hydrolysis and transport of a peptide panel in Caco-2 transwell cell culture, in vitro and in vivo in mice expressing or lacking PEPT1, and in hydrolysis studies in vitro using human intestinal samples. It is shown that susceptibility to hydrolysis of peptides at the brush border membrane or within epithelial cells is practically identical in all tested models and strictly structure-dependent. Peptides with high luminal disappearance show substantial hydrolysis and low basolateral appearance, while peptides with low disappearance show strong PEPT1 dependency and high basolateral appearance in intact form in Caco-2 transwell culture. CONCLUSION Hydrolysis and transport of intact peptides are highly variable and structure-dependent. For peptides possessing less polar N-terminal residues, hydrolysis usually dominates over transport via PEPT1. For other peptides with high intrinsic hydrolysis resistance, including anserine, carnosine, ɣ-glutamyl-dipeptides, and aminocephalosporins, PEPT1 is the main determinant for appearance in peripheral blood.
Collapse
Affiliation(s)
- Florian Rohm
- Chair of Nutritional Physiology, Technical University of Munich, 85354, Freising, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, Technical University of Munich, 85354, Freising, Germany
| | - Britta Spanier
- Chair of Nutritional Physiology, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
37
|
Gaudreault R, Mousseau N. Mitigating Alzheimer’s Disease with Natural Polyphenols: A Review. Curr Alzheimer Res 2019; 16:529-543. [DOI: 10.2174/1567205016666190315093520] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
:According to Alzheimer’s Disease International (ADI), nearly 50 million people worldwide were living with dementia in 2017, and this number is expected to triple by 2050. Despite years of research in this field, the root cause and mechanisms responsible for Alzheimer’s disease (AD) have not been fully elucidated yet. Moreover, promising preclinical results have repeatedly failed to translate into patient treatments. Until now, none of the molecules targeting AD has successfully passed the Phase III trial. Although natural molecules have been extensively studied, they normally require high concentrations to be effective; alternately, they are too large to cross the blood-brain barrier (BBB).:In this review, we report AD treatment strategies, with a virtually exclusive focus on green chemistry (natural phenolic molecules). These include therapeutic strategies for decreasing amyloid-β (Aβ) production, preventing and/or altering Aβ aggregation, and reducing oligomers cytotoxicity such as curcumin, (-)-epigallocatechin-3-gallate (EGCG), morin, resveratrol, tannic acid, and other natural green molecules. We also examine whether consideration should be given to potential candidates used outside of medicine and nutrition, through a discussion of two intermediate-sized green molecules, with very similar molecular structures and key properties, which exhibit potential in mitigating Alzheimer’s disease.
Collapse
Affiliation(s)
- Roger Gaudreault
- Department of Physics, Universit�© de Montr�©al, Case Postale 6128, Succursale Centre-ville, Montreal (QC), Canada
| | - Normand Mousseau
- Department of Physics, Universit�© de Montr�©al, Case Postale 6128, Succursale Centre-ville, Montreal (QC), Canada
| |
Collapse
|
38
|
Tereshchenkova VF, Klyachko EV, Benevolensky SV, Belozersky MA, Dunaevsky YE, Filippova IY, Elpidina EN. Preparation and Purification of Recombinant Dipeptidyl Peptidase 4 from Tenebrio molitor. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819030141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Wagh SK, Gadge PP, Padul MV. Significant Hydrolysis of Wheat Gliadin by Bacillus tequilensis (10bT/HQ223107): a Pilot Study. Probiotics Antimicrob Proteins 2019; 10:662-667. [PMID: 28948492 DOI: 10.1007/s12602-017-9331-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptidase therapy is suggested to be effective to minimize gliadin toxicity in celiac disease (CD). Hence, present study deals with gliadin-hydrolysing peptidases. The efficient peptidase from the Bacillus tequilensis was purified using ammonium sulfate fractionation and preparative electrophoresis. Analysis of in-solution and in-gel hydrolysis of gliadin using one and two-dimensional SDS-PAGE revealed nearly complete hydrolysis of gliadin peptides after 180 min of incubation with B. tequilensis protease. Purified peptidase was found to be stable at acidic (pH 3.5) to neutral (pH 7.2) pH range. The molecular mass and isoelectric point of the peptidase were observed around 29 kDa and 5.2, respectively. The internal protein sequence obtained through mass spectrometric analysis suggested that peptidase might belong to peptidase S9 family known for prolyl-specific peptidases. This study recommends the possible applicability of this peptidase for elimination of immunotoxic gliadin peptides and may prove useful in CD treatment.
