1
|
Barker SA, Bernard AR, Morales Y, Johnson SJ, Dickenson NE. Structural and functional characterization of the IpaD π-helix reveals critical roles in DOC interaction, T3SS apparatus maturation, and Shigella virulence. J Biol Chem 2024; 300:107613. [PMID: 39079629 PMCID: PMC11400957 DOI: 10.1016/j.jbc.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024] Open
Abstract
Shigella spp. are highly pathogenic members of the Enterobacteriaceae family, causing ∼269 million cases of bacillary dysentery and >200,000 deaths each year. Like many Gram-negative pathogens, Shigella rely on their type three secretion system (T3SS) to inject effector proteins into eukaryotic host cells, driving both cellular invasion and evasion of host immune responses. Exposure to the bile salt deoxycholate (DOC) significantly enhances Shigella virulence and is proposed to serve as a critical environmental signal present in the small intestine that prepares Shigella's T3SS for efficient infection of the colonic epithelium. Here, we uncover critical mechanistic details of the Shigella-specific DOC signaling process by describing the role of a π-helix secondary structure element within the T3SS tip protein invasion plasmid antigen D (IpaD). Biophysical characterization and high-resolution structures of IpaD mutants lacking the π-helix show that it is not required for global protein structure, but that it defines the native DOC binding site and prevents off target interactions. Additionally, Shigella strains expressing the π-helix deletion mutants illustrate the pathogenic importance of its role in guiding DOC interaction as flow cytometry and gentamycin protection assays show that the IpaD π-helix is essential for DOC-mediated apparatus maturation and enhanced invasion of eukaryotic cells. Together, these findings add to our understanding of the complex Shigella pathogenesis pathway and its evolution to respond to environmental bile salts by identifying the π-helix in IpaD as a critical structural element required for translating DOC exposure to virulence enhancement.
Collapse
Affiliation(s)
- Samuel A Barker
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Abram R Bernard
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Nicholas E Dickenson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
| |
Collapse
|
2
|
Turbyfill KR, Clarkson KA, Oaks EV, Zurawski DV, Vortherms AR, Kaminski RW. Development of the Shigella flexneri 2a, 3a, 6, and S. sonnei artificial Invaplex (Invaplex AR) vaccines. mSphere 2023; 8:e0007323. [PMID: 37389412 PMCID: PMC10449495 DOI: 10.1128/msphere.00073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023] Open
Abstract
The Shigella artificial invasin complex (InvaplexAR) vaccine is a subunit approach that effectively induces robust immunogenicity directed to serotype-specific lipopolysaccharide and the broadly conserved IpaB and IpaC proteins. One advantage of the vaccine approach is the ability to adjust the constituents to address suboptimal immunogenicity and to change the Shigella serotype targeted by the vaccine. As the vaccine moves through the product development pipeline, substantial modifications have been made to address manufacturing feasibility, acceptability to regulatory authorities, and developing immunogenic and effective products for an expanded list of Shigella serotypes. Modifications of the recombinant clones used to express affinity tag-free proteins using well-established purification methods, changes to detergents utilized in the assembly process, and in vitro and in vivo evaluation of different Invaplex formulations have led to the establishment of a scalable, reproducible manufacturing process and enhanced immunogenicity of Invaplex products designed to protect against four of the most predominant Shigella serotypes responsible for global morbidity and mortality. These adjustments and improvements provide the pathway for the manufacture and clinical testing of a multivalent Invaplex vaccine. IMPORTANCE Shigella species are a major global health concern that cause severe diarrhea and dysentery in children and travelers to endemic areas of the world. Despite significant advancements in access to clean water, the increases in antimicrobial resistance and the risk of post-infection sequelae, including cognitive and physical stunting in children, highlight the urgent need for an efficacious vaccine. One promising vaccine approach, artificial Invaplex, delivers key antigens recognized by the immune system during infection, which results in increased resistance to re-infection. The work presented here describes novel modifications to a previously described vaccine approach resulting in improved methods for manufacturing and regulatory approvals, expansion of the breadth of coverage to all major Shigella serotypes, and an increase in the potency of artificial Invaplex.
