1
|
Yari M, Eidi M, Omrani MA, Fazeli Z, Rahmanian M, Ghafouri-Fard S. Comprehensive identification of hub mRNAs and lncRNAs in colorectal cancer using galaxy: an in silico transcriptome analysis. Discov Oncol 2025; 16:282. [PMID: 40056245 DOI: 10.1007/s12672-025-02026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/03/2025] [Indexed: 03/10/2025] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality. Using the Galaxy platform, the present study aimed to assess the differentially expressed genes (DEGs) in CRC patients. The expression data was obtained from the Gene Expression Omnibus database (GSE137327). DEGs were analyzed using Gene Ontology (GO) and GeneMANIA databases to detect the most critical biological pathways and processes. Protein-Protein Interaction Studies (PPIS) identified four hub genes (CCN1, CCL2, FLNC, MYH11). This article presents findings on three mRNAs (CEMIP, MMP7, and DPEP1) and also two notable lncRNAs, EVADR and DLX6-AS1, that have an impact on CRC pathogenesis and play a role in the epithelial-mesenchymal transition in tumor cells. The identified genes and lncRNAs are putative therapeutic targets and diagnostic markers. For instance, CRISPR/Cas9 editing systems can be designed in order to modulate expression of these genes, or edit them for the purpose of inducing sensitivity to conventional therapies. Besides, these genes can be incorporated into clinical prognostic models, offering panels of genes to choose appropriate personalized methods of treatment. Together, these genes represent novel markers and possible therapeutic targets for CRC.
Collapse
Affiliation(s)
- Mohsen Yari
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Milad Eidi
- The Endocrine Genetics Laboratory, Child Health and Human Development Program and Department of Pediatrics, Mcgill University Health Centre Research Institute, Montreal, QC, Canada
| | - Mohammad-Amin Omrani
- Urology and Nephrology Research Center (UNRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fazeli
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmanian
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
E.S K, A.K Z, M.Yu S, K.I P, N.L R, E.G N, K.S S, A.A K, T.L V, A.S M, E.N M, T.M P, E.S V, A.A K. Distinct molecular features of FLNC mutations, associated with different clinical phenotypes. Cytoskeleton (Hoboken) 2025; 82:158-174. [PMID: 39315490 PMCID: PMC11904857 DOI: 10.1002/cm.21922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Filamin С is a key an actin-binding protein of muscle cells playing a critical role in maintaining structural integrity and sarcomere organization. FLNC mutations contribute to various types of cardiomyopathies and myopathies through potentially different molecular mechanisms. Here, we described the impact of two clinically distinct FLNC variants (R1267Q associated with arrhythmogenic cardiomyopathy and V2264M associated with restrictive cardiomyopathy) on calcium homeostasis, electrophysiology, and gene expression profile of iPSC-derived patient-specific cardiomyocytes. We demonstrated that R1267Q FLNC variant leads to greater disturbances in calcium dynamics, Nav1.5 kinetics and action potentials compared to V2264M variant. These functional characteristics were accompanied by transcriptome changes in genes linked to action potential and sodium transport as well as structural cardiomyocyte genes. We suggest distinct molecular effects of two FLNC variants linked to different types of cardiomyopathies in terms of myofilament structure, electrophysiology, ion channel function and intracellular calcium homeostasis providing the molecular the bases for their different clinical phenotypes.
Collapse
Affiliation(s)
- Klimenko E.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Zaytseva A.K
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Sorokina M.Yu
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Perepelina K.I
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Rodina N.L
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Nikitina E.G
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Sukhareva K.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Khudiakov A.A
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Vershinina T.L
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Muravyev A.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Mikhaylov E.N
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Pervunina T.M
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Vasichkina E.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Kostareva A.A
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
- Karolinska Institutet, Department of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| |
Collapse
|
3
|
Chatzifrangkeskou M, Stanly T, Koennig D, Campos-Soares L, Eyres M, Hasson A, Perdiou A, Vendrell I, Fischer R, Das S, Gardner S, Go S, Futcher B, Newton A, Skourides P, Szele F, O’Neill E. ATR-hippo drives force signaling to nuclear F-actin and links mechanotransduction to neurological disorders. SCIENCE ADVANCES 2025; 11:eadr5683. [PMID: 39951537 PMCID: PMC11827640 DOI: 10.1126/sciadv.adr5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
The mechanical environment is sensed through cell-matrix contacts with the cytoskeleton, but how signals transit the nuclear envelope to affect cell fate decisions remains unknown. Nuclear actin coordinates chromatin motility during differentiation and genome maintenance, yet it remains unclear how nuclear actin responds to mechanical force. The DNA-damage kinase ataxia telangiectasia and Rad3-related protein (ATR) translocates to the nuclear envelope to protect the nucleus during cell motility or compression. Here, we show that ATR drives nuclear actin assembly via recruitment of Filamin-A to the inner nuclear membrane through binding of the hippo pathway scaffold and ATR substrate, RASSF1A. Moreover, we demonstrate how germline RASSF1 mutation disables nuclear mechanotransduction resulting in cerebral cortex thinning and associates with common psychological traits. Thus, defective mechanical-regulated pathways may contribute to complex neurological disorders.
Collapse
Affiliation(s)
- Maria Chatzifrangkeskou
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Tess Stanly
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Delia Koennig
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Luana Campos-Soares
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Department Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Michael Eyres
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Alexander Hasson
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Alexandra Perdiou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sayoni Das
- PrecisionLife, Bankside, Long Hanborough, Oxford OX29 8LJ, UK
| | - Steve Gardner
- PrecisionLife, Bankside, Long Hanborough, Oxford OX29 8LJ, UK
| | - Simei Go
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Ben Futcher
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Ashley Newton
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Paris Skourides
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Francis Szele
- Department Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
4
|
Ilchuk LA, Kochegarova KK, Baikova IP, Safonova PD, Bruter AV, Kubekina MV, Okulova YD, Minkovskaya TE, Kuznetsova NA, Dolmatova DM, Ryabinina AY, Mozhaev AA, Belousov VV, Ershov BP, Timashev PS, Filatov MA, Silaeva YY. Mutations in Filamin C Associated with Both Alleles Do Not Affect the Functioning of Mice Cardiac Muscles. Int J Mol Sci 2025; 26:1409. [PMID: 40003875 PMCID: PMC11855563 DOI: 10.3390/ijms26041409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Filamin C (FLNC) is a structural protein of muscle fibers. Mutations in the FLNC gene are known to cause myopathies and cardiomyopathies in humans. Here we report the generation by a CRISPR/Cas9 editing system injected into zygote pronuclei of two mouse strains carrying filamin C mutations-one of them (AGA) has a deletion of three nucleotides at position c.7418_7420, causing E>>D substitution and N deletion at positions 2472 and 2473, respectively. The other strain carries a deletion of GA nucleotides at position c.7419_7420, leading to a frameshift and a premature stop codon. Homozygous animals (FlncAGA/AGA and FlncGA/GA) were embryonically lethal. We determined that FlncGA/GA embryos died prior to the E12.5 stage and illustrated delayed development after the E9.5 stage. We performed histological analysis of heart tissue and skeletal muscles of heterozygous strains carrying mutations in different combinations (FlncGA/wt, FlncAGA/wt, and FlncGA/AGA). By performing physiological tests (grip strength and endurance tests), we have shown that heterozygous animals of both strains (FlncGA/wt, FlncAGA/wt) are functionally indistinguishable from wild-type animals. Interestingly, compound heterozygous mice (FlncGA/AGA) are viable, develop normally, reach puberty and it was verified by ECG and Eco-CG that their cardiac muscle is functionally normal. Intriguingly, FlncGA/AGA mice demonstrated better results in the grip strength physiological test in comparison to WT animals. We also propose a structural model that explains the complementary interaction of two mutant variants of filamin C.
