1
|
Abstract
The question of how to distinguish between lipases and esterases is about as old as the definition of the subclassification is. Many different criteria have been proposed to this end, all indicative but not decisive. Here, the activity of lipases in dry organic solvents as a criterion is probed on a minimal α/β hydrolase fold enzyme, the Bacillus subtilis lipase A (BSLA), and compared to Candida antarctica lipase B (CALB), a proven lipase. Both hydrolases show activity in dry solvents and this proves BSLA to be a lipase. Overall, this demonstrates the value of this additional parameter to distinguish between lipases and esterases. Lipases tend to be active in dry organic solvents, while esterases are not active under these circumstances.
Collapse
|
2
|
Lopez AJ, Barros EP, Martínez L. On the Interpretation of subtilisin Carlsberg Time-Resolved Fluorescence Anisotropy Decays: Modeling with Classical Simulations. J Chem Inf Model 2020; 60:747-755. [PMID: 31524394 DOI: 10.1021/acs.jcim.9b00539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this work, we discuss the challenging time-resolved fluorescence anisotropy of subtilisin Carlsberg (SC), which contains a single Trp residue and is a model fluorescence system. Experimental decay rates and quenching data suggest that the fluorophore should be exposed to water, but the Trp is partially buried in a hydrophobic pocket in the crystallographic structure. In order to study this inconsistency, molecular dynamics simulations were performed to predict the anisotropy decay rates and emission wavelengths of the Trp. We confirmed the inconsistency of the crystallographic structure with the experimentally observed fluorescence data and performed free energy calculations to show that the buried Trp conformation is 2 orders of magnitude (∼3 kcal/mol) more stable than the solvent-exposed one. However, molecular dynamics simulations in which the Trp side chain was restricted to solvent-exposed conformations displayed a maximum Trp emission wavelength shifted toward lower energies and decay rates compatible with the experimentally probed rates. Therefore, if the solvent-exposed conformations are the most important emitters, the experimental anisotropy can be compatibilized with the crystallographic structure. The most likely explanation is that the fluorescence of the most probable conformation in solution, observed in the crystal, is quenched, and this is consistent with the low quantum yield of Trp113 of SC. Additionally, some experiments might have probed denatured or lysed SC structures. SC anisotropy provides an interesting target for the study of fluorescence anisotropy using simulations, which can be used to test and exemplify how modeling can aid the interpretation of experimental data in a system where structure and solution experiments appear to be inconsistent.
Collapse
Affiliation(s)
- Alvaro J Lopez
- Institute of Chemistry and Center for Computing in Engineering & Science , University of Campinas , 13083-861 Campinas - SP , Brazil
| | - Emília P Barros
- Institute of Chemistry and Center for Computing in Engineering & Science , University of Campinas , 13083-861 Campinas - SP , Brazil
| | - Leandro Martínez
- Institute of Chemistry and Center for Computing in Engineering & Science , University of Campinas , 13083-861 Campinas - SP , Brazil
| |
Collapse
|
3
|
Singh P, Choudhury S, Dutta S, Adhikari A, Bhattacharya S, Pal D, Pal SK. Ultrafast spectroscopy on DNA-cleavage by endonuclease in molecular crowding. Int J Biol Macromol 2017; 103:395-402. [DOI: 10.1016/j.ijbiomac.2017.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/14/2017] [Indexed: 10/19/2022]
|
4
|
Sergeyev IV, Bahri S, Day LA, McDermott AE. Pf1 bacteriophage hydration by magic angle spinning solid-state NMR. J Chem Phys 2015; 141:22D533. [PMID: 25494804 DOI: 10.1063/1.4903230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High resolution two- and three-dimensional heteronuclear correlation spectroscopy ((1)H-(13)C, (1)H-(15)N, and (1)H-(13)C-(13)C HETCOR) has provided a detailed characterization of the internal and external hydration water of the Pf1 virion. This long and slender virion (2000 nm × 7 nm) contains highly stretched DNA within a capsid of small protein subunits, each only 46 amino acid residues. HETCOR cross-peaks have been unambiguously assigned to 25 amino acids, including most external residues 1-21 as well as residues 39-40 and 43-46 deep inside the virion. In addition, the deoxyribose rings of the DNA near the virion axis are in contact with water. The sets of cross-peaks to the DNA and to all 25 amino acid residues were from the same hydration water (1)H resonance; some of the assigned residues do not have exchangeable side-chain protons. A mapping of the contacts onto structural models indicates the presence of water "tunnels" through a highly hydrophobic region of the capsid. The present results significantly extend and modify results from a lower resolution study, and yield a comprehensive hydration surface map of Pf1. In addition, the internal water could be distinguished from external hydration water by means of paramagnetic relaxation enhancement. The internal water population may serve as a conveniently localized magnetization reservoir for structural studies.
Collapse
Affiliation(s)
- Ivan V Sergeyev
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Salima Bahri
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Loren A Day
- Public Health Research Institute, Rutgers University, 225 Warren St., Newark, New Jersey 07103, USA
| | - Ann E McDermott
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
5
|
Guo D, Xu Y, Kang Y, Han S, Zheng S. Synthesis of octyl-β-D-glucopyranoside catalyzed by Thai rosewood β-glucosidase-displaying Pichia pastoris in an aqueous/organic two-phase system. Enzyme Microb Technol 2015; 85:90-7. [PMID: 26920486 DOI: 10.1016/j.enzmictec.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022]
Abstract
We explored the ability of a Thai rosewood β-glucosidase-displaying P. pastoris whole-cell biocatalyst (Pp-DCBGL) system to synthesize alkyl β-D-glucosides. The primary investigation centered on the synthesis of octyl-β-D-glucopyranoside (octyl-glu, OG). OG could be synthesized through reverse hydrolysis reaction with very low efficiency. Then, OG was synthesized between BG and octanol by a transglycosylation reaction. In a 2-ml reaction system, OG was synthesized with a conversion rate of 51.1% in 3h when 5 mg/ml BG was utilized as the glucosyl donor under optimized conditions. And, even after being reused four times, the Pp-DCBGL was relatively stable. Additionally, a 500-ml-scale reaction system was conducted in a 2-L stirred reactor with a conversion rate of 47.5% in 1.5 h. Moreover, the conversion rate did not decrease after the whole-cell catalyst was reused two times. In conclusion, Pp-DCBGL has high reaction efficiency and operational stability, which is a powerful biocatalyst available for industrial synthesis.