Collapse
Affiliation(s)
- K. Ross Turbyfill
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kristen A. Clarkson
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Edwin V. Oaks
- Patuxent Research and Consulting Group, Gambrills, Maryland, USA
| | - Daniel V. Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anthony R. Vortherms
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Robert W. Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
PopB-PcrV Interactions Are Essential for Pore Formation in the Pseudomonas aeruginosa Type III Secretion System Translocon. mBio 2022; 13:e0238122. [PMID: 36154276 PMCID: PMC9600203 DOI: 10.1128/mbio.02381-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) is a syringe-like virulence factor that delivers bacterial proteins directly into the cytoplasm of host cells. An essential component of the system is the translocon, which creates a pore in the host cell membrane through which proteins are injected. In Pseudomonas aeruginosa, the translocation pore is formed by proteins PopB and PopD and attaches to the T3SS needle via the needle tip protein PcrV. The structure and stoichiometry of the multimeric pore are unknown. We took a genetic approach to map contact points within the system by taking advantage of the fact that the translocator proteins of P. aeruginosa and the related Aeromonas hydrophila T3SS are incompatible and cannot be freely exchanged. We created chimeric versions of P. aeruginosa PopB and A. hydrophila AopB to intentionally disrupt and restore protein-protein interactions. We identified a chimeric B-translocator that specifically disrupts an interaction with the needle tip protein. This disruption did not affect membrane insertion of the B-translocator but did prevent formation of the translocation pore, arguing that the needle tip protein drives the formation of the translocation pore. IMPORTANCE Type III secretion systems are integral to the pathogenesis of many Gram-negative bacterial pathogens. A hallmark of these secretion systems is that they deliver effector proteins vectorially into the targeted host cell via a translocation pore. The translocon is crucial for T3SS function, but it has proven difficult to study biochemically and structurally. Here, we used a genetic approach to identify protein-protein contacts among translocator proteins that are important for function. This genetic approach allowed us to specifically break a contact between the translocator PopB and the T3SS needle tip protein PcrV. Breaking this contact allowed us to determine, for the first time, that the needle tip actively participates in the assembly of the translocation pore by the membrane-bound pore-forming translocator proteins. Our study therefore both expands our knowledge of the network of functionally important interactions among translocator proteins and illuminates a new step in the assembly of this critical host cell interface.
Collapse
|
4
|
Baruah N, Ahamad N, Maiti S, Howlader DR, Bhaumik U, Patil VV, Chakrabarti MK, Koley H, Katti DS. Development of a Self-Adjuvanting, Cross-Protective, Stable Intranasal Recombinant Vaccine for Shigellosis. ACS Infect Dis 2021; 7:3182-3196. [PMID: 34734708 DOI: 10.1021/acsinfecdis.1c00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the acquirement of antibiotic resistance, Shigella has resulted in multiple epidemics of shigellosis, an infectious diarrheal disease, causing thousands of deaths per year. Unfortunately, there are no licensed vaccines, primarily due to low or serotype-specific immunogenicity. Thus, conserved subunit vaccines utilizing recombinant invasion plasmid antigens (Ipa) have been explored as cross-protective vaccine candidates. However, achieving cross-protection against Shigella dysenteriae 1, which caused multiple pandemics/epidemics in the recent past, has been difficult. Therefore, a rational approach to improve cross-protection in the preparation for a possible pandemic should involve conserved proteins from S. dysenteriae 1 (Sd1). IpaC is one such conserved immunogenic protein that is less explored as an independent vaccine due to its instability/aggregation. Therefore, to improve cross-protection and potential immunogenicity and to be prepared for a future epidemic/pandemic, herein, we stabilized recombinant Sd1 IpaC, expressed without its chaperone, using a previously reported stabilizing detergent (LDAO) in a modified protocol and assessed its vaccine potential without an adjuvant. The protein assembled into heterogeneous complex spherical structures in the presence of LDAO and showed improved stability at storage temperatures of -80, -20, 4, 25, and 37 °C while providing enhanced yield and concentration. The protein could also be stably lyophilized and reconstituted, increasing the convenience of transportation and storage. Upon intranasal administration in BALB/c mice, the stabilized-IpaC-immunized groups generated significant antibody response and were not only protected against a high intraperitoneal dose of homologous S. dysenteriae 1 but also showed 100% survival against heterologous Shigella flexneri 2a without an adjuvant, while the control animals showed visible diarrhea (bloody-Sd1 challenge), lethargy, and weight loss with 0% survival. Overall, this work demonstrates that stabilized IpaC can be explored as a minimalist, self-adjuvanting, cross-protective, intranasal, single-antigen Shigella vaccine.