Collapse
Affiliation(s)
- Sandip K Wagh
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| | - Praful P Gadge
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| | - Manohar V Padul
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India.
| |
Collapse
|
40
|
Bennink LL, Li Y, Kim B, Shin IJ, San BH, Zangari M, Yoon D, Yu SM. Visualizing collagen proteolysis by peptide hybridization: From 3D cell culture to in vivo imaging. Biomaterials 2018; 183:67-76. [PMID: 30149231 DOI: 10.1016/j.biomaterials.2018.08.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022]
Abstract
Degradation of the extracellular matrix (ECM) is one of the fundamental factors contributing to a variety of life-threatening or disabling pathological conditions. However, a thorough understanding of the degradation mechanism and development of new ECM-targeting diagnostics are severely hindered by a lack of technologies for direct interrogation of the ECM structures at the molecular level. Previously we demonstrated that the collagen hybridizing peptide [CHP, sequence: (GPO)9, O: hydroxyproline] can specifically recognize the degraded and unfolded collagen chains through triple helix formation. Here we show that fluorescently labeled CHP robustly visualizes the pericellular matrix turnover caused by proteolytic migration of cancer cells within 3D collagen culture, without the use of synthetic fluorogenic matrices or genetically modified cells. To facilitate in vivo imaging, we modified the CHP sequence by replacing each proline with a (2S,4S)-4-fluoroproline (f) residue which interferes with the peptide's inherent propensity to self-assemble into homo-triple helices. We show that the new CHP, (GfO)9, tagged with a near-infrared fluorophore, enables in vivo imaging and semi-quantitative assessment of osteolytic bone lesions in mouse models of multiple myeloma. Compared to conventional techniques (e.g., micro-CT), CHP-based imaging is simple and versatile in vitro and in vivo. Therefore, we envision CHP's applications in broad biomedical contexts ranging from studies of ECM biology and drug efficiency to development of clinical molecular imaging.
Collapse
Affiliation(s)
- Lucas L Bennink
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, United States.
| | - Bumjin Kim
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Ik Jae Shin
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Boi Hoa San
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Maurizio Zangari
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Donghoon Yoon
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, United States.
| |
Collapse
|
41
|
Syrén PO. Enzymatic Hydrolysis of Tertiary Amide Bonds by anti Nucleophilic Attack and Protonation. J Org Chem 2018; 83:13543-13548. [DOI: 10.1021/acs.joc.8b02053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Per-Olof Syrén
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, Department of Fibre and Polymer Technology, and Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden 17165
| |
Collapse
|
42
|
Baik AS, Mironov KS, Arkhipov DV, Piotrovskii MS, Pojidaeva ES. Characterization of Aminopeptidase P from the Unicellular Cyanobacterium Synechocystis sp. PCC6803. DOKL BIOCHEM BIOPHYS 2018; 481:190-194. [PMID: 30168056 DOI: 10.1134/s1607672918040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/23/2022]
Abstract
The PepP protein has been purified in vitro and characterized for the first time. It is encoded by the sll0136 gene of the unicellular cyanobacterium Synechocystis sp. PCC6803. It is established that the PepP protein is a Mn2+-dependent Xaa-Pro-specific aminopeptidase. The protein in the reaction of hydrolysis of the fluorescent peptide Lys(N-Abz)-Pro-Pro-pNA has a maximal activity at pH 7.6 and 32°C.