Collapse
Affiliation(s)
- Leonid A. Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Ksenia K. Kochegarova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Iuliia P. Baikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
| | - Polina D. Safonova
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina V. Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Yulia D. Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana E. Minkovskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
| | - Nadezhda A. Kuznetsova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Daria M. Dolmatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Anna Yu. Ryabinina
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
| | - Andrey A. Mozhaev
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
- Group of Genome Editing Techniques, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Vsevolod V. Belousov
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
- Group of Genome Editing Techniques, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117513 Moscow, Russia
| | - Boris P. Ershov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maxim A. Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Yulia Yu. Silaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
5
|
Mulder T, Johnson J, González-Morales N. The filamins of Drosophila. Genome 2025; 68:1-11. [PMID: 39869855 DOI: 10.1139/gen-2024-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton. Filamins are required across various cells and tissues. In Drosophila early and recent studies have provided many details about filamin functions. This review centers on the two Drosophila filamins encoded by the cheerio and jitterbu g genes. We examine the structural and evolutionary aspects of filamin genes in flies, contrasting them with those of other model organisms. Then, we synthesize phenotypic data across diverse cell types. Additionally, we outline the genetic tools available for both genes. We also propose to divide filamins into typical and atypical based on the number of actin-binding domains and their relationship with other filamins.
Collapse
Affiliation(s)
- Tiara Mulder
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Johnson
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
6
|
Wade EM, Goodin EA, Morgan T, Pereira S, Woolley AG, Jenkins ZA, Daniel PB, Robertson SP. The hinge-1 domain of Flna is not necessary for diverse physiological functions in mice. Eur J Clin Invest 2024; 54:e14308. [PMID: 39215762 DOI: 10.1111/eci.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The filamins are cytoskeletal binding proteins that dynamically crosslink actin into orthogonal networks or bundle it into stress fibres. The domain structure of filamin proteins is very well characterised, with an N-terminal actin-binding region, followed by 24 immunoglobulin-like repeat units. The repeat domains are separated into distinct segments by two regions of low-complexity known as hinge-1 and hinge-2. The role of hinge-1 especially has been proposed to be essential for protein function as it provides flexibility to the otherwise rigid protein, and is a target for cleavage by calpain. Hinge-1 protects cells from otherwise destructive forces, and the products of calpain cleavage are involved in critical cellular signalling processes, such as survival during hypoxia. Pathogenic variants in FLNA encoding Filamin A, including those that remove the hinge-1 domain, cause a wide range of survivable developmental disorders. In contrast, complete loss of function of this gene is embryonic lethal in human and mouse. METHODS AND RESULTS In this study, we show that removing filamin A hinge-1 from mouse (FlnaΔH1), while preserving its expression level leads to no obvious developmental phenotype. Detailed characterisation of the skeletons of FlnaΔH1 mice showed no skeletal phenotype reminiscent of that found in the FLNA-causing skeletal dysplasia. Furthermore, nuclear functions of FLNA are maintained with loss of Filamin A hinge-1. CONCLUSION We conclude that hinge-1 is dispensable for filamin A protein function during development over the murine lifespan.
Collapse
Affiliation(s)
- Emma M Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Goodin
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephana Pereira
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Adele G Woolley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip B Daniel
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Rijns L, Rutten MGTA, Bellan R, Yuan H, Mugnai ML, Rocha S, Del Gado E, Kouwer PHJ, Dankers PYW. Synthetic, multi-dynamic hydrogels by uniting stress-stiffening and supramolecular polymers. SCIENCE ADVANCES 2024; 10:eadr3209. [PMID: 39565967 DOI: 10.1126/sciadv.adr3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Nature uses discrete molecular building blocks to form polymers that assemble into multicomponent, multi-dynamic networks, inside (cytoskeleton) and outside (extracellular matrix) the cell. Both the intra-fibrous molecular dynamics and interactions between fibers dictate (non)linear mechanics, such as stress stiffening and relaxation, and ultimately biological function. Current synthetic systems capture only one dynamic process. Here, we present multi-dynamic hydrogels by uniting a stress-stiffening polymer with supramolecular polymers. Crucial is the molecular dynamics of the supramolecular polymers: They dictate the interaction strength with the stress-stiffening polymer and the subsequent dynamic mechanical properties of the mixed networks. The biological relevance of our multi-dynamic hydrogels is demonstrated by their ability to support fibroblast cell spreading. Future work may address the display of various dynamically presented bioactive cues to cells.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Martin G T A Rutten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Riccardo Bellan
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Hongbo Yuan
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, P.O. Box 2404, B3001 Leuven, Flanders, Belgium
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Mauro L Mugnai
- Institute for Soft Matter Synthesis and Metrology, Department of Physics, Georgetown University, Washington, D.C. 20057, USA
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, P.O. Box 2404, B3001 Leuven, Flanders, Belgium
| | - Emanuela Del Gado
- Institute for Soft Matter Synthesis and Metrology, Department of Physics, Georgetown University, Washington, D.C. 20057, USA
| | - Paul H J Kouwer
- Radboud University, Institute for Molecules and Materials, P.O. Box 9010, 6525 AJ Nijmegen, Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
8
|
Dong R, Zhou X, Zhang H, Shi B, Liu G, Liu Y. Novel FLNC variants in pediatric cardiomyopathy: an insight into disease mechanisms. Hum Genomics 2024; 18:118. [PMID: 39472949 PMCID: PMC11520881 DOI: 10.1186/s40246-024-00683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND FLNC gene variants have predominantly been reported in adult populations with cardiomyopathies, and early-onset cases are less common. The genotype-phenotype relationship indicates that dilated cardiomyopathy (DCM) is often associated with FLNC truncating variants. METHODS We conducted a comprehensive genetic analysis using next generation sequencing (NGS) to identify FLNC variants in patients with cardiovascular conditions. Detailed phenotypic and variant analyses were performed to characterize the clinical features and genetic alterations. Minigene assays and structural modeling were used to investigate the pathogenicity caused by the identified variants. RESULTS In a cohort of 58 patients, novel heterozygous FLNC variants, c.3962A > T (p.Glu1321Val) and c.7543C > T (p.Leu2515Phe), were identified in patients presenting with dilated and mixed restrictive/hypertrophic cardiomyopathies, respectively. The c.3962A > T variant disrupted normal splicing, as demonstrated through the splicing prediction tool and minigene studies, further emphasizing its pathogenic potential. CONCLUSION For missense variants of FLNC in patients with DCM, the splicing effect of the variant should be carefully checked. Early detection and intervention are crucial given the high risk of sudden cardiac death and severe cardiac complications.