Collapse
Affiliation(s)
- Namrata Baruah
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Nadim Ahamad
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Debaki R. Howlader
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Ushasi Bhaumik
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Vinod V. Patil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Manoj K. Chakrabarti
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Dhirendra S. Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
5
|
Assembly, Biochemical Characterization, Immunogenicity, Adjuvanticity, and Efficacy of Shigella Artificial Invaplex. mSphere 2018; 3:mSphere00583-17. [PMID: 29600284 PMCID: PMC5874444 DOI: 10.1128/msphere.00583-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/02/2018] [Indexed: 11/20/2022] Open
Abstract
The native Invaplex (InvaplexNAT) vaccine and adjuvant is an ion exchange-purified product derived from the water extract of virulent Shigella species. The key component of InvaplexNAT is a high-molecular-mass complex (HMMC) consisting of the Shigella lipopolysaccharide (LPS) and the invasin proteins IpaB and IpaC. To improve product purity and immunogenicity, artificial Invaplex (InvaplexAR) was developed using recombinant IpaB and IpaC proteins and purified Shigella LPS to assemble an HMMC consisting of all three components. Characterization of InvaplexAR by various methods demonstrated similar characteristics as the previously reported HMMC in InvaplexNAT. The well-defined InvaplexAR vaccine consistently contained greater quantities of IpaB, IpaC, and LPS than InvaplexNAT. InvaplexAR and InvaplexNAT immunogenicities were compared in mouse and guinea pig dose escalation studies. In both models, immunization induced antibody responses specific for InvaplexNAT and LPS while InvaplexAR induced markedly higher anti-IpaB and -IpaC serum IgG and IgA endpoint titers. In the murine model, homologous protection was achieved with 10-fold less InvaplexAR than InvaplexNAT and mice receiving InvaplexAR lost significantly less weight than mice receiving the same amount of InvaplexNAT. Moreover, mice immunized with InvaplexAR were protected from challenge with both homologous and heterologous Shigella serotypes. Guinea pigs receiving approximately 5-fold less InvaplexAR compared to cohorts immunized with InvaplexNAT were protected from ocular challenge. Furthermore, adjuvanticity previously attributed to InvaplexNAT was retained with InvaplexAR. The second-generation Shigella Invaplex vaccine, InvaplexAR, offers significant advantages over InvaplexNAT in reproducibility, flexible yet defined composition, immunogenicity, and protective efficacy. IMPORTANCEShigella species are bacteria that cause severe diarrheal disease worldwide, primarily in young children. Treatment of shigellosis includes oral fluids and antibiotics, but the high burden of disease, increasing prevalence of antibiotic resistance, and long-term health consequences clearly warrant the development of an effective vaccine. One Shigella vaccine under development is termed the invasin complex or Invaplex and is designed to drive an immune response to specific antigens of the bacteria in an effort to protect an individual from infection. The work presented here describes the production and evaluation of a new generation of Invaplex. The improved vaccine stimulates the production of antibodies in immunized mice and guinea pigs and protects these animals from Shigella infection. The next step in the product's development will be to test the safety and immune response induced in humans immunized with Invaplex.
Collapse
|
6
|
Detergent Isolation Stabilizes and Activates the Shigella Type III Secretion System Translocator Protein IpaC. J Pharm Sci 2016; 105:2240-8. [PMID: 27297397 DOI: 10.1016/j.xphs.2016.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023]
Abstract
Shigella rely on a type III secretion system as the primary virulence factor for invasion and colonization of human hosts. Although there are an estimated 90 million Shigella infections, annually responsible for more than 100,000 deaths worldwide, challenges isolating and stabilizing many type III secretion system proteins have prevented a full understanding of the Shigella invasion mechanism and additionally slowed progress toward a much needed Shigella vaccine. Here, we show that the non-denaturing zwitterionic detergent N, N-dimethyldodecylamine N-oxide (LDAO) and non-ionic detergent n-octyl-oligo-oxyethylene efficiently isolated the hydrophobic Shigella translocator protein IpaC from the co-purified IpaC/IpgC chaperone-bound complex. Both detergents resulted in monomeric IpaC that exhibits strong membrane binding and lysis characteristics while the chaperone-bound complex does not, suggesting that the stabilizing detergents provide a means of following IpaC "activation" in vitro. Additionally, biophysical characterization found that LDAO provides significant thermal and temporal stability to IpaC, protecting it for several days at room temperature and brief exposure to temperatures reaching 90°C. In summary, this work identified and characterized conditions that provide stable, membrane active IpaC, providing insight into key interactions with membranes and laying a strong foundation for future vaccine formulation studies taking advantage of the native immunogenicity of IpaC and the stability provided by LDAO.
Collapse
|
7
|
Kim HG, Kim BH, Kim JS, Eom JS, Bang IS, Bang SH, Lee IS, Park YK. N-terminal residues of SipB are required for its surface localization on Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2008; 154:207-216. [PMID: 18174139 DOI: 10.1099/mic.0.2007/011528-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SipB, one of the invasion proteins encoded in Salmonella pathogenicity island 1 (SPI-1), is known to be secreted outside the cell, where it functions as a translocon by assembling into a host-cell plasma membrane-integral structure. Here, we confirmed that wild-type SipB could be localized to the bacterial outer membrane, and further showed that its localization was dependent on extracellular secretion, and was independent of the presence of the SipD protein. Proteinase K susceptibility and immunofluorescence assays indicated that SipB was not incorporated into the outer membrane, but rather was displayed on the bacterial surface. Finally, mutation studies revealed that the N-terminal 100-140 aa (especially amino acids 135-138) of SipB were required for its localization on the bacterial outer membrane.