Collapse
Affiliation(s)
- DongHeng Guo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - YanShan Xu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - YaJun Kang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - ShuangYan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - SuiPing Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Kuznetsova IM, Zaslavsky BY, Breydo L, Turoverov KK, Uversky VN. Beyond the excluded volume effects: mechanistic complexity of the crowded milieu. Molecules 2015; 20:1377-409. [PMID: 25594347 PMCID: PMC6272634 DOI: 10.3390/molecules20011377] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 11/16/2022] Open
Abstract
Macromolecular crowding is known to affect protein folding, binding of small molecules, interaction with nucleic acids, enzymatic activity, protein-protein interactions, and protein aggregation. Although for a long time it was believed that the major mechanism of the action of crowded environments on structure, folding, thermodynamics, and function of a protein can be described in terms of the excluded volume effects, it is getting clear now that other factors originating from the presence of high concentrations of “inert” macromolecules in crowded solution should definitely be taken into account to draw a more complete picture of a protein in a crowded milieu. This review shows that in addition to the excluded volume effects important players of the crowded environments are viscosity, perturbed diffusion, direct physical interactions between the crowding agents and proteins, soft interactions, and, most importantly, the effects of crowders on solvent properties.
Collapse
Affiliation(s)
- Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; E-Mails: (I.M.K.); (K.K.T.)
- St. Petersburg State Polytechnical University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russia
| | - Boris Y. Zaslavsky
- Cleveland Diagnostics, 3615 Superior Ave., Suite 4407B, Cleveland, OH 44114, USA; E-Mail:
| | - Leonid Breydo
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA; E-Mails:
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; E-Mails: (I.M.K.); (K.K.T.)
- St. Petersburg State Polytechnical University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russia
| | - Vladimir N. Uversky
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; E-Mails: (I.M.K.); (K.K.T.)
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA; E-Mails:
- Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-813-974-5816; Fax: +1-813-974-7357
| |
Collapse
|
7
|
Zeuner B, Jers C, Mikkelsen JD, Meyer AS. Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9615-31. [PMID: 25208138 DOI: 10.1021/jf502619p] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recently, significant progress has been made within enzymatic synthesis of biomimetic, functional glycans, including, for example, human milk oligosaccharides. These compounds are mainly composed of N-acetylglucosamine, fucose, sialic acid, galactose, and glucose, and their controlled enzymatic synthesis is a novel field of research in advanced food ingredient chemistry, involving the use of rare enzymes, which have until now mainly been studied for their biochemical significance, not for targeted biosynthesis applications. For the enzymatic synthesis of biofunctional glycans reaction parameter optimization to promote "reverse" catalysis with glycosidases is currently preferred over the use of glycosyl transferases. Numerous methods exist for minimizing the undesirable glycosidase-catalyzed hydrolysis and for improving the trans-glycosylation yields. This review provides an overview of the approaches and data available concerning optimization of enzymatic trans-glycosylation for novel synthesis of complex bioactive carbohydrates using sialidases, α-l-fucosidases, and β-galactosidases as examples. The use of an adequately high acceptor/donor ratio, reaction time control, continuous product removal, enzyme recycling, and/or the use of cosolvents may significantly improve trans-glycosylation and biocatalytic productivity of the enzymatic reactions. Protein engineering is also a promising technique for obtaining high trans-glycosylation yields, and proof-of-concept for reversing sialidase activity to trans-sialidase action has been established. However, the protein engineering route currently requires significant research efforts in each case because the structure-function relationship of the enzymes is presently poorly understood.
Collapse
Affiliation(s)
- Birgitte Zeuner
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark , Building 229, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
8
|
Reshmi R, Sugunan S. Superior activities of lipase immobilized on pure and hydrophobic clay supports: Characterization and catalytic activity studies. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Lousa D, Baptista AM, Soares CM. A molecular perspective on nonaqueous biocatalysis: contributions from simulation studies. Phys Chem Chem Phys 2013; 15:13723-36. [DOI: 10.1039/c3cp51761f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
König C, Bechtold-Peters K, Baum V, Schultz-Fademrecht T, Bassarab S, Steffens KJ. Development of a pilot-scale manufacturing process for protein-coated microcrystals (PCMC): Mixing and precipitation – Part I. Eur J Pharm Biopharm 2012; 80:490-8. [DOI: 10.1016/j.ejpb.2011.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
|
11
|
Verma PK, Rakshit S, Mitra RK, Pal SK. Role of hydration on the functionality of a proteolytic enzyme α-chymotrypsin under crowded environment. Biochimie 2011; 93:1424-33. [DOI: 10.1016/j.biochi.2011.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 04/20/2011] [Indexed: 11/28/2022]
|
12
|
Lousa D, Baptista AM, Soares CM. Structural determinants of ligand imprinting: a molecular dynamics simulation study of subtilisin in aqueous and apolar solvents. Protein Sci 2011; 20:379-86. [PMID: 21280129 DOI: 10.1002/pro.569] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The phenomenon known as "ligand imprinting" or "ligand-induced enzyme memory" was first reported in 1988, when Russell and Klibanov observed that lyophilizing subtilisin in the presence of competitive inhibitors (that were subsequently removed) could significantly enhance its activity in an apolar solvent. (Russell and Klibanov, J Biol Chem 1988;263:11624-11626). They further observed that this enhancement did not occur when similar assays were carried out in water. Herein, we shed light on the molecular determinants of ligand imprinting using a molecular dynamics (MD) approach. To simulate the effect of placing an enzyme in the presence of a ligand before its lyophilization, an inhibitor was docked in the active site of subtilisin and 20 ns MD simulations in water were performed. The ligand was then removed and the resulting structure was used for subsequent MD runs using hexane and water as solvents. As a control, the same simulation setup was applied using the structure of subtilisin in the absence of the inhibitor. We observed that the ligand maintains the active site in an open conformation and that this configuration is retained after the removal of the inhibitor, when the simulations are carried out in hexane. In agreement with experimental findings, the structural configuration induced by the ligand is lost when the simulations take place in water. Our analysis of fluctuations indicates that this behavior is a result of the decreased flexibility displayed by enzymes in an apolar solvent, relatively to the aqueous situation.