Collapse
Affiliation(s)
- Rui Dong
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Xin Zhou
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
- Cardiovascular department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Haiyan Zhang
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Bingyi Shi
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
- Cardiovascular department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
| | - Guohua Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
- Department of Pediatrics, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital, Jinan), Jinan, China.
| | - Yi Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
- Cardiovascular department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
| |
Collapse
|
9
|
Xue C, Wang Y, Peng J, Feng S, Guan Y, Hao Y. Unraveling the pathogenic mechanism of a novel filamin a frameshift variant in periventricular nodular heterotopia. Front Pharmacol 2024; 15:1429177. [PMID: 39399465 PMCID: PMC11466872 DOI: 10.3389/fphar.2024.1429177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Background Periventricular nodular heterotopia (PVNH) is a neuronal migration disorder caused by the inability of neurons to move to the cortex. Patients with PVNH often experience epilepsy due to ectopic neuronal discharges. Most cases of PVNH are associated with variations in filamin A (FLNA), which encodes an actin-binding protein. However, the underlying pathological mechanisms remain unclear. Methods Next-generation sequencing was performed to detect variants in the patient with PVNH, and the findings were confirmed using Sanger sequencing. Iterative threading assembly refinement was used to predict the structures of the variant proteins, and the search tool for the retrieval of interacting genes/proteins database was used to determine the interactions between FLNA and motility-related proteins. An induced pluripotent stem cell (iPSC) line was generated as a disease model by reprogramming human peripheral blood mononuclear cells. The FLNA expression in iPSCs was assessed using western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Immunofluorescence analysis was performed to determine the arrangement of F-actin. Results A novel FLNA frameshift variant (NM_001456.3: c.1466delG, p. G489Afs*9) was identified in a patient with PVNH and epilepsy. Bioinformatic analysis indicated that this variation was likely to impair FLNA function. Western blot and qRT-PCR analysis of iPSCs derived from the patient's peripheral blood mononuclear cells revealed the absence of FLNA protein and mRNA. Immunofluorescence analysis suggested an irregular arrangement and disorganization of F-actin compared to that observed in healthy donors. Conclusion Our findings indicate that the frameshift variant of FLNA (NM_001456.3: c.1466delG, p. G489Afs*9) impairs the arrangement and organization of F-actin, potentially influencing cell migration and causing PVNH.
Collapse
Affiliation(s)
- Chunran Xue
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yishu Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Peng
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sisi Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Punan Branch, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Goliusova DV, Sharikova MY, Lavrenteva KA, Lebedeva OS, Muranova LK, Gusev NB, Bogomazova AN, Lagarkova MA. Role of Filamin C in Muscle Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1546-1557. [PMID: 39418514 DOI: 10.1134/s0006297924090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Filamin C (FLNC) is a member of a high-molecular weight protein family, which bind actin filaments in the cytoskeleton of various cells. In human genome FLNC is encoded by the FLNC gene located on chromosome 7 and is expressed predominantly in striated skeletal and cardiac muscle cells. Filamin C is involved in organization and stabilization of thin actin filaments three-dimensional network in sarcomeres, and is supposed to play a role of mechanosensor transferring mechanical signals to different protein targets. Under mechanical stress FLNC can undergo unfolding that increases the risk of its aggregation. FLNC molecules with an impaired native structure could be eliminated by the BAG3-mediated chaperone-assisted selective autophagy. Mutations in the FLNC gene could be accompanied by the changes in FLNC interaction with its protein partners and could lead to formation of aggregates, which overload the autophagy and proteasome protein degradation systems, thus facilitating development of various pathological processes. Molecular mechanisms of the FLNC-associated congenital disorders, called filaminopathies, remain poorly understood. This review is devoted to analysis of the structure and mechanisms of filamin C function in muscle and heart cells in normal state and in the FLNC-associated pathologies. The presented data summarize the results of research at the molecular, cellular, and tissue levels and allow us to outline promising ways for further investigation of pathogenetic mechanisms in filaminopathies.
Collapse
Affiliation(s)
- Daria V Goliusova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita Y Sharikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Kristina A Lavrenteva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Lidia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
11
|
Boismal F, Peltier S, Ly Ka So S, Chevreux G, Blondel L, Serror K, Setterblab N, Zuelgaray E, Boccara D, Mimoun M, Guere C, Benssussan A, Dorr M, Beauchef G, Vie K, Michel L. Proteomic and secretomic comparison of young and aged dermal fibroblasts highlights cytoskeleton as a key component during aging. Aging (Albany NY) 2024; 16:11776-11795. [PMID: 39197170 PMCID: PMC11386920 DOI: 10.18632/aging.206055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/29/2024] [Indexed: 08/30/2024]
Abstract
Crucial for skin homeostasis, synthesis and degradation of extracellular matrix components are orchestrated by dermal fibroblasts. During aging, alterations of component expression, such as collagens and enzymes, lead to reduction of the mechanical cutaneous tension and defects of skin wound healing. The aim of this study was to better understand the molecular alterations underwent by fibroblasts during aging by comparing secretomic and proteomic signatures of fibroblasts from young (<35years) and aged (>55years) skin donors, in quiescence or TGF-stimulated conditions, using HLPC/MS. The comparison of the secretome from young and aged fibroblasts revealed that 16 proteins in resting condition, and 11 proteins after a 24h-lasting TGF-β1-treatment, were expressed in significant different ways between the two cell groups (fold change>2, p-value <0.05), with a 77% decrease in the number of secreted proteins in aged cells. Proteome comparison between young and aged fibroblasts identified a significant change of 63 proteins in resting condition, and 73 proteins in TGF-β1-stimulated condition, with a 67% increase in the number of proteins in aged fibroblasts. The majority of the differentially-expressed molecules belongs to the cytoskeleton-associated proteins and aging was characterized by an increase in Coronin 1C (CORO1C), and Filamin B (FLNB) expression in fibroblasts together with a decrease in Cofilin (CFL1), and Actin alpha cardiac muscle 1 (ACTC1) detection in aged cells, these proteins being involved in actin-filament polymerization and sharing co-activity in cell motility. Our present data reinforce knowledge about an age-related alteration in the synthesis of major proteins linked to the migratory and contractile functions of dermal human fibroblasts.
Collapse
Affiliation(s)
- Françoise Boismal
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
| | - Sandy Peltier
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | - Sophie Ly Ka So
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | | | - Loïse Blondel
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | - Kévin Serror
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | | | | | - David Boccara
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Maurice Mimoun
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | | | - Armand Benssussan
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
| | | | | | | | - Laurence Michel
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Dermatology Department, Saint-Louis Hospital, Paris, France
| |
Collapse
|
12
|
Kopsidas CA, Lowe CC, McDaniel DP, Zhou X, Feng Y. Sustained generation of neurons destined for neocortex with oxidative metabolic upregulation upon filamin abrogation. iScience 2024; 27:110199. [PMID: 38989458 PMCID: PMC11233971 DOI: 10.1016/j.isci.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Neurons in the neocortex are generated during embryonic development. While the adult ventricular-subventricular zone (V-SVZ) contains cells with neural stem/progenitors' characteristics, it remains unclear whether it has the capacity of producing neocortical neurons. Here, we show that generating neurons with transcriptomic resemblance to upper layer neocortical neurons continues in the V-SVZ of mouse models of a human condition known as periventricular heterotopia by abrogating Flna and Flnb. We found such surplus neurogenesis was associated with V-SVZ's upregulation of oxidative phosphorylation, mitochondrial biogenesis, and vascular abundance. Additionally, spatial transcriptomics analyses showed V-SVZ's neurogenic activation was coupled with transcriptional enrichment of genes in diverse pathways for energy metabolism, angiogenesis, cell signaling, synaptic transmission, and turnovers of nucleic acids and proteins in upper cortical layers. These findings support the potential of generating neocortical neurons in adulthood through boosting brain-wide vascular circulation, aerobic adenosine triphosphate synthesis, metabolic turnover, and neuronal activity.
Collapse
Affiliation(s)
- Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Dennis P. McDaniel
- Biomedical Instrumentation Center, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
13
|
Maurer W, Rebs S, Köhne S, Eberl H, Wollnik B, Zibat A, Streckfuss-Bömeke K. Generation of a pluripotent stem cell line (UMGi270-A) and a corresponding CRISPR/Cas9 modified isogenic control (UMGi270-A-1) from a patient with sudden onset dilated cardiomyopathy harboring a FLNC p.R2187P mutation. Stem Cell Res 2024; 77:103409. [PMID: 38583294 DOI: 10.1016/j.scr.2024.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
Filamin C (FLNC) is a highly important actin crosslinker and multi-adaptor protein in striated skeletal and cardiac muscle. Mutations have been linked to a range of cardiomyopathy types. Here, we generated induced pluripotent stem cells (iPSC) from a patient with dilated cardiomyopathy (DCM) harboring a new, unique heterozygous FLNC mutation p.R2187P. From this patient-specific iPSC line, a corresponding isogenic control line was created by CRISPR/Cas9 genome editing. Both, the patient-specific and isogenic-control iPSC maintained full pluripotency, genomic integrity, and in vitro differentiation capacity. All iPSC lines differentiate into iPSC-cardiomyocytes, hence providing the possibility to study the pathogenesis of FLNC-mediated DCM further.