Collapse
Affiliation(s)
- Hyeon Guk Kim
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Bae Hoon Kim
- Institute of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.,Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jin Seok Kim
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jeong Seon Eom
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Iel-Soo Bang
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwang ju 501-759, Republic of Korea
| | - Seong Ho Bang
- Department of Biological Science, Hanseo University, Seosan 356-706, Republic of Korea
| | - In Soo Lee
- Department of Microbiology, Hannam University, DaeJeon 300-791, Republic of Korea
| | - Yong Keun Park
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
8
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 414] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
9
|
Immunogenicity and efficacy of highly purified invasin complex vaccine from Shigella flexneri 2a. Vaccine 2008; 26:1353-64. [PMID: 18276045 DOI: 10.1016/j.vaccine.2007.12.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 12/13/2007] [Accepted: 12/19/2007] [Indexed: 11/20/2022]
Abstract
Development of a subunit vaccine for shigellosis requires identification of protective antigens and delivering these antigens in a manner that stimulates immunity comparable to that induced by natural infection. The Shigella invasin complex (Invaplex) vaccine is an ion-exchange-purified extract from virulent Shigella that consists of LPS and several other proteins, including the invasins IpaB and IpaC. Intranasal delivery of Invaplex stimulates protective immunity in small animal models for shigellosis. To identify the active component(s) of Invaplex responsible for its immunogenicity and efficacy, size-exclusion chromatography (SEC) was used to separate Invaplex into several different fractions. A high-molecular mass complex with a molecular mass between 669 MDa and 2 MDa consisted primarily of LPS, IpaB and IpaC and was considered to be a highly purified (HP) form of Invaplex. Using the mouse lung model to evaluate the immunogenicity and efficacy of the SEC fractions it was clearly demonstrated that the high-molecular mass complex of the invasins and LPS was responsible for the protective capacity of parent native Invaplex. Other smaller mass SEC fractions were mostly non-immunogenic and did not stimulate solid protection. In guinea pigs, the HP Invaplex stimulated an enhanced immune response as compared to the parent Invaplex and was fully protective. Isolation and characterization of the immunogenic and protective moiety within Invaplex will allow better standardization of the Invaplex product and may allow future development of an Invaplex assembled from purified components.
Collapse
|
10
|
Sani M, Botteaux A, Parsot C, Sansonetti P, Boekema EJ, Allaoui A. IpaD is localized at the tip of the Shigella flexneri type III secretion apparatus. Biochim Biophys Acta Gen Subj 2007; 1770:307-11. [PMID: 17110044 DOI: 10.1016/j.bbagen.2006.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/03/2006] [Accepted: 10/11/2006] [Indexed: 12/23/2022]
Abstract
Type III secretion (T3S) systems are used by numerous Gram-negative pathogenic bacteria to inject virulence proteins into animal and plant host cells. The core of the T3S apparatus, known as the needle complex, is composed of a basal body transversing both bacterial membranes and a needle protruding above the bacterial surface. In Shigella flexneri, IpaD is required to inhibit the activity of the T3S apparatus prior to contact of bacteria with host and has been proposed to assist translocation of bacterial proteins into host cells. We investigated the localization of IpaD by electron microscopy analysis of cross-linked bacteria and mildly purified needle complexes. This analysis revealed the presence of a distinct density at the needle tip. A combination of single particle analysis, immuno-labeling and biochemical analysis, demonstrated that IpaD forms part of the structure at the needle tip. Anti-IpaD antibodies were shown to block entry of bacteria into epithelial cells.
Collapse
Affiliation(s)
- Musa Sani
- Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Picking WL, Nishioka H, Hearn PD, Baxter MA, Harrington AT, Blocker A, Picking WD. IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect Immun 2005; 73:1432-40. [PMID: 15731041 PMCID: PMC1064949 DOI: 10.1128/iai.73.3.1432-1440.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Shigella flexneri causes human dysentery after invading the cells of the colonic epithelium. The best-studied effectors of Shigella entry into colonocytes are the invasion plasmid antigens IpaC and IpaB. These proteins are exported via a type III secretion system (TTSS) to form a pore in the host membrane that may allow the translocation of other effectors into the host cytoplasm. TTSS-mediated secretion of IpaD is also required for translocation pore formation, bacterial invasion, and virulence, but the mechanistic role of this protein is unclear. IpaD is also known to be involved in controlling Ipa protein secretion, but here it is shown that this activity can be separated from its requirement for cellular invasion. Amino acids 40 to 120 of IpaD are not essential for IpaD-dependent invasion; however, deletions in this region still lead to constitutive IpaB/IpaC secretion. Meanwhile, a central deletion causes only a partial loss of control of Ipa secretion but completely eliminates IpaD's invasion function, indicating that IpaD's role in invasion is not a direct outcome of its ability to control Ipa secretion. As shigellae expressing ipaD N-terminal deletion mutations have reduced contact-mediated hemolysis activity and are less efficient at introducing IpaB and IpaC into erythrocyte membranes, it is possible that IpaD is responsible for insertion of IpaB/IpaC pores into target cell membranes. While efficient insertion of IpaB/IpaC pores is needed for optimal invasion efficiency, it may be especially important for Ipa-dependent membrane disruption and thus for efficient vacuolar escape and intercellular spread.