Collapse
Affiliation(s)
- Diana Lousa
- Laboratório de Modelação de Proteínas, ITQB-UNL, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
13
|
Wang HJ, Kleinhammes A, Tang P, Xu Y, Wu Y. Temperature dependence of lysozyme hydration and the role of elastic energy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:031924. [PMID: 21517540 PMCID: PMC3388542 DOI: 10.1103/physreve.83.031924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 02/03/2011] [Indexed: 05/30/2023]
Abstract
Water plays a critical role in protein dynamics and functions. However, the most basic property of hydration--the water sorption isotherm--remains inadequately understood. Surface adsorption is the commonly adopted picture of hydration. Since it does not account for changes in the conformational entropy of proteins, it is difficult to explain why protein dynamics and activity change upon hydration. The solution picture of hydration provides an alternative approach to describe the thermodynamics of hydration. Here, the flexibility of proteins could influence the hydration level through the change of elastic energy upon hydration. Using nuclear magnetic resonance to measure the isotherms of lysozyme in situ between 18 and 2 °C, the present work provides evidence that the part of water uptake associated with the onset of protein function is significantly reduced below 8 °C. Quantitative analysis shows that such reduction is directly related to the reduction of protein flexibility and enhanced cost in elastic energy upon hydration at lower temperature. The elastic property derived from the water isotherm agrees with direct mechanical measurements, providing independent support for the solution model. This result also implies that water adsorption at charged and polar groups occurring at low vapor pressure, which is known for softening the protein, is crucial for the later stage of water uptake, leading to the activation of protein dynamics. The present work sheds light on the mutual influence of protein flexibility and hydration, providing the basis for understanding the role of hydration on protein dynamics.
Collapse
Affiliation(s)
- Hai-Jing Wang
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
| | | | | | | | | |
Collapse
|
14
|
Bridiau N, Issaoui N, Maugard T. The effects of organic solvents on the efficiency and regioselectivity of N-acetyl-lactosamine synthesis, using the β-galactosidase from Bacillus circulans in hydro-organic media. Biotechnol Prog 2011; 26:1278-89. [PMID: 20568279 DOI: 10.1002/btpr.445] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The enzymatic synthesis of N-acetyl-lactosamine (LacNAc) by the transgalactosylation of N-acetyl-D-glucosamine (GlcNAc), catalyzed by the β-galactosidase from Bacillus circulans (BcβGal), was studied in hydro-organic media, starting from o-nitrophenyl-β-D-galactopyranoside (oNPG) as a galactosyl donor. Thermal stability and synthesis activity of BcβGal were shown to depend on the organic solvent polarity, characterized by its Log P value. BcβGal was thus most stable in 10% (v/v) t-BuOH, an organic solvent found to have a stabilizing and/or weakly denaturing property, which was confirmed for high t-BuOH concentrations. In the same manner, the optimal synthesis yield increased as the Log P value of the organic solvent increased. The best results were obtained for reactions carried out in 10% (v/v) pyridine or 2-methyl-2-butanol, which gave 47% GlcNAc transgalactosylation yield based on starting oNPG, of which 23% (11 mM; 4.3 g/L) consisted in LacNAc synthesis. Furthermore, it was also established that both the GlcNAc transgalactosylation yield and the enzyme regioselectivity depended on the percentage of organic solvent used, the optimal percentage varying from 10 to 40% (v/v), depending on the solvent. This phenomenon was found to correlate mainly with the thermodynamic activity of water (a(w)) in the aqueous organic solvent mixture, which was found to be optimal when close to 0.96, whatever the organic solvent used. Finally, this study highlighted the fact that the regioselectivity of BcβGal for 1-4 linkage formation could be advantageously managed by controlling the a(w) parameter.
Collapse
Affiliation(s)
- Nicolas Bridiau
- UMR 6250 CNRS-ULR, LIENSS, Equipe Biotechnologie Environnementale, Université de La Rochelle, La Rochelle 17042, France
| | | | | |
Collapse
|
15
|
Paravidino M, Sorgedrager MJ, Orru RVA, Hanefeld U. Activity and enantioselectivity of the hydroxynitrile lyase MeHNL in dry organic solvents. Chemistry 2010; 16:7596-604. [PMID: 20486110 PMCID: PMC2970910 DOI: 10.1002/chem.201000487] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Indexed: 11/23/2022]
Abstract
Water concentration affects both the enantioselectivity and activity of enzymes in dry organic media. Its influence has been investigated using the hydrocyanation of benzaldehyde catalyzed by hydroxynitrile lyase cross-linked enzyme aggregate (MeHNL-CLEA) as a model reaction. The enzyme displayed higher enantioselectivity at higher water concentration, thus suggesting a positive effect of enzyme flexibility on selectivity. The activity increased on reducing the solvent water content, but drastic dehydration of the enzyme resulted in a reversible loss of activity.