Collapse
Affiliation(s)
- Wiebke Maurer
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Sabine Rebs
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | - Steffen Köhne
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Hanna Eberl
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
| | - Arne Zibat
- Institute of Human Genetics, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Germany.
| |
Collapse
|
14
|
Jiang Z, Tang Y, Lu J, Xu C, Niu Y, Zhang G, Yang Y, Cheng X, Tong L, Chen Z, Tang B. Identification of sulfhydryl-containing proteins and further evaluation of the selenium-tagged redox homeostasis-regulating proteins. Redox Biol 2024; 69:102969. [PMID: 38064764 PMCID: PMC10755098 DOI: 10.1016/j.redox.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/01/2024] Open
Abstract
Chemoproteomic profiling of sulfhydryl-containing proteins has consistently been an attractive research hotspot. However, there remains a dearth of probes that are specifically designed for sulfhydryl-containing proteins, possessing sufficient reactivity, specificity, distinctive isotopic signature, as well as efficient labeling and evaluation capabilities for proteins implicated in the regulation of redox homeostasis. Here, the specific selenium-containing probes (Se-probes) in this work displayed high specificity and reactivity toward cysteine thiols on small molecules, peptides and purified proteins and showed very good competitive effect of proteins labeling in gel-ABPP. We identified more than 6000 candidate proteins. In TOP-ABPP, we investigated the peptide labeled by Se-probes, which revealed a distinct isotopic envelope pattern of selenium in both the primary and secondary mass spectra. This unique pattern can provide compelling evidence for identifying redox regulatory proteins and other target peptides. Furthermore, our examiation of post-translational modification (PTMs) of the cysteine site residues showed that oxidation PTMs was predominantly observed. We anticipate that Se-probes will enable broader and deeper proteome-wide profiling of sulfhydryl-containing proteins, provide an ideal tool for focusing on proteins that regulate redox homeostasis and advance the development of innovative selenium-based pharmaceuticals.
Collapse
Affiliation(s)
- Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, PR China.
| | - Jun Lu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Chang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Yaxin Niu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Guanglu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Xiufen Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266200, PR China.
| |
Collapse
|
15
|
Vitali E, Franceschini B, Milana F, Soldani C, Polidoro MA, Carriero R, Kunderfranco P, Trivellin G, Costa G, Milardi G, Di Tommaso L, Torzilli G, Lleo A, Lania AG, Donadon M. Filamin A is involved in human intrahepatic cholangiocarcinoma aggressiveness and progression. Liver Int 2024; 44:518-531. [PMID: 38010911 DOI: 10.1111/liv.15800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) is a primary liver tumour, characterized by poor prognosis and lack of effective therapy. The cytoskeleton protein Filamin A (FLNA) is involved in cancer progression and metastasis, including primary liver cancer. FLNA is cleaved by calpain, producing a 90 kDa fragment (FLNACT ) that can translocate to the nucleus and inhibit gene transcription. We herein aim to define the role of FLNA and its cleavage in iCCA carcinogenesis. METHODS & RESULTS We evaluated the expression and localization of FLNA and FLNACT in liver samples from iCCA patients (n = 82) revealing that FLNA expression was independently correlated with disease-free survival. Primary tumour cells isolated from resected iCCA patients expressed both FLNA and FLNACT , and bulk RNA sequencing revealed a significant enrichment of cell proliferation and cell motility pathways in iCCAs with high FLNA expression. Further, we defined the impact of FLNA and FLNACT on the proliferation and migration of primary iCCA cells (n = 3) and HuCCT1 cell line using silencing and Calpeptin, a calpain inhibitor. We observed that FLNA silencing decreased cell proliferation and migration and Calpeptin was able to reduce FLNACT expression in both the HuCCT1 and iCCA cells (p < .05 vs. control). Moreover, Calpeptin 100 μM decreased HuCCT1 and primary iCCA cell proliferation (p <.00001 vs. control) and migration (p < .05 vs. control). CONCLUSIONS These findings demonstrate that FLNA is involved in human iCCA progression and calpeptin strongly decreased FLNACT expression, reducing cell proliferation and migration.
Collapse
Affiliation(s)
- Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Flavio Milana
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela A Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberta Carriero
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Giampaolo Trivellin
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Guido Costa
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulia Milardi
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Guido Torzilli
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Donadon
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- Department of General Surgery, University Maggiore Hospital, Novara, Italy
| |
Collapse
|
16
|
Ellis ML, Terreaux A, Alwis I, Smythe R, Perdomo J, Eckly A, Cranmer SL, Passam FH, Maclean J, Schoenwaelder SM, Ruggeri ZM, Lanza F, Taoudi S, Yuan Y, Jackson SP. GPIbα-filamin A interaction regulates megakaryocyte localization and budding during platelet biogenesis. Blood 2024; 143:342-356. [PMID: 37922495 DOI: 10.1182/blood.2023021292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023] Open
Abstract
ABSTRACT Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.
Collapse
Affiliation(s)
- Marc L Ellis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Antoine Terreaux
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Imala Alwis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Rhyll Smythe
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jose Perdomo
- Haematology Research Unit, St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Anita Eckly
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Susan L Cranmer
- Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia
| | - Freda H Passam
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jessica Maclean
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Simone M Schoenwaelder
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Zaverio M Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| | - Francois Lanza
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Samir Taoudi
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Yuping Yuan
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Shaun P Jackson
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
17
|
Johnson LG, Zhai C, Prusa KJ, Nair MN, Prenni JE, Chaparro JM, Huff-Lonergan E, Lonergan SM. Proteomic and metabolomic profiling of aged pork loin chops reveals molecular phenotypes linked to pork tenderness. J Anim Sci 2024; 102:skae355. [PMID: 39563021 PMCID: PMC11630860 DOI: 10.1093/jas/skae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
The ability to predict fresh pork tenderness and quality is hindered by an incomplete understanding of molecular factors that influence these complex traits. It is hypothesized that a comprehensive description of the metabolomic and proteomic phenotypes associated with variation in pork tenderness and quality will enhance the understanding and inform the development of rapid and nondestructive methods to measure pork quality. The objective of this investigation was to examine the proteomic and metabolomic profiles of ~2-wk aged pork chops categorized across instrumental tenderness groups. One hundred pork loin chops from a larger sample (N = 120) were assigned to one of the four categories (n = 25) based on instrumental star probe value (Category A, x¯ =4.23 kg, 3.43-4.55 kg; Category B, x¯ =4.79 kg, 4.66-5.00 kg; Category C, x¯ =5.43 kg, 5.20-5.64 kg; and Category D, x¯ =6.21 kg, 5.70-7.41 kg). Soluble protein from ~2 wk aged pork loin was prepared using a low-ionic-strength buffer. Proteins were digested with trypsin, labeled with 11-plex isobaric tandem mass tag reagents, and identified and quantified using a Q-Exactive Mass Spectrometer. Metabolites were extracted in 80% methanol from lyophilized and homogenized tissue samples. Derivatized metabolites were identified and quantified using gas chromatography-mass spectrometry. Between Categories A and D, 84 proteins and 22 metabolites were differentially abundant (adjusted P < 0.05). Fewer differences were detected in comparison between categories with less divergent tenderness measures. The molecular phenotype of the more tender (Category A) aged chops is consistent with a slower and less extended pH decline and markedly less abundance of glycolytic metabolites. The presence and greater abundance of proteins in the low-ionic-strength extract, including desmin, filamin C, calsequestrin, and fumarate hydratase, indicates a greater disruption of sarcoplasmic reticulum and mitochondrial membranes and the degradation and release of structural proteins from the continuous connections of myofibrils and the sarcolemma.