Collapse
Affiliation(s)
- Wendy L Picking
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Type III protein secretion mechanism in mammalian and plant pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:181-206. [PMID: 15546666 DOI: 10.1016/j.bbamcr.2004.03.011] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 03/26/2004] [Accepted: 03/26/2004] [Indexed: 01/12/2023]
Abstract
The type III protein secretion system (TTSS) is a complex organelle in the envelope of many Gram-negative bacteria; it delivers potentially hundreds of structurally diverse bacterial virulence proteins into plant and animal cells to modulate host cellular functions. Recent studies have revealed several basic features of this secretion system, including assembly of needle/pilus-like secretion structures, formation of putative translocation pores in the host membrane, recognition of N-terminal/5' mRNA-based secretion signals, and requirement of small chaperone proteins for optimal delivery and/or expression of effector proteins. Although most of our knowledge about the TTSS is derived from studies of mammalian pathogenic bacteria, similar and unique features are learned from studies of plant pathogenic bacteria. Here, we summarize the most salient aspects of the TTSS, with special emphasis on recent findings.
Collapse
|
13
|
Miki T, Okada N, Shimada Y, Danbara H. Characterization of Salmonella pathogenicity island 1 type III secretion-dependent hemolytic activity in Salmonella enterica serovar Typhimurium. Microb Pathog 2004; 37:65-72. [PMID: 15312846 DOI: 10.1016/j.micpath.2004.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 04/30/2004] [Indexed: 12/24/2022]
Abstract
A number of bacteria that are pathogenic for animals and plants possess a type III secretion system (TTSS) to translocate virulence-associated proteins into host cells. In several bacteria, it has been reported that the TTSS is correlated with an ability to cause contact-dependent hemolysis in vitro. Here, we showed that the Salmonella enterica serovar Typhimurium strain SL1344 exhibited Salmonella pathogenicity island 1 type III secretion-dependent, contact-mediated, hemolytic activity. Mutations with a single deletion in genes encoding putative pore-forming proteins, SipB and SipC, secreted by the TTSS abolished hemolytic activity. In addition, the osmoprotection studies revealed that molecules larger than PEG2000 conferred significant protection against lysis induced by Salmonella. These results indicate that the hemolysis generated by Salmonella is due to the formation of pores within the erythrocyte membrane.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo 108-8641, Japan
| | | | | | | |
Collapse
|
14
|
Yao X, Wang HL, Shi ZX, Yan XY, Feng EL, Yang BL, Huang LY. Identification of RanBMP interacting with Shigella flexneri IpaC invasin by two-hybrid system of yeast. World J Gastroenterol 2003; 9:1347-51. [PMID: 12800254 PMCID: PMC4611814 DOI: 10.3748/wjg.v9.i6.1347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Bacillary dysentery caused by Shigella flexneri is still a threat to human health. Of four invasion plasmid antigen proteins (IpaA, B, C and D), IpaC plays an important role in the pathogenicity of this pathogen. The purpose of this study was to investigate the proteins interacting with IpaC in the host cell during the pathogenic process of this disease.
METHODS: By applying two-hybrid system, the bait plasmid containing ipaC gene was constructed and designated pGBKT-ipaC. The bait plasmid was transformed AH109, and proved to express IpaC and then HeLa cDNA library plasmids were introduced into the above transformed AH109. The transformation mixture was plated on medium lacking Trp, Leu, and His in the initial screen, then restreaked on medium lacking Trp, Leu, His and Ade. Colonies growing on the selection medium were further assayed for β-galactosidase activity. BLAST was carried out in the database after sequencing the inserted cDNA of the positive library plasmid.
RESULTS: Among the 2 × 106 transformants, 64 positive clones were obtained as determined by activation of His, Ade and LacZ reporter genes. Sequence analysis revealed that cDNA inserts of two colonies were highly homologous to a known human protein, RanBPM.
CONCLUSION: These results provide evidence that IpaC may be involved in the invasion process of S. flexneri by interacting with RanBPM, and RanBPM is most likely to be the downstream target of IpaC in the cascade events of S. flexneri infection.