Collapse
Affiliation(s)
- Monica Paravidino
- Gebouw voor Scheikunde, Afdeling Biotechnologie, Technische Universiteit Delft, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | | | |
Collapse
|
16
|
Xia X, Wang C, Yang B, Wang YH, Wang X. Water activity dependence of lipases in non-aqueous biocatalysis. Appl Biochem Biotechnol 2009; 159:759-767. [PMID: 19455434 DOI: 10.1007/s12010-009-8618-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 03/16/2009] [Indexed: 12/01/2022]
Abstract
Eleven lipases are tested and it was found that lipases can be divided into three types according to water activity dependence. The first type is lipase that has low water activity dependence and works in a low water activity, its performance changes little with the change of water activity. The optimum water activity is 0.19 and Newlase F (Rhizopus niveus), lipase FAP-15 (Rhizopus oryzae) belong to this type. The second type is lipase that has medium water activity dependence and its performance changes with the change of water activity. Most lipases belong to this type and the optimum water activity in this type is about 0.60. The third type is lipase that has a high water activity dependence and works only in a high water activity (a ( w ) > 0.75). WGL (wheat germ) belongs to this type and the optimum water activity is 0.90. The relationship between enantioselectivity and water activity is also discussed and the enantioselectivity seems to be independent of water activity. And we also compared the two control methods of water activity, it was found that the method which add solid salt hydrates to the reaction mixture (method II) is more stable and effective throughout the reaction than the method that pre-equilibrate via the vapor phase (method I). The addition concentration of salt hydrates is also investigated and the optimum concentration is 1 g/l.
Collapse
Affiliation(s)
- Xiaole Xia
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | | | | | | | | |
Collapse
|
17
|
Hudson EP, Eppler RK, Beaudoin JM, Dordick JS, Reimer JA, Clark DS. Active-site motions and polarity enhance catalytic turnover of hydrated subtilisin dissolved in organic solvents. J Am Chem Soc 2009; 131:4294-300. [PMID: 19317505 DOI: 10.1021/ja806996q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzyme subtilisin Carlsberg was surfactant-solubilized into two organic solvents, isooctane and tetrahydrofuran, and hydrated through stepwise changes in the thermodynamic water activity, a(w). The apparent turnover number k(cat)(app) in these systems ranged from 0.2 to 80 s(-1) and increased 11-fold in isooctane and up to 50-fold in tetrahydrofuran with increasing a(w). (19)F NMR relaxation experiments employing an active-site inhibitor were used to assess the dependence of active-site motions on a(w). The rates of NMR-derived fast (k > 10(7) s(-1)) and slow (k < 10(4) s(-1)) active-site motions increased in both solvents upon hydration, but only the slow motions correlated with k(cat). The (19)F chemical shift was a sensitive probe of the local electronic environment and provided an empirical measure of the active-site dielectric constant epsilon(as), which increased with hydration to epsilon(as) approximately 13 in each solvent. In both solvents, the transition state free energy data and epsilon(as) followed Kirkwood's model for the continuum solvation of a dipole, indicating that water also enhanced catalysis by altering the active-site's electronic environment and increasing its polarity to better stabilize the transition state. These results reveal that favorable dynamic and electrostatic effects both contribute to accelerated catalysis by solubilized subtilisin Carlsberg upon hydration in organic solvents.
Collapse
Affiliation(s)
- Elton P Hudson
- Department of Chemical Engineering, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
18
|
Rariy RV, Klibanov AM. On the Relationship Between Enzymatic Enantioselectivity in Organic Solvents and Enzyme Flexibility. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420009015259] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Fasoli E, Ferrer A, Barletta GL. Hydrogen/deuterium exchange study of subtilisin Carlsberg during prolonged exposure to organic solvents. Biotechnol Bioeng 2009; 102:1025-32. [PMID: 18985614 PMCID: PMC2675824 DOI: 10.1002/bit.22147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been previously reported that prolonged exposure of an enzyme to organic solvents leads to substantial decrease of activity. This effect was found to be unrelated to the catalysts' structure or their possible aggregation in organic solvents, and up to the present day the cause for activity loss remains unclear. In the present work, the structural dynamics of the serine protease subtilisin Carlsberg (SC) have been investigated during prolonged exposure to two organic solvents by following hydrogen/deuterium (H/D) exchange of mobile protons. The enzyme, after lyophilization, was incubated in organic solvents at controlled deuteriated water activity for different times and the H/D exchange was allowed to take place. The amount of deuterium exchanged was evaluated by (2)H NMR, which in turn gave us a picture of the changing dynamics of our model enzyme during incubation and under different experimental conditions. Our results show that the flexibility of SC decreases during prolonged storage in 1,4-dioxane (Diox) and acetonitrile (ACN) as indicated by the observed 3- to 10-fold decrease in the apparent rate constants of exchange (k) of fast exchangeable protons (FEP) and slow exchangeable protons (SEP) in the protein. Our study also shows that SC is more flexible in ACN than in Diox (k 3-20 times higher in ACN for the FEP and SEP), suggesting that enzyme dynamics are affected by solvent physicochemical properties. Additionally, the enzyme dynamics are also affected by the method of preparation: decreased flexibility (k decreases 3- to 10-fold for FEP and SEP) is observed when the enzyme is chemically modified with poly ethylene glycol (PEGylated) or colyophilized with crown ethers. A possible relationship between activity, enantioselectivity (E), and structural dynamics is discussed, demonstrating that direct correlations, as have been attempted in the past, are hampered by the multi-variable nature and complexity of the system.