Collapse
Affiliation(s)
- Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040, USA
| | - Kenneth J Prusa
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
18
|
Wan H, Teh MT, Mastroianni G, Ahmad US. Comparative Transcriptome Analysis Identifies Desmoglein-3 as a Potential Oncogene in Oral Cancer Cells. Cells 2023; 12:2710. [PMID: 38067138 PMCID: PMC10705960 DOI: 10.3390/cells12232710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The role of desmoglein-3 (DSG3) in oncogenesis is unclear. This study aimed to uncover molecular mechanisms through comparative transcriptome analysis in oral cancer cells, defining potential key genes and associated biological processes related to DSG3 expression. Four mRNA libraries of oral squamous carcinoma H413 cell lines were sequenced, and 599 candidate genes exhibited differential expression between DSG3-overexpressing and matched control lines, with 12 genes highly significantly differentially expressed, including 9 upregulated and 3 downregulated. Genes with known implications in cancer, such as MMP-13, KRT84, OLFM4, GJA1, AMOT and ADAMTS1, were strongly linked to DSG3 overexpression. Gene ontology analysis indicated that the DSG3-associated candidate gene products participate in crucial cellular processes such as junction assembly, focal adhesion, extracellular matrix formation, intermediate filament organisation and keratinocyte differentiation. Validation of RNA-Seq was performed through RT-qPCR, Western blotting and immunofluorescence analyses. Furthermore, using transmission electron microscopy, we meticulously examined desmosome morphology and revealed a slightly immature desmosome structure in DSG3-overexpressing cells compared to controls. No changes in desmosome frequency and diameter were observed between the two conditions. This study underscores intricate and multifaceted alterations associated with DSG3 in oral squamous carcinoma cells, implying a potential oncogenic role of this gene in biological processes that enable cell communication, motility and survival.
Collapse
Affiliation(s)
- Hong Wan
- Center for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Muy-Teck Teh
- Center for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Usama Sharif Ahmad
- Center for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
19
|
Lu F, Gao Y, Li E. Generation of a FLNA knockout hESC line (WAe009-A-P) to model cardiac valvular dysplasia using CRISPR/Cas9. Stem Cell Res 2023; 71:103162. [PMID: 37429070 DOI: 10.1016/j.scr.2023.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
The FLNA gene encodes the cytoskeletal protein filamin A which plays a key role in the structure and function of the cardiac valves. Truncating FLNA mutations are associated with cardiac valvular dysplasia. To further understand the exact role of FLNA in this disease, we have generated a human FLNA knockout cell line from H9 using CRISPR/Cas9 technology in this study. This cell line WAe009-A-P has a 2 bp deletion in the exon 2 of FLNA gene which resulted in a frameshift in the translation of FLNA and no FLNA protein was detected in this cell line. Moreover, WAe009-A-P also expressed pluripotency markers, had a normal female karyotype (46XX) and maintained the ability to differentiate into the three germ layers in vitro.
Collapse
Affiliation(s)
- Fengyuan Lu
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yifeng Gao
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - En Li
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
20
|
Zhao X, Kiyozuka K, Konishi A, Kawabata-Iwakawa R, Minamishima YA, Obinata H. Actin-binding protein Filamin B regulates the cell-surface retention of endothelial sphingosine 1-phosphate receptor 1. J Biol Chem 2023:104851. [PMID: 37220855 PMCID: PMC10300261 DOI: 10.1016/j.jbc.2023.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor essential for vascular development and postnatal vascular homeostasis. When exposed to sphingosine 1-phosphate (S1P) in the blood of ∼1 μM, S1PR1 in endothelial cells retains cell-surface localization, while lymphocyte S1PR1 shows almost complete internalization, suggesting the cell-surface retention of S1PR1 is endothelial cell-specific. To identify regulating factors that function to retain S1PR1 on the endothelial cell surface, here we utilized an enzyme-catalyzed proximity labeling technique followed by proteomic analyses. We identified Filamin B (FLNB), an actin-binding protein involved in F-actin cross-linking, as a candidate regulating protein. We show FLNB knockdown by RNA interference induced massive internalization of S1PR1 into early endosomes, which was partially ligand-dependent and required receptor phosphorylation. Further investigation showed FLNB was also important for the recycling of internalized S1PR1 back to the cell surface. FLNB knockdown did not affect the localization of S1PR3, another S1P receptor subtype expressed in endothelial cells, nor did it affect localization of ectopically expressed β2-adrenergic receptor. Functionally, we show FLNB knockdown in endothelial cells impaired S1P-induced intracellular phosphorylation events and directed cell migration and enhancement of the vascular barrier. Taken together, our results demonstrate that FLNB is a novel regulator critical for S1PR1 cell-surface localization and thereby proper endothelial cell function.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Keisuke Kiyozuka
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Akimitsu Konishi
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
| | | | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Gunma, Japan.
| |
Collapse
|
21
|
Wang BZ, Nash TR, Zhang X, Rao J, Abriola L, Kim Y, Zakharov S, Kim M, Luo LJ, Morsink M, Liu B, Lock RI, Fleischer S, Tamargo MA, Bohnen M, Welch CL, Chung WK, Marx SO, Surovtseva YV, Vunjak-Novakovic G, Fine BM. Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery. Cell Rep Med 2023; 4:100976. [PMID: 36921598 PMCID: PMC10040415 DOI: 10.1016/j.xcrm.2023.100976] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.Glu2472_Asn2473delinAsp) in a patient with RCM. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with this variant display impaired relaxation and reduced calcium kinetics in 2D culture when compared with a CRISPR-Cas9-corrected isogenic control line. Similarly, mutant engineered cardiac tissues (ECTs) demonstrate increased passive tension and impaired relaxation velocity compared with isogenic controls. High-throughput small-molecule screening identifies phosphodiesterase 3 (PDE3) inhibition by trequinsin as a potential therapy to improve cardiomyocyte relaxation in this genotype. Together, these data demonstrate an engineered cardiac tissue model of RCM and establish the translational potential of this precision medicine approach to identify therapeutics targeting myocardial relaxation.
Collapse
Affiliation(s)
- Bryan Z Wang
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jenny Rao
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06520, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sergey Zakharov
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Kim
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Lori J Luo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bohao Liu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Michael Bohnen
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Carrie L Welch
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Steven O Marx
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06520, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA; College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - Barry M Fine
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
22
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Direct and Indirect Effects of Filamin A on Tau Pathology in Neuronal Cells. Mol Neurobiol 2023; 60:1021-1039. [PMID: 36399251 PMCID: PMC9849303 DOI: 10.1007/s12035-022-03121-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
In Alzheimer disease (AD), Tau, an axonal microtubule-associated protein, becomes hyperphosphorylated, detaches from microtubules, accumulates, and self-aggregates in the somatodendritic (SD) compartment. The accumulation of hyperphosphorylated and aggregated Tau is also seen in other neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD-Tau). Previous studies reported a link between filamin A (FLNA), an actin-binding protein found in the SD compartment, and Tau pathology. In the present study, we further explored this link. We confirmed the interaction of Tau with FLNA in neuroblastoma 2a (N2a) cells. This interaction was mediated by a domain located between the 157 and 383 amino acids (a.a.) of Tau. Our results also revealed that the overexpression of FLNA resulted in an intracellular accumulation of wild-type Tau and Tau mutants (P301L, V337M, and R406W) in N2a cells. Tau phosphorylation and cleavage by caspase-3 but not its aggregation were increased upon FLNA overexpression in N2a cells. In the parietal cortex of AD brain, insoluble FLNA was increased compared to control brain, but it did not correlate with Tau pathology. Interestingly, Tau binding to microtubules and F-actin was preserved upon FLNA overexpression in N2a cells. Lastly, our results revealed that FLNA also induced the accumulation of annexin A2, a Tau interacting partner involved in its axonal localization. Collectively, our data indicated that in Tauopathies, FLNA could contribute to Tau pathology by acting on Tau and annexin A2.