Collapse
Affiliation(s)
- A S Baik
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | - K S Mironov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - D V Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - M S Piotrovskii
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - E S Pojidaeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| |
Collapse
|
43
|
Arısoy S, Üstün-Aytekin Ö. Hydrolysis of food-derived opioids by dipeptidyl peptidase IV from Lactococcus lactis spp. lactis. Food Res Int 2018; 111:574-581. [DOI: 10.1016/j.foodres.2018.05.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
|
44
|
Natunen TA, Gynther M, Rostalski H, Jaako K, Jalkanen AJ. Extracellular prolyl oligopeptidase derived from activated microglia is a potential neuroprotection target. Basic Clin Pharmacol Toxicol 2018; 124:40-49. [DOI: 10.1111/bcpt.13094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Teemu A. Natunen
- Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Mikko Gynther
- School of Pharmacy; University of Eastern Finland; Kuopio Finland
| | - Hannah Rostalski
- A.I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio Finland
| | - Külli Jaako
- Department of Pharmacology; Institute of Biomedicine and Translational Medicine; University of Tartu; Tartu Estonia
| | - Aaro J. Jalkanen
- School of Pharmacy; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
45
|
Saxena P, Severi L, Santucci M, Taddia L, Ferrari S, Luciani R, Marverti G, Marraccini C, Tondi D, Mor M, Scalvini L, Vitiello S, Losi L, Fonda S, Pacifico S, Guerrini R, D’Arca D, Ponterini G, Costi MP. Conformational Propensity and Biological Studies of Proline Mutated LR Peptides Inhibiting Human Thymidylate Synthase and Ovarian Cancer Cell Growth. J Med Chem 2018; 61:7374-7380. [DOI: 10.1021/acs.jmedchem.7b01699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Puneet Saxena
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Leda Severi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Laura Taddia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical Sciences, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Chiara Marraccini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Simone Vitiello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Pathological Anatomy, Via del Pozzo 71, 41124 Modena, Italy
| | - Sergio Fonda
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
- LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | - Domenico D’Arca
- Department of Biomedical Sciences, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Glauco Ponterini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
46
|
Klychnikov OI, Shamorkina TM, Weeks SD, van Leeuwen HC, Corver J, Drijfhout JW, van Veelen PA, Sluchanko NN, Strelkov SV, Hensbergen PJ. Discovery of a new Pro-Pro endopeptidase, PPEP-2, provides mechanistic insights into the differences in substrate specificity within the PPEP family. J Biol Chem 2018; 293:11154-11165. [PMID: 29794027 DOI: 10.1074/jbc.ra118.003244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Pro-Pro endopeptidases (PPEPs) belong to a recently discovered family of proteases capable of hydrolyzing a Pro-Pro bond. The first member from the bacterial pathogen Clostridium difficile (PPEP-1) cleaves two C. difficile cell-surface proteins involved in adhesion, one of which is encoded by the gene adjacent to the ppep-1 gene. However, related PPEPs may exist in other bacteria and may shed light on substrate specificity in this enzyme family. Here, we report on the homolog of PPEP-1 in Paenibacillus alvei, which we denoted PPEP-2. We found that PPEP-2 is a secreted metalloprotease, which likewise cleaved a cell-surface protein encoded by an adjacent gene. However, the cleavage motif of PPEP-2, PLP↓PVP, is distinct from that of PPEP-1 (VNP↓PVP). As a result, an optimal substrate peptide for PPEP-2 was not cleaved by PPEP-1 and vice versa. To gain insight into the specificity mechanism of PPEP-2, we determined its crystal structure at 1.75 Å resolution and further confirmed the structure in solution using small-angle X-ray scattering (SAXS). We show that a four-amino-acid loop, which is distinct in PPEP-1 and -2 (GGST in PPEP-1 and SERV in PPEP-2), plays a crucial role in substrate specificity. A PPEP-2 variant, in which the four loop residues had been swapped for those from PPEP-1, displayed a shift in substrate specificity toward PPEP-1 substrates. Our results provide detailed insights into the PPEP-2 structure and the structural determinants of substrate specificity in this new family of PPEP proteases.