Collapse
Affiliation(s)
- Ezio Fasoli
- Department of Chemistry, University of Puerto Rico at Humacao, CUH Station, Humacao, Puerto Rico 00791
| | | | | |
Collapse
|
20
|
Properties of epoxide hydrolase from Aspergillus niger for the hydrolytic kinetic resolution of epoxides in pure organic media. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Cruz-Guerrero AE, Gómez-Ruiz L, Viniegra-González G, Bárzana E, García-Garibay M. Influence of water activity in the synthesis of galactooligosaccharides produced by a hyperthermophilic β-glycosidase in an organic medium. Biotechnol Bioeng 2006; 93:1123-9. [PMID: 16470870 DOI: 10.1002/bit.20824] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study evaluated the influence of water activity and lactose concentration on the synthesis of galactooligosaccharides (GOS), by means of a hyperthermophilic beta-glycosidase in an organic system. The production of GOS gradually grew as water activity increased in the reaction system; later, their synthesis decreased as water activity increased. The authors used the response surface methodology to study how different water activities and different concentrations of lactose influenced the synthesis of GOS and their length. In every case, the variable that proved to have the greatest effect on GOS synthesis was water activity. Maximum GOS3 synthesis was reached at a water activity interval of 0.44-0.57, with lactose concentrations of 0.06%-0.1%, while GOS4 and GOS5 maxima were reached at water activity intervals of 0.47-0.57 and 0.49-0.60, respectively. The research showed that higher water activity was required to synthesize GOS of greater length. Synthesis of GOS would then depend on the flexibility of the enzyme, which in turn would depend on water activity of the reaction system. This hypothesis was supported by experiments in which the reaction temperature was modified in order to change the flexibility of the enzyme, thus leading to longer GOS.
Collapse
Affiliation(s)
- Alma E Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico D.F. 09340, Mexico
| | | | | | | | | |
Collapse
|
22
|
Garcia S, Vidinha P, Arvana H, Gomes da Silva MD, Ferreira MO, Cabral JM, Macedo EA, Harper N, Barreiros S. Cutinase activity in supercritical and organic media: water activity, solvation and acid–base effects. J Supercrit Fluids 2005. [DOI: 10.1016/j.supflu.2004.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
|
24
|
Yang L, Dordick JS, Garde S. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys J 2005; 87:812-21. [PMID: 15298890 PMCID: PMC1304491 DOI: 10.1529/biophysj.104.041269] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water plays an important role in enzyme structure and function in aqueous media. That role becomes even more important when one focuses on enzymes in low water media. Here we present results from molecular dynamics simulations of surfactant-solubilized subtilisin BPN' in three organic solvents (octane, tetrahydrofuran, and acetonitrile) and in pure water. Trajectories from simulations are analyzed with a focus on enzyme structure, flexibility, and the details of enzyme hydration. The overall enzyme and backbone structures, as well as individual residue flexibility, do not show significant differences between water and the three organic solvents over a timescale of several nanoseconds currently accessible to large-scale molecular dynamics simulations. The key factor that distinguishes molecular-level details in different media is the partitioning of hydration water between the enzyme and the bulk solvent. The enzyme surface and the active site region are well hydrated in aqueous medium, whereas with increasing polarity of the organic solvent (octane --> tetrahydrofuran --> acetonitrile) the hydration water is stripped from the enzyme surface. Water stripping is accompanied by the penetration of tetrahydrofuran and acetonitrile molecules into crevices on the enzyme surface and especially into the active site. More polar organic solvents (tetrahydrofuran and acetonitrile) replace mobile and weakly bound water molecules in the active site and leave primarily the tightly bound water in that region. In contrast, the lack of water stripping in octane allows efficient hydration of the active site uniformly by mobile and weakly bound water and some structural water similar to that in aqueous solution. These differences in the active site hydration are consistent with the inverse dependence of enzymatic activity on organic solvent polarity and indicate that the behavior of hydration water on the enzyme surface and in the active site is an important determinant of biological function especially in low water media.
Collapse
Affiliation(s)
- Lu Yang
- Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | |
Collapse
|
25
|
Krushelnitsky A, Reichert D. Complex1H,13C-NMR relaxation and computer simulation study of side-chain dynamics in solid polylysine. Biopolymers 2005; 78:129-39. [PMID: 15770665 DOI: 10.1002/bip.20272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The side-chain dynamics of solid polylysine at various hydration levels was studied by means of proton spin-lattice relaxation times measurements in the laboratory and tilted (off-resonance) rotating frames at several temperatures as well as Monte Carlo computer simulations. These data were analyzed together with recently measured carbon relaxation data (A. Krushelnitsky, D. Faizullin, and D. Reichert, Biopolymers, 2004, Vol. 73, pp. 1-15). The analysis of the whole set of data performed within the frame of the model-free approach led us to a conclusion about three types of the side-chain motion. The first motion consists of low amplitude rotations of dihedral angles of polylysine side chains on the nanosecond timescale. The second motion is cis-trans conformational transitions of the side chains with correlation times in the microsecond range for dry polylysine. The third motion is a diffusion of dilating defects described in (W. Nusser, R. Kimmich, and F. Winter, Journal of Physical Chemistry, 1988, Vol. 92, pp. 6808-6814). This diffusion causes almost no reorientation of chemical bonds but leads to a sliding motion of side chains with respect to each other in the nanosecond timescale. This work evidently demonstrates the advantages of the simultaneous quantitative analysis of data obtained from different experiments within the frame of the same mathematical formalism, providing for the detailed description of the nature and geometry of the internal molecular dynamics.
Collapse
|
26
|
Halling PJ. What can we learn by studying enzymes in non-aqueous media? Philos Trans R Soc Lond B Biol Sci 2004; 359:1287-96; discussion 1296-7, 1323-8. [PMID: 15306383 PMCID: PMC1693404 DOI: 10.1098/rstb.2004.1505] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
What is the role of water in enzyme structure and function? One approach to answers should come from studies in which the amount of water present is a variable. In the absence of bulk liquid water, effective monitoring of enzyme action requires an alternative fluid medium through which substrates and products may be transported. The past 20 years have seen quite extensive study of enzyme behaviour when reactants are transferred via a bulk phase that is an organic liquid, a supercritical fluid or a gas. Some lipases, at least, remain highly active with only a few, if any, residual water molecules. Many enzymes seem to require larger amounts of water, but still not a liquid water phase. There are hysteresis effects on both the amount of bound water and the observed catalytic activity. Increasing hydration promotes mobility of the enzyme molecule, as revealed by various techniques, and there are correlations with catalytic activity. There are other plausible roles for hydration, such as opening up proton conduction pathways.