Collapse
|
24
|
Mao Z, Nakamura F. Interaction of LARP4 to filamin A mechanosensing domain regulates cell migrations. Front Cell Dev Biol 2023; 11:1152109. [PMID: 37169020 PMCID: PMC10164935 DOI: 10.3389/fcell.2023.1152109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023] Open
Abstract
Filamin A (FLNA) is an actin cross-linking protein that mediates mechanotransduction. Force-dependent conformational changes of FLNA molecule expose cryptic binding site of FLNA, allowing interaction with partners such as integrin, smoothelin, and fimbacin. Here, we identified La-related protein 4 (LARP4) as a new FLNA mechanobinding partner. LARP4 specifically interacts with the cleft formed by C and D strands of immunoglobulin-like repeat 21 (R21) which is blocked by A strand of R20 without force. We validated the interaction between LARP4 and FLNA R21 both in vivo and in vitro. We also determined the critical amino acid that is responsible for the interaction and generated the non-FLNA-binding mutant LARP4 (F277A in human: F273A in mouse Larp4) that disrupts the interaction. Fluorescence recovery after photobleaching (FRAP) of GFP-labeled LARP4 in living cells demonstrated that mutant LARP4 diffuses faster than WT LARP4. Proximity ligation assay (PLA) also confirmed their interaction and disruption of actin polymerization diminishes the interaction. Data mining of RNAseq analysis of LARP4 knockdown (KD) HEK293T cells suggested that LARP4 is involved in morphogenesis and cell motility. Consistent with this prediction, we found that KD of LARP4 increases cell migration speed and expression of the F277A mutant LARP4 in LARP4-KD cells also leads to a higher cell migration speed compared to WT LARP4. These results demonstrated that the LARP4 interaction with FLNA regulates cell migration.
Collapse
|
25
|
Park SJ, Choi YH. Relationship between Condition Index Values and Expression Levels of Gene and Protein in the Adductor Muscle of Diploid and Triploid Oysters Crassostrea gigas. Dev Reprod 2022; 26:165-174. [PMID: 36817354 PMCID: PMC9925188 DOI: 10.12717/dr.2022.26.4.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023]
Abstract
Three proteins [myosin heavy chain (MHC), filamin-C fragment (FIL-C), and actin 2 (ACT2)] were identified in adductor muscle from diploid and triploid Pacific oysters (Crassostrea gigas) and the relationship between the condition index (CI) and mRNA expression of these genes was investigated, together with the mRNA expression of molluscan insulin-related peptide (MIP), C. gigas insulin receptor-related receptor (CIR), and insulin-like growth factor binding protein complex acid labile subunit (IGFBP-ALS). Monthly changes in the CI were similar to the changes in the tissue weight rate in both groups. ACT2 and MHC mRNA expression was statistically higher in the triploid than the diploid, while FIL-C mRNA expression was significantly higher in the diploid (p<0.05). The MIP, CIR, and IGFBP-ALS mRNA expression of the diploid oysters were all significantly higher in July than in other months (p<0.05). The MIP, CIR, and IGFBP-ALS mRNA expression in the triploid oysters was high in July, but there were no significant differences (p>0.05). Changes in the expression levels of the genes investigated in this study could be used as intrinsic indicators of the annual growth, maturity, and spawning period of cultured diploid and triploid C. gigas in Tongyeong, Korea.
Collapse
Affiliation(s)
- Su-Jin Park
- Department of Fisheries Biology, Pukyong
National University, Busan 48513,
Korea
| | - Youn Hee Choi
- Department of Fisheries Biology, Pukyong
National University, Busan 48513,
Korea,Major in Aquaculture and Applied Life
Sciences, Division of Fisheries Life Sciences, Pukyong National
University, Busan 48513, Korea,Corresponding author Youn Hee
Choi, Department of Fisheries Biology, Pukyong National University, Busan 48513,
Korea, Tel: +82-51-629-5915, E-mail:
| |
Collapse
|
26
|
Gao S, Taylor MRG, Mestroni L. Hidden Risk: Arrhythmogenic Genes in the General Population. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003869. [PMID: 35980659 PMCID: PMC10874281 DOI: 10.1161/circgen.122.003869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The past 2 decades have seen the development of large-scale DNA biobanks associated with phenotypic information of the general population. Examples of these efforts are the UK Biobank, BioVU at Vanderbilt and MyCode. These repositories were designed to generate information to enable a precision medicine approach to diagnose, prevent, and treat human disease.
Collapse
Affiliation(s)
- Shanshan Gao
- Division of Cardiology, Cardiovascular Institute (S.G., M.R.G.T., L.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Matthew R G Taylor
- Division of Cardiology, Cardiovascular Institute (S.G., M.R.G.T., L.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
- Adult Medical Genetics Program (M.R.G.T.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Luisa Mestroni
- Division of Cardiology, Cardiovascular Institute (S.G., M.R.G.T., L.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
27
|
Cell-Dependent Pathogenic Roles of Filamin B in Different Skeletal Malformations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8956636. [PMID: 35832491 PMCID: PMC9273461 DOI: 10.1155/2022/8956636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Mutations of filamin B (FLNB) gene can lead to a spectrum of autosomal skeletal malformations including spondylocarpotarsal syndrome (SCT), Larsen syndrome (LRS), type I atelosteogenesis (AO1), type III atelosteogenesis (AO3), and boomerang dysplasia (BD). Among them, LRS is milder while BD causes a more severe phenotype. However, the molecular mechanism underlying the differences in clinical phenotypes of different FLNB variants has not been fully determined. Here, we presented two patients suffering from autosomal dominant LRS and autosomal recessive vitamin D-dependent rickets type IA (VDDR-IA). Whole-exome sequencing revealed two novel missense variants in FLNB, c.4846A>G (p.T1616A) and c.7022T>G (p.I2341R), which are located in repeat 15 and 22 of filamin B, respectively. The expression of FLNBI2341R in the muscle tissue from our LRS patient was remarkably increased. And in vitro studies showed that both variants led to a lack of filopodia and accumulation of the mutants in the perinuclear region in HEK293 cells. We also found that c.4846A>G (p.T1616A) and c.7022T>G (p.I2341R) regulated endochondral osteogenesis in different ways. c.4846A>G (p.T1616A) activated AKT pathways through inhibiting SHIP2, suppressed the Smad3 pathway, and impaired the expression of Runx2 in both Saos-2 and ATDC5 cells. c.7022T>G (p.I2341R) activated both AKT and Smad3 pathways and increased the expression of Runx2 in Saos-2 cells, while in ATDC5 cells it activated AKT pathways through inhibiting SHIP2, suppressed the Smad3 pathway, and reduced the expression of Runx2. Our study demonstrated the pathogenic mechanisms of two novel FLNB variants in two different clinical settings and proved that FLNB variants could not only directly cause skeletal malformations but also worsen skeletal symptoms in the setting of other skeletal diseases. Besides, FLNB variants differentially affect skeletal development which contributes to clinical heterogeneity of FLNB-related disorders.