Collapse
Affiliation(s)
- Oleg I Klychnikov
- From the Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | | | - Stephen D Weeks
- From the Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | | | | | - Jan W Drijfhout
- Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 Leiden, The Netherlands
| | | | - Nikolai N Sluchanko
- the A. N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia, and.,the Department of Biophysics, Faculty of Biology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergei V Strelkov
- From the Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | | |
Collapse
|
47
|
Kan J, An L, Wu Y, Long J, Song L, Fang R, Jia Y. A dual role for proline iminopeptidase in the regulation of bacterial motility and host immunity. MOLECULAR PLANT PATHOLOGY 2018; 19:2011-2024. [PMID: 29517846 PMCID: PMC6638124 DOI: 10.1111/mpp.12677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 05/07/2023]
Abstract
During plant-pathogen interactions, pathogenic bacteria have evolved multiple strategies to cope with the sophisticated defence systems of host plants. Proline iminopeptidase (PIP) is essential to Xanthomonas campestris pv. campestris (Xcc) virulence, and is conserved in many plant-associated bacteria, but its pathogenic mechanism remains unclear. In this study, we found that disruption of pip in Xcc enhanced its flagella-mediated bacterial motility by decreasing intracellular bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, whereas overexpression of pip in Xcc restricted its bacterial motility by elevating c-di-GMP levels. We also found that PIP is a type III secretion system-dependent effector capable of eliciting a hypersensitive response in non-host, but not host plants. When we transformed pip into the host plant Arabidopsis, higher bacterial titres were observed in pip-overexpressing plants relative to wild-type plants after Xcc inoculation. The repressive function of PIP on plant immunity was dependent on PIP's enzymatic activity and acted through interference with the salicylic acid (SA) biosynthetic and regulatory genes. Thus, PIP simultaneously regulates two distinct regulatory networks during plant-microbe interactions, i.e. it affects intracellular c-di-GMP levels to coordinate bacterial behaviour, such as motility, and functions as a type III effector translocated into plant cells to suppress plant immunity. Both processes provide bacteria with the regulatory potential to rapidly adapt to complex environments, to utilize limited resources for growth and survival in a cost-efficient manner and to improve the chances of bacterial survival by helping pathogens to inhabit the internal tissues of host plants.
Collapse
Affiliation(s)
- Jinhong Kan
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
- College of Life Sciences, University of the Chinese Academy of SciencesBeijing 100049China
- Present address:
Center for Crop Germplasm Resources, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing 100081China
| | - Lin An
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
- College of Life Sciences, University of the Chinese Academy of SciencesBeijing 100049China
| | - Yao Wu
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
| | - Jia Long
- College of Life Sciences, Capital Normal UniversityBeijing 100048China
| | - Liyang Song
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
- College of Life Sciences, University of the Chinese Academy of SciencesBeijing 100049China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
| | - Yantao Jia
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
| |
Collapse
|
48
|
A study to evaluate the potential of an in silico approach for predicting dipeptidyl peptidase-IV inhibitory activity in vitro of protein hydrolysates. Food Chem 2017; 234:431-438. [DOI: 10.1016/j.foodchem.2017.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 12/24/2022]
|
49
|
Matsushita-Morita M, Tada S, Suzuki S, Hattori R, Kusumoto KI. Enzymatic characterization of a novel Xaa-Pro aminopeptidase XpmA from Aspergillus oryzae expressed in Escherichia coli. J Biosci Bioeng 2017; 124:534-541. [DOI: 10.1016/j.jbiosc.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/08/2017] [Accepted: 06/18/2017] [Indexed: 01/08/2023]
|
50
|
Decreased spinal endomorphin-2 contributes to mechanical allodynia in streptozotocin-induced diabetic rats. Neurochem Int 2017; 108:372-380. [DOI: 10.1016/j.neuint.2017.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 01/06/2023]
|