Collapse
Affiliation(s)
- Peter J Halling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK.
| |
Collapse
|
27
|
Daniel RM, Dunn RV, Finney JL, Smith JC. The role of dynamics in enzyme activity. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:69-92. [PMID: 12471064 DOI: 10.1146/annurev.biophys.32.110601.142445] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although protein function is thought to depend on flexibility, precisely how the dynamics of the molecule and its environment contribute to catalytic mechanisms is unclear. We review experimental and computational work relating to enzyme dynamics and function, including the role of solvent. The evidence suggests that fast motions on the 100 ps timescale, and any motions coupled to these, are not required for enzyme function. Proteins where the function is electron transfer, proton tunneling, or ligand binding may have different dynamical dependencies from those for enzymes, and enzymes with large turnover numbers may have different dynamical dependencies from those that turn over more slowly. The timescale differences between the fastest anharmonic fluctuations and the barrier-crossing rate point to the need to develop methods to resolve the range of motions present in enzymes on different time- and lengthscales.
Collapse
Affiliation(s)
- R M Daniel
- Department of Biological Sciences, University of Waikato, Hamilton 2001, New Zealand.
| | | | | | | |
Collapse
|
28
|
Soares CM, Teixeira VH, Baptista AM. Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies. Biophys J 2003; 84:1628-41. [PMID: 12609866 PMCID: PMC1302733 DOI: 10.1016/s0006-3495(03)74972-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Protein structure and dynamics in nonaqueous solvents are here investigated using molecular dynamics simulation studies, by considering two model proteins (ubiquitin and cutinase) in hexane, under varying hydration conditions. Ionization of the protein groups is treated assuming "pH memory," i.e., using the ionization states characteristic of aqueous solution. Neutralization of charged groups by counterions is done by considering a counterion for each charged group that cannot be made neutral by establishing a salt bridge with another charged group; this treatment is more physically reasonable for the nonaqueous situation, contrasting with the usual procedures. Our studies show that hydration has a profound effect on protein stability and flexibility in nonaqueous solvents. The structure becomes more nativelike with increasing values of hydration, up to a certain point, when further increases render it unstable and unfolding starts to occur. There is an optimal amount of water, approximately 10% (w/w), where the protein structure and flexibility are closer to the ones found in aqueous solution. This behavior can explain the experimentally known bell-shaped dependence of enzyme catalysis on hydration, and the molecular reasons for it are examined here. Water and counterions play a fundamental and dynamic role on protein stabilization, but they also seem to be important for protein unfolding at high percentages of bound water.
Collapse
Affiliation(s)
- Cláudio M Soares
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | |
Collapse
|
29
|
|
30
|
Fontes N, Partridge J, Halling PJ, Barreiros S. Zeolite molecular sieves have dramatic acid-base effects on enzymes in nonaqueous media. Biotechnol Bioeng 2002; 77:296-305. [PMID: 11753938 DOI: 10.1002/bit.10138] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Zeolite molecular sieves very commonly are used as in situ drying agents in reaction mixtures of enzymes in nonaqueous media. They often affect enzyme behavior, and this has been interpreted in terms of altered hydration. Here, we show that zeolites can also have dramatic acid-base effects on enzymes in low water media, resulting from their cation-exchange ability. Initial rates of transesterification catalyzed by cross-linked crystals of subtilisin were compared in supercritical ethane, hexane, and acetonitrile with water activity fixed by pre-equilibration. Addition of zeolite NaA (4 A powder) still caused remarkable rate enhancements (up to 20-fold), despite the separate control of hydration. In the presence of excess of an alternative solid-state acid-base buffer, however, zeolite addition had no effect. The more commonly used Merck molecular sieves (type 3 A beads) had similar but somewhat smaller effects. All zeolites have ion-exchange ability and can exchange H+ for cations such as Na+ and K+. These exchanges will tend to affect the protonation state of acidic groups in the protein and, hence, enzymatic activity. Zeolites pre-equilibrated in aqueous suspensions of varying pH-pNa gave very different enzyme activities. Their differing basicities were demonstrated directly by equilibration with an indicator dissolved in toluene. The potential of zeolites as acid-base buffers for low-water media is discussed, and their ability to overcome pH memory is demonstrated.
Collapse
Affiliation(s)
- Nuno Fontes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apt. 127, 2781-901 Oeiras, Portugal.
| | | | | | | |
Collapse
|
31
|
Hansson T, Andersson M, Wehtje E, Adlercreutz P. Influence of water activity on the competition between β-glycosidase-catalysed transglycosylation and hydrolysis in aqueous hexanol. Enzyme Microb Technol 2001. [DOI: 10.1016/s0141-0229(01)00421-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Harper N, Dolman M, Moore BD, Halling PJ. Effect of water activity on the rate profile of subtilisin Carlsberg in toluene in the presence of an organo-soluble acid-base buffer. Enzyme Microb Technol 2001. [DOI: 10.1016/s0141-0229(01)00403-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Griebenow K, Vidal M, Baéz C, Santos AM, Barletta G. Nativelike enzyme properties are important for optimum activity in neat organic solvents. J Am Chem Soc 2001; 123:5380-1. [PMID: 11457414 PMCID: PMC4681493 DOI: 10.1021/ja015889d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K Griebenow
- University of Puerto Rico, Río Piedras Campus Department of Chemistry, P.O. Box 23346 San Juan, Puerto Rico 00931-3346, USA.