Collapse
|
28
|
Gerlevik U, Saygı C, Cangül H, Kutlu A, Çaralan EF, Topçu Y, Özören N, Sezerman OU. Computational analysis of missense filamin-A variants, including the novel p.Arg484Gln variant of two brothers with periventricular nodular heterotopia. PLoS One 2022; 17:e0265400. [PMID: 35613087 PMCID: PMC9132340 DOI: 10.1371/journal.pone.0265400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/01/2022] [Indexed: 12/01/2022] Open
Abstract
Background Periventricular nodular heterotopia (PNH) is a cell migration disorder associated with mutations in Filamin-A (FLNA) gene on chromosome X. Majority of the individuals with PNH-associated FLNA mutations are female whereas liveborn males with FLNA mutations are very rare. Fetal viability of the males seems to depend on the severity of the variant. Splicing or severe truncations presumed loss of function of the protein product, lead to male lethality and only partial-loss-of-function variants are reported in surviving males. Those variants mostly manifest milder clinical phenotypes in females and thus avoid detection of the disease in females. Methods We describe a novel p.Arg484Gln variant in the FLNA gene by performing whole exome analysis on the index case, his one affected brother and his healthy non-consanguineous parents. The transmission of PNH from a clinically asymptomatic mother to two sons is reported in a fully penetrant classical X-linked dominant mode. The variant was verified via Sanger sequencing. Additionally, we investigated the impact of missense mutations reported in affected males on the FLNa protein structure, dynamics and interactions by performing molecular dynamics (MD) simulations to examine the disease etiology and possible compensative mechanisms allowing survival of the males. Results We observed that p.Arg484Gln disrupts the FLNa by altering its structural and dynamical properties including the flexibility of certain regions, interactions within the protein, and conformational landscape of FLNa. However, these impacts existed for only a part the MD trajectories and highly similar patterns observed in the other 12 mutations reported in the liveborn males validated this mechanism. Conclusion It is concluded that the variants seen in the liveborn males result in transient pathogenic effects, rather than persistent impairments. By this way, the protein could retain its function occasionally and results in the survival of the males besides causing the disease.
Collapse
Affiliation(s)
- Umut Gerlevik
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Ceren Saygı
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Hakan Cangül
- Center for Genetic Diagnosis, Istanbul Medipol University, Istanbul, Turkey
| | - Aslı Kutlu
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Bioinformatics & Genetics, Faculty of Engineering and Natural Science, İstinye University, İstanbul, Turkey
| | | | - Yasemin Topçu
- Department of Pediatric Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nesrin Özören
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Osman Uğur Sezerman
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Biostatistics and Medical Informatics, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
29
|
Xu YH, Feng YF, Zou R, Yuan F, Yuan YZ. Silencing of YAP attenuates pericyte-myofibroblast transition and subretinal fibrosis in experimental model of choroidal neovascularization. Cell Biol Int 2022; 46:1249-1263. [PMID: 35475568 DOI: 10.1002/cbin.11809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 11/07/2022]
Abstract
Age-related macular degeneration (AMD) is the main reason of irreversible vision loss in the elderly. The subretinal fibrosis subsequent to choroidal neovascularization (CNV) is an important feature in the late stage of wet AMD and is considered to be one reason for incomplete response to anti-VEGF drugs. Recent studies have shown that pericyte-myofibroblast transition (PMT) is an important pathological process involving fibrotic diseases of various organs. However, the specific role and mechanism of PMT in the subretinal fibrosis of CNV have not been clarified. It has been clear that the Hippo pathway along with its downstream effector Yes-associated protein (YAP) plays an important role in both epithelial and endothelial myofibroblast development. Therefore, we speculate whether YAP participates in PMT of pericytes and promotes fibrosis of CNV. In this study, experimental CNV was induced by laser photocoagulation in C57BL/6J (B6) mice, and aberrant YAP overexpression was detected in the retinal pigment epithelial/choroid/sclera tissues of the laser-injured eyes. YAP knockdown reduced the proliferation, migration, and differentiation of human retinal microvascular pericytes in vitro. It also reduced subretinal fibrosis of laser-induced CNV in vivo. Moreover, by proteomics-based analysis of pericyte conditioned medium (PC-CM) and bioinformatic analyses, we identified that the crosstalk between Hippo/YAP and MAPK/Erk was involved in expression of filamin A in hypoxic pericytes. These findings suggest that Hippo/YAP and MAPK/Erk are linked together to mediate pericyte proliferation, migration as well as differentiation, which may embody potential implications for treatment in diseases related to CNV.
Collapse
Affiliation(s)
- Ya-Hui Xu
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Ophthalmology, Northern Jiangsu Peoples' Hospital, Yangzhou, China
| | - Yi-Fan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rong Zou
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan-Zhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Ophthalmology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| |
Collapse
|
30
|
Lamrani L, Adam F, Soukaseum C, Denis CV, Raslova H, Rosa J, Bryckaert M. New insights into regulation of αIIbβ3 integrin signaling by filamin A. Res Pract Thromb Haemost 2022; 6:e12672. [PMID: 35316942 PMCID: PMC8924993 DOI: 10.1002/rth2.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Background Filamin (FLN) regulates many cell functions through its scaffolding activity cross-linking cytoskeleton and integrins. FLN was shown to inhibit integrin activity, but the exact mechanism remains unclear. Objectives The aim of this study was to evaluate the role of filamin A (FLNa) subdomains on the regulation of integrin αIIbβ3 signaling. Methods Three FLNa deletion mutants were overexpressed in the erythro-megakaryocytic leukemic cell line HEL: Del1, which lacks the N-terminal CH1-CH2 domains mediating the FLNa-actin interaction; Del2, lacking the Ig-like repeat 21, which mediates the FLNa-β3 interaction; and Del3, lacking the C-terminal Ig repeat 24, responsible for FLNa dimerization and interaction with the small Rho guanosine triphosphatase involved in actin cytoskeleton reorganisation. Fibrinogen binding to HEL cells in suspension and talin-β3 proximity in cells adherent to immobilized fibrinogen were assessed before and after αIIbβ3 activation by the protein kinase C agonist phorbol 12-myristate 13-acetate. Results Our results show that FLNa-actin and FLNa-β3 interactions negatively regulate αIIbβ3 activation. Moreover, FLNa-actin interaction represses Rac activation, contributing to the negative regulation of αIIbβ3 activation. In contrast, the FLNa dimerization domain, which maintains Rho inactive, was found to negatively regulate αIIbβ3 outside-in signaling. Conclusion We conclude that FLNa negatively controls αIIbβ3 activation by regulating actin polymerization and restraining activation of Rac, as well as outside-in signaling by repressing Rho.
Collapse
Affiliation(s)
- Lamia Lamrani
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Frédéric Adam
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Christelle Soukaseum
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Cécile V. Denis
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Hana Raslova
- UMR_S1170Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SudUniversité Paris‐SaclayGustave Roussy Cancer CampusEquipe Labellisée Ligue Nationale Contre le CancerVillejuifFrance
| | - Jean‐Philippe Rosa
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Marijke Bryckaert
- HIThUMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| |
Collapse
|
31
|
Powers JD, Kirkland NJ, Liu C, Razu SS, Fang X, Engler AJ, Chen J, McCulloch AD. Subcellular Remodeling in Filamin C Deficient Mouse Hearts Impairs Myocyte Tension Development during Progression of Dilated Cardiomyopathy. Int J Mol Sci 2022; 23:871. [PMID: 35055055 PMCID: PMC8779483 DOI: 10.3390/ijms23020871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.