Collapse
Affiliation(s)
- Xiao Yao
- College of Environmental and Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Harrington AT, Hearn PD, Picking WL, Barker JR, Wessel A, Picking WD. Structural characterization of the N terminus of IpaC from Shigella flexneri. Infect Immun 2003; 71:1255-64. [PMID: 12595440 PMCID: PMC148864 DOI: 10.1128/iai.71.3.1255-1264.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 10/30/2002] [Accepted: 12/04/2002] [Indexed: 01/08/2023] Open
Abstract
The primary effector for Shigella invasion of epithelial cells is IpaC, which is secreted via a type III secretion system. We recently reported that the IpaC N terminus is required for type III secretion and possibly other functions. In this study, mutagenesis was used to identify an N-terminal secretion signal and to determine the functional importance of the rest of the IpaC N terminus. The 15 N-terminal amino acids target IpaC for secretion by Shigella flexneri, and placing additional amino acids at the N terminus does not interfere with IpaC secretion. Furthermore, amino acid sequences with no relationship to the native IpaC secretion signal can also direct its secretion. Deletions introduced beyond amino acid 20 have no effect on secretion and do not adversely affect IpaC function in vivo until they extend beyond residue 50, at which point invasion function is completely eliminated. Deletions introduced at amino acid 100 and extending toward the N terminus reduce IpaC's invasion function but do not eliminate it until they extend to the N-terminal side of residue 80, indicating that a region from amino acid 50 to 80 is critical for IpaC invasion function. To explore this further, the ability of an IpaC N-terminal peptide to associate in vitro with its translocon partner IpaB and its chaperone IpgC was studied. The N-terminal peptide binds tightly to IpaB, but the IpaC central hydrophobic region also appears to participate in this binding. The N-terminal peptide also associates with the chaperone IpgC and IpaB is competitive for this interaction. Based on additional biophysical data, we propose that a region between amino acids 50 and 80 is required for chaperone binding, and that the IpaB binding domain is located downstream from, and possibly overlapping, this region. From these data, we propose that the secretion signal, chaperone binding region, and IpaB binding domain are located at the IpaC N terminus and are essential for presentation of IpaC to host cells during bacterial entry; however, IpaC effector activity may be located elsewhere.
Collapse
Affiliation(s)
- Amanda T Harrington
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kueltzo LA, Osiecki J, Barker J, Picking WL, Ersoy B, Picking WD, Middaugh CR. Structure-function analysis of invasion plasmid antigen C (IpaC) from Shigella flexneri. J Biol Chem 2003; 278:2792-8. [PMID: 12427760 DOI: 10.1074/jbc.m208383200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Shigella flexneri causes a self-limiting gastroenteritis in humans, characterized by severe localized inflammation and ulceration of the colonic mucosa. Shigellosis most often targets young children in underdeveloped countries. Invasion plasmid antigen C (IpaC) has been identified as the primary effector protein for Shigella invasion of epithelial cells. Although an initial model of IpaC function has been developed, no detailed structural information is available that could assist in a better understanding of the molecular basis for its interactions with the host cytoskeleton and phospholipid membrane. We have therefore initiated structural studies of IpaC, IpaC I', (residues 101-363 deleted), and IpaC Delta H (residues 63-170 deleted). The secondary and tertiary structure of the protein was examined as a function of temperature, employing circular dichroism and high resolution derivative absorbance techniques. ANS (8-anilino-1-napthalene sulfonic acid) was used to probe the exposure of the hydrophobic surfaces under different conditions. The interaction of IpaC and these mutants with a liposome model (liposomes with entrapped fluorescein) was also examined. Domain III (residues 261-363) was studied using linker-scanning mutagenesis. It was shown that domain III contains periodic, sequence-dependent activity, suggesting helical structure in this section of the protein. In addition to these structural studies, investigation into the actin nucleation properties of IpaC was conducted, and actin nucleation by IpaC and some of the mutants was exhibited. Structure-function relationships of IpaC are discussed.
Collapse
Affiliation(s)
- Lisa A Kueltzo
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Delahay RM, Frankel G. Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol Microbiol 2002; 45:905-16. [PMID: 12180912 DOI: 10.1046/j.1365-2958.2002.03083.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pathogenic potential of many Gram-negative bacteria is indicated by the possession of a specialized type III secretion system that is used to deliver virulence effector proteins directly into the cellular environment of the eukaryotic host. Extracellular assemblies of secreted proteins contrive a physical link between the pathogen and host cytosol and enable the translocated effectors to bypass the bacterial and host membranes in a single step. Subsequent interactions of some effector proteins with host cytoskeletal and signalling proteins result in modulation of the cytoskeletal architecture of the aggressed cell and facilitate entry, survival and dissemination of the pathogen. Although the secreted components of type III secretion systems are diverse, many are predicted to share a common coiled-coil structural feature. Coiled-coils are ubiquitous and highly versatile assembly motifs found in a wide range of structural and regulatory proteins. The prevalence of these domains in secreted virulence effector proteins suggests a fundamental contribution to multiple aspects of their function, and evidence accumulating from functional studies suggests an intrinsic involvement of coiled-coils in subunit assembly, translocation and flexible interactions with multiple bacterial and host proteins. The known functional flexibility that coiled-coil domains confer upon proteins provides insights into some of the pathogenic mechanisms used during interaction with the host.
Collapse
Affiliation(s)
- Robin M Delahay
- Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London, UK.
| | | |
Collapse
|
18
|
Abstract
Many Gram-negative plant and animal pathogenic bacteria use a specialized type III secretion system (TTSS) as a molecular syringe to inject effector proteins directly into the host cell. Protein translocation across the eukaryotic host cell membrane is presumably mediated by a bacterial translocon. The structure of this predicted transmembrane complex and the mechanism of transport are far from being understood. In bacterial pathogens of animals, several putative type III secretion translocon proteins (TTPs) have been identified. Interestingly, TTP sequences are not conserved among different bacterial species, however, there are structural similarities such as transmembrane segments and coiled-coil regions. Accumulating evidence suggests that TTPs are components of oligomeric protein channels that are inserted into the host cell membrane by the TTSS.