| | | | | | | | | |
Collapse
|
34
|
Pencreac'h G, Baratti JC. Comparison of hydrolytic activity in water and heptane for thirty-two commercial lipase preparations. Enzyme Microb Technol 2001; 28:473-479. [PMID: 11240208 DOI: 10.1016/s0141-0229(00)00355-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The protein content and the rates of hydrolysis of p-nitrophenyl palmitate (pNPP) in water (soluble enzyme and emulsified substrate) and in heptane (soluble substrate and insoluble enzyme) were measured for thirty-two commercial lipase preparations. The protein content of the powders varied in a wide range as well as the activity on emulsified pNPP showing the high heterogeneity of the commercial samples. Activity in heptane also varied but to a lesser extent than that in water. There was no direct correlation between activities in water and in heptane as assayed with the same hydrolytic reaction. The ratio of activity in heptane to that in water, R(O/A) ratio, was introduced to characterize activity in organic media. Six lipases showed R(O/A) values higher than 1 demonstrating a higher activity in organic solvent than in water. A linear correlation of R(O/A) with activity in water (log plot) suggested the strong influence of diffusional limitations on activity of solid enzyme suspended in organic solvents.
Collapse
Affiliation(s)
- G Pencreac'h
- Université de la Méditerranée, Faculté des Sciences de Luminy, Biocatalyse et Chimie Fine, CNRS UMR 6111, Marseille, France
| | | |
Collapse
|
35
|
Fontes N, Almeida MC, Garcia S, Peres C, Partridge J, Halling PJ, Barreiros S. Supercritical fluids are superior media for catalysis by cross-linked enzyme microcrystals of subtilisin Carlsberg. Biotechnol Prog 2001; 17:355-8. [PMID: 11312714 DOI: 10.1021/bp000148m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the performance of cross-linked enzyme microcrystals (CLECs) of subtilisin Carlsberg in supercritical fluids (SC-fluids). The catalytic activity of CLECs in SC-ethane was found to be 2- to 10-fold greater than in hexane under the same conditions, using CLECs dried by propanol washing. Air-dried CLECs and lyophilized powders showed much lower activities, reflecting the same hydration hysteresis effects as in organic solvents. Reaction rates were much lower in SC-CO(2), especially at higher water activity, probably as a result of acid-base effects of carbonic acid on the enzyme.
Collapse
Affiliation(s)
- N Fontes
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Apt. 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
36
|
Georgieva DN, Stoeva S, Voelter W, Genov N, Betzel C. Differences in the Specificities of the Highly Alkalophilic Proteinases Savinase and Esperase Imposed by Changes in the Rigidity and Geometry of the Substrate Binding Sites. Arch Biochem Biophys 2001; 387:197-201. [PMID: 11370841 DOI: 10.1006/abbi.2000.2249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Savinase and Esperase are closely related highly alkalophilic proteinases produced by Bacillus lentus. They are suitable couple for investigating the structural basis of proteinase specificity due to the identity of the catalytic and the differences in the substrate binding sites. Two of the substitutions in these sites are very important: T129P and G131P. The two prolines provide an extra rigidity of the Savinase-binding site. The substitutions S166N and Q191T in the S1 recognition loop change the binding geometry of the substrate P1 residue. The geometry of S1 in Esperase is more favorable for binding and catalysis in comparison to that in Savinase. Differences in P3 specificity are probably created by the substitution V104L, which influences the conformation of S3. Leu in position 104 is more favorable for the binding of Phe to S4 than Val. The lower affinity and catalytic efficiency as well as more narrow proteolytic specificity of Savinase in comparison to those of Esperase are explained with the extra rigidity and unfavorable changes in geometry of the substrate binding site of the first enzyme.
Collapse
Affiliation(s)
- D N Georgieva
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia
| | | | | | | | | |
Collapse
|
37
|
Gorbatchuk VV, Ziganshin MA, Mironov NA, Solomonov BN. Homotropic cooperative binding of organic solvent vapors by solid trypsin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1545:326-38. [PMID: 11342057 DOI: 10.1016/s0167-4838(00)00298-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Homotropic cooperative binding was observed at vapor sorption of organic solvents (acetonitrile, propionitrile, ethanol, 1-propanol, 2-propanol, nitroethane) by dried solid trypsin from porcine pancreas (0.05 g H2O/g protein). The vapor sorption isotherms were obtained by the static method of gas chromatographic headspace analysis at 298 K for 'vapor solvent+solid trypsin' systems in the absence of the liquid phase. All isotherms have a sigmoidal shape with significant sorbate uptake only above the threshold of sorbate thermodynamic activity. On the sorption isotherms of non-hydroxylic sorbates the saturation of trypsin by organic solvent was observed above the sorbate threshold activity. The formation of inclusion compounds with phase transition between solvent-free and solvent-saturated trypsin is supposed. Approximation of obtained isotherms by the Hill equation gives the inclusion stoichiometry S, inclusion free energy, and the Hill constant N of clathrates. The inclusion stoichiometry S depends significantly on the size and shape of sorbate molecules and changes from S=31 mol of sorbate per mol of trypsin for ethanol to S=6 for nitroethane. The inclusion free energies determined for the standard states of pure liquid sorbate and infinitely dilute solution in toluene are in the range from -0.5 to -1.2 kJ/mol and from -3.1 to -8.1 kJ/mol, respectively, per 1 mol of sorbate. The Hill constants are relatively high: from N=5.6 for 1-propanol to N approximately equal to 10(3) for nitroethane. The implication of the obtained results for the interpretation of solvent effects on the enzyme activity and stability in low-water medium is discussed.