Collapse
Affiliation(s)
- Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Natalie J. Kirkland
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Swithin S. Razu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Adam J. Engler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Ju Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
32
|
Kim HJ, Ryu KJ, Kim M, Kim T, Kim SH, Han H, Kim H, Hong KS, Song CY, Choi Y, Hwangbo C, Kim KD, Yoo J. RhoGDI2-Mediated Rac1 Recruitment to Filamin A Enhances Rac1 Activity and Promotes Invasive Abilities of Gastric Cancer Cells. Cancers (Basel) 2022; 14:cancers14010255. [PMID: 35008419 PMCID: PMC8750349 DOI: 10.3390/cancers14010255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Rho GDP dissociation inhibitor 2 (RhoGDI2), a regulator of Rho family GTPase, has been known to promote tumor growth and malignant progression by activating Rac1 in gastric cancer. However, the precise molecular mechanism by which RhoGDI2 activates Rac1 in gastric cancer cells remains unclear. In this study, we found that interaction between RhoGDI2 and Rac1 is a prerequisite for the recruitment of Rac1 to Filamin A. Moreover, we found that Filamin A acts as a scaffold protein that mediates Rac1 activation. Furthermore, we found that Trio, a Rac1-specific GEF, is critical for Rac1 activation in gastric cancer cells. Conclusively, RhoGDI2 increases Rac1 activity by recruiting Rac1 to Filamin A and enhancing the interaction between Rac1 and Trio, which is critical for invasive ability of gastric cancer cells. Our findings suggest that RhoGDI2 might be a potential therapeutic target for reducing gastric cancer cell metastasis. Abstract Rho GDP dissociation inhibitor 2 (RhoGDI2), a regulator of Rho family GTPase, has been known to promote tumor growth and malignant progression in gastric cancer. We previously showed that RhoGDI2 positively regulates Rac1 activity and Rac1 activation is critical for RhoGDI2-induced gastric cancer cell invasion. In this study, to identify the precise molecular mechanism by which RhoGDI2 activates Rac1 activity, we performed two-hybrid screenings using yeast and found that RhoGDI2 plays an important role in the interaction between Rac1, Filamin A and Rac1 activation in gastric cancer cells. Moreover, we found that Filamin A is required for Rac1 activation and the invasive ability of gastric cancer cells. Depletion of Filamin A expression markedly reduced Rac1 activity in RhoGDI2-expressing gastric cancer cells. The migration and invasion ability of RhoGDI2-expressing gastric cancer cells also substantially decreased when Filamin A expression was depleted. Furthermore, we found that Trio, a Rac1-specific guanine nucleotide exchange factor (GEF), is critical for Rac1 activation and the invasive ability of gastric cancer cells. Therefore, we conclude that RhoGDI2 increases Rac1 activity by recruiting Rac1 to Filamin A and enhancing the interaction between Rac1 and Trio, which is critical for the invasive ability of gastric cancer cells.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Ki-Jun Ryu
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Minju Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Taeyoung Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Seon-Hee Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Hyeontak Han
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Hyemin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Keun-Seok Hong
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Chae Yeong Song
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Yeonga Choi
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Cheol Hwangbo
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jiyun Yoo
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1327
| |
Collapse
|
33
|
Treppiedi D, Catalano R, Mangili F, Mantovani G, Peverelli E. Role of filamin A in the pathogenesis of neuroendocrine tumors and adrenal cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R143-R152. [PMID: 37435454 PMCID: PMC10259351 DOI: 10.1530/eo-22-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/13/2023]
Abstract
Cell cytoskeleton proteins are involved in tumor pathogenesis, progression and pharmacological resistance. Filamin A (FLNA) is a large actin-binding protein with both structural and scaffold functions implicated in a variety of cellular processes, including migration, cell adhesion, differentiation, proliferation and transcription. The role of FLNA in cancers has been studied in multiple types of tumors. FLNA plays a dual role in tumors, depending on its subcellular localization, post-translational modification (as phosphorylation at Ser2125) and interaction with binding partners. This review summarizes the experimental evidence showing the critical involvement of FLNA in the complex biology of endocrine tumors. Particularly, the role of FLNA in regulating expression and signaling of the main pharmacological targets in pituitary neuroendocrine tumors, pancreatic neuroendocrine tumors, pulmonary neuroendocrine tumors and adrenocortical carcinomas, with implications on responsiveness to currently used drugs in the treatment of these tumors, will be discussed.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
34
|
Spada A, Mantovani G, Lania AG, Treppiedi D, Mangili F, Catalano R, Carosi G, Sala E, Peverelli E. Pituitary Tumors: Genetic and Molecular Factors Underlying Pathogenesis and Clinical Behavior. Neuroendocrinology 2022; 112:15-33. [PMID: 33524974 DOI: 10.1159/000514862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022]
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial neoplasms. Although generally benign, they can show a clinically aggressive course, with local invasion, recurrences, and resistance to medical treatment. No universally accepted biomarkers of aggressiveness are available yet, and predicting clinical behavior of PitNETs remains a challenge. In rare cases, the presence of germline mutations in specific genes predisposes to PitNET formation, as part of syndromic diseases or familial isolated pituitary adenomas, and associates to more aggressive, invasive, and drug-resistant tumors. The vast majority of cases is represented by sporadic PitNETs. Somatic mutations in the α subunit of the stimulatory G protein gene (gsp) and in the ubiquitin-specific protease 8 (USP8) gene have been recognized as pathogenetic factors in sporadic GH- and ACTH-secreting PitNETs, respectively, without an association with a worse clinical phenotype. Other molecular factors have been found to significantly affect PitNET drug responsiveness and invasive behavior. These molecules are cytoskeleton and/or scaffold proteins whose alterations prevent proper functioning of the somatostatin and dopamine receptors, targets of medical therapy, or promote the ability of tumor cells to invade surrounding tissues. The aim of the present review is to provide an overview of the genetic and molecular alterations that can contribute to determine PitNET clinical behavior. Understanding subcellular mechanisms underlying pituitary tumorigenesis and PitNET clinical phenotype will hopefully lead to identification of new potential therapeutic targets and new markers predicting the behavior and the response to therapeutic treatments of PitNETs.
Collapse
Affiliation(s)
- Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea G Lania
- Endocrinology, Diabetology and Medical Andrology Unit, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Carosi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Sala
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
| |
Collapse
|
35
|
The Pharmacological Inhibition of CaMKII Regulates Sodium Chloride Cotransporter Activity in mDCT15 Cells. BIOLOGY 2021; 10:biology10121335. [PMID: 34943250 PMCID: PMC8698651 DOI: 10.3390/biology10121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC) in the distal convoluted tubule is responsible for reabsorbing up to one-tenth of the total filtered load of sodium in the kidney. The actin cytoskeleton is thought to regulate various transport proteins in the kidney but the regulation of the NCC by the actin cytoskeleton is largely unknown. Here, we identify a direct interaction between the NCC and the cytoskeletal protein filamin A in mouse distal convoluted tubule (mDCT15) cells and in the native kidney. We show that the disruption of the actin cytoskeleton by two different mechanisms downregulates NCC activity. As filamin A is a substrate of the Ca2+/calmodulin-dependent protein kinase II (CaMKII), we investigate the physiological significance of CaMKII inhibition on NCC luminal membrane protein expression and NCC activity in mDCT15 cells. The pharmacological inhibition of CaMKII with the compound KN93 increases the active form of the NCC (phospho-NCC) at the luminal membrane and also increases NCC activity in mDCT15 cells. These data suggest that the interaction between the NCC and filamin A is dependent on CaMKII activity, which may serve as a feedback mechanism to maintain basal levels of NCC activity in the distal nephron.
Collapse
|
36
|
Zhiping LL, Ong LT, Chatterjee D, Tan SM, Bhattacharjya S. Binary and ternary complexes of FLNa-Ig21 with cytosolic tails of αMß2 integrin reveal dual role of filamin mediated regulation. Biochim Biophys Acta