Collapse
Affiliation(s)
- Daniela Büttner
- Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099 (Saale), Halle, Germany.
| | | |
Collapse
|
19
|
Hatic SO, Picking WL, Young BM, Young GM, Picking WD. Purification and characterization of two active derivatives of recombinant YplA, a secreted phospholipase from Yersinia entercolitica. Biochem Biophys Res Commun 2002; 292:463-7. [PMID: 11906185 DOI: 10.1006/bbrc.2002.6690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The virulence-associated phospholipase of Yersinia enterocolitica (YplA), which is secreted by a flagellar type III secretion system, was cloned and purified for structure-function analysis using a His(6)-tag expression system. Two versions of YplA have been proposed on the basis of two potential initiating methionine residues. The longer derivative possesses 59 additional amino acids at its N-terminus and appears to represent the native form of YplA; however, the shorter recombinant protein possesses enhanced activity in vitro. Both recombinant YplA derivatives are highly active as type-A(2) phospholipases and possess similar physical properties. Based on type III secretion substrates from other gram-negative bacteria, the N-terminus of YplA is probably required as a secretion signal; however, differences in the time-based activity of these two recombinant enzymes, the N-terminus of YplA may also have a regulatory function.
Collapse
Affiliation(s)
- Safet O Hatic
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | |
Collapse
|
20
|
Page AL, Fromont-Racine M, Sansonetti P, Legrain P, Parsot C. Characterization of the interaction partners of secreted proteins and chaperones of Shigella flexneri. Mol Microbiol 2001; 42:1133-45. [PMID: 11737652 DOI: 10.1046/j.1365-2958.2001.02715.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The type III secretion (TTS) system of Gram-negative pathogenic bacteria is composed of proteins that assemble into the TTS machinery, proteins that are secreted by this machinery and specific chaperones that are required for storage and sometimes secretion of these proteins. Many sequential protein interactions are involved in the TTS pathway to deliver effector proteins to host cells. We used the yeast two-hybrid system to investigate the interaction partners of the Shigella flexneri effectors and chaperones. Libraries of preys containing random fusions with fragments of the TTS proteins were screened using effectors and chaperones as baits. Interactions between the effectors IpaB and IpaC and their chaperone IpgC were detected by this method, and interaction domains were identified. Using a His-tagged IpgC protein to co-purify truncated IpaB and IpaC proteins, we showed that the chaperone-binding domain was unique and located in the N-terminus of these proteins. This domain was not required for the secretion of recombinant proteins but was involved in the stability of IpaC and instability of IpaB. Homotypic interactions were identified with the baits IpaA, IpaB and IpaC. Interactions between effectors and components of the TTS machinery were also selected that might give insights into regulation of the TTS process.
Collapse
Affiliation(s)
- A L Page
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
21
|
Osiecki JC, Barker J, Picking WL, Serfis AB, Berring E, Shah S, Harrington A, Picking WD. IpaC from Shigella and SipC from Salmonella possess similar biochemical properties but are functionally distinct. Mol Microbiol 2001; 42:469-81. [PMID: 11703668 DOI: 10.1046/j.1365-2958.2001.02654.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Invasion plasmid antigen C (IpaC) is secreted via the type III secretion system (TTSS) of Shigella flexneri and serves as an essential effector molecule for epithelial cell invasion. The only homologue of IpaC identified thus far is Salmonella invasion protein C (SipC/SspC), which is essential for enterocyte invasion by Salmonella typhimurium. To explore the biochemical and functional relatedness of IpaC and SipC, recombinant derivatives of both proteins were purified so that their in vitro biochemical properties could be compared. Both proteins were found to: (i) enhance the entry of wild-type S. flexneri and S. typhimurium into cultured cells; (ii) interact with phospholipid membranes; and (iii) oligomerize in solution; however, IpaC appeared to be more efficient in carrying out several of the biochemical properties examined. Overall, the data indicate that purified IpaC and SipC are biochemically similar, although not identical with respect to their in vitro activities. To extend these observations, complementation analyses were conducted using S. flexneri SF621 and S. typhimurium SB220, neither of which is capable of invading epithelial cells because of non-polar null mutations in ipaC and sipC respectively. Interestingly, both ipaC and sipC restored invasiveness to SB220 whereas only ipaC restored invasiveness to SF621, suggesting that SipC lacks an activity possessed by IpaC. This functional difference is not at the level of secretion because IpaC and SipC are both secreted by SF621 and it does not appear to be because of SipC dependency on this native chaperone as coexpression of sipC and sicA in SF621 still failed to restore detectable invasiveness. Taken together, the data suggest that IpaC and SipC differ in either their ability to be translocated into host cells or in their function as effectors of host cell invasion. Because IpaB shares significant sequence homology with the YopB translocator of Yersinia species, the ability for IpaC and SipC to associate with this protein was explored as a potential indicator of translocation function. Both proteins were found to bind to purified IpaB with an apparent dissociation constant in the nanomolar range, suggesting that they may differ with respect to effector function. Interestingly, whereas SB220 expressing sipC behaved like wild-type Salmonella, in that it remained within its membrane-bound vacuole following entry into host cells, SB220 expressing ipaC was found in the cytoplasm of host cells. This observation indicates that IpaC and SipC are responsible for a major difference in the invasion strategies of Shigella and Salmonella, that is, they escape into the host cell cytoplasm. The implications of the role of each protein's biochemistry relative to its in vivo function is discussed.