Collapse
Affiliation(s)
- V V Gorbatchuk
- Department of Chemistry, Kazan State University, Kremlevskaya 18, 420008, Kazan, Russia.
| | | | | | | |
Collapse
|
38
|
Rees DG, Halling PJ. Chemical modification probes accessibility to organic phase: proteins on surfaces are more exposed than in lyophilized powders. Enzyme Microb Technol 2001; 28:282-292. [PMID: 11166823 DOI: 10.1016/s0141-0229(00)00358-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chemical modification of myoglobin and cutinase suspended in n-hexane by acyl chlorides and iodine was monitored by electrospray mass spectrometry. The general rate of modification was always much faster for protein adsorbed to supports (silica or polypropylene) than for lyophilized powders. Modification rates were slower for larger acyl chlorides, particularly with lyophilized powders. About 20% of the protein molecules in lyophilized powders were modified much more quickly than the rest, a fraction consistent with those exposed on the surface of the solid. It appears that access to most of the molecules in lyophilized powders requires a very slow stage of solid-phase diffusion. This has been neglected in previous discussion of mass transfer limitation of lyophilized enzymes in organic media, and would not be revealed by the experimental evidence used to dismiss it. Studies of the effects of particle size and dilution with inactive protein are only sensitive to diffusion in liquid-filled pores, not through the solid phase. Slow solid-phase diffusion is not required for access to most support-adsorbed proteins, which is probably a major contributory factor to their enhanced catalytic efficiency in organic media. Hydration of lyophilized proteins accelerates chemical modification rates, as it does their catalytic activity. The main site of reaction of acyl chlorides in organic media is not amino groups (which are probably ion-paired), but is likely to be hydroxyl groups instead.
Collapse
Affiliation(s)
- D G. Rees
- Departments of Bioscience and Biotechnology and Pure and Applied Chemistry, University of Strathclyde, G1 1XW, Glasgow, UK
| | | |
Collapse
|
39
|
Chemical modification probes accessibility to organic phase: proteins on surfaces are more exposed than in lyophilized powders. Enzyme Microb Technol 2000; 27:549-559. [PMID: 11024517 DOI: 10.1016/s0141-0229(00)00240-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chemical modification of myoglobin and cutinase suspended in n-hexane by acyl chlorides and iodine was monitored by electrospray mass spectrometry. The general rate of modification was always much faster for protein adsorbed to supports (silica or polypropylene) than for lyophilized powders. Modification rates were slower for larger acyl chlorides, particularly with lyophilized powders. About 20% of the protein molecules in lyophilized powders were modified much more quickly than the rest, a fraction consistent with those exposed on the surface of the solid. It appears that access to most of the molecules in lyophilized powders requires a very slow stage of solid-phase diffusion. This has been neglected in previous discussion of mass transfer limitation of lyophilized enzymes in organic media, and would not be revealed by the experimental evidence used to dismiss it. Studies of the effects of particle size and dilution with inactive protein are only sensitive to diffusion in liquid-filled pores, not through the solid phase. Slow solid-phase diffusion is not required for access to most support-adsorbed proteins, which is probably a major contributory factor to their enhanced catalytic efficiency in organic media. Hydration of lyophilized proteins accelerates chemical modification rates, as it does their catalytic activity. The main site of reaction of acyl chlorides in organic media is not amino groups (which are probably ion-paired), but is likely to be hydroxyl groups instead.
Collapse
|
40
|
|
41
|
Abstract
The key role played by counter-ions with enzymes in low-water systems has become better appreciated with, for example, large effects on enantioselectivity. In low-dielectric media, counter-ions will associate strongly with charges in the protein or its substrates. Studies of temperature dependence have shown that hard-to-model entropies have a significant effect on behaviour, including enantioselectivity. Evidence has been presented that the supramolecular organisation of enzyme molecules can have important effects on behaviour, for example collapse of microstructure in cross-linked crystals.
Collapse
Affiliation(s)
- P J Halling
- Department of Chemistry, University of Strathclyde, Glasgow, G1 1XW, UK.
| |
Collapse
|
42
|
|
43
|
Sensitive detection of triazine and phenylurea pesticides in pure organic solvent by enzyme linked immunosorbent assay (ELISA): stabilities, solubilities and sensitivities. Anal Chim Acta 2000. [DOI: 10.1016/s0003-2670(99)00685-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Lakshmikanth GS, Krishnamoorthy G. Solvent-exposed tryptophans probe the dynamics at protein surfaces. Biophys J 1999; 77:1100-6. [PMID: 10423454 PMCID: PMC1300400 DOI: 10.1016/s0006-3495(99)76960-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The dynamics of single tryptophan (W) side chain of protease subtilisin Carlsberg (SC) and myelin basic protein (MBP) were used for probing the surface of these proteins. The W side chains are exposed to the solvent, as shown by the extent of quenching of their fluorescence by KI. Time-resolved fluorescence anisotropy measurements showed that the rotational motion of W is completely unhindered in the case of SC and partially hindered in the case of MBP. The rotational correlation time (phi) associated with the fast local motion of W did not scale linearly with the bulk solvent viscosity (eta) in glycerol-water mixtures. In contrast, phi values of either W side chains in the denatured proteins or the free W scaled almost linearly with eta, as expected by the Stokes-Einstein relationship. These results were interpreted as indicating specific partitioning of water at the surface of the proteins in glycerol-water mixtures.
Collapse
Affiliation(s)
- G S Lakshmikanth
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | | |
Collapse
|
45
|
Abstract
Biocatalysis inherently offers the prospect of clean industrial processing and has become an accepted technology throughout most sectors. The convergence of biology and chemistry has enabled a plethora of industrial opportunities to be targeted, while discoveries in biodiversity and the impact of molecular biology and computational science are extending the range of natural and engineered biocatalysts that can be customised for clean industrial requirements.
Collapse
Affiliation(s)
- A T Bull
- Research School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK.
| | | | | |
Collapse
|