Collapse
Affiliation(s)
- J C Osiecki
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Drabner B, Guzmán CA. Elicitation of predictable immune responses by using live bacterial vectors. BIOMOLECULAR ENGINEERING 2001; 17:75-82. [PMID: 11222981 DOI: 10.1016/s1389-0344(00)00072-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is an increasing need for novel vaccines able to stimulate efficient and long-lasting responses, which have also low production costs. To confer protective immunity following vaccination, the adequate type of response should be elicited. Vaccines based on attenuated bacterial carriers have contained production and delivery costs, and are able to stimulate more potent immune responses than non-replicating formulations. The improved knowledge on carrier physiology and host response, the availability of different mutants and highly sophisticated expression tools, and the possibility of co-administering modulators enable to trigger predictable responses according to the specific needs. Recent studies support the use of attenuated bacteria not only as conventional carriers, but also as a delivery system for DNA vaccines against infectious agents and tumors. In this review we discuss the most widely used bacterial carrier systems for either antigens or nucleic acid vaccines, and the strategies which have been successfully exploited to modulate the immune responses elicited.
Collapse
Affiliation(s)
- B Drabner
- Vaccine Research Group, Division of Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124, Braunschweig, Germany
| | | |
Collapse
|
23
|
Picking WL, Coye L, Osiecki JC, Barnoski Serfis A, Schaper E, Picking WD. Identification of functional regions within invasion plasmid antigen C (IpaC) of Shigella flexneri. Mol Microbiol 2001; 39:100-11. [PMID: 11123692 DOI: 10.1046/j.1365-2958.2001.02210.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Shigella flexneri causes bacillary dysentery with symptoms resulting from the inflammation that accompanies bacterial entry into the cells of the colonic epithelium. The effectors of S. flexneri invasion are the Ipa proteins, particularly IpaB and IpaC, which are secreted at the host-pathogen interface following bacterial contact with a host cell. Of the purified Ipa proteins, only IpaC has been shown to possess quantifiable in vitro activities that are related to cellular invasion. In this study, ipaC deletion mutants were generated to identify functional regions within the IpaC protein. From these data, we now know that the N-terminus and an immunogenic central region are not required for IpaC-dependent enhancement of cellular invasion by S. flexneri. However, to restore invasiveness to an ipaC null mutant of S. flexneri, the N-terminus is essential, because IpaC mutants lacking the N-terminus are not secreted by the bacterium. Deletion of the central hydrophobic region eliminates IpaC's ability to interact with phospholipid membranes, and fusion of this region to a modified form of green fluorescent protein converts it into an efficient membrane-associating protein. Meanwhile, deletion of the C-terminus eliminates the mutant protein's ability to establish protein-protein contacts with full-length IpaC. Interestingly, the mutant form of ipaC that restores partial invasiveness to the S. flexneri ipaC null mutant also restores full contact-mediated haemolysis activity to this bacterium. These data support a model in which IpaC possesses a distinct functional organization that is important for bacterial invasion. This information will be important in defining the precise role of IpaC in S. flexneri pathogenesis and in exploring the potential effects of purified IpaC at mucosal surfaces.
Collapse
Affiliation(s)
- W L Picking
- Department of Molecular Biosciences, University of Kansas, 8047 Haworth, Lawrence, KS 66045, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Tran N, Serfis AB, Osiecki JC, Picking WL, Coye L, Davis R, Picking WD. Interaction of Shigella flexneri IpaC with model membranes correlates with effects on cultured cells. Infect Immun 2000; 68:3710-5. [PMID: 10816532 PMCID: PMC97663 DOI: 10.1128/iai.68.6.3710-3715.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasion of enterocytes by Shigella flexneri requires the properly timed release of IpaB and IpaC at the host-pathogen interface; however, only IpaC has been found to possess quantifiable activities in vitro. We demonstrate here that when added to cultured cells, purified IpaC elicits cytoskeletal changes similar to those that occur during Shigella invasion. This IpaC effect may correlate with its ability to interact with model membranes at physiological pH and to promote entry by an ipaC mutant of S. flexneri.
Collapse
Affiliation(s)
- N Tran
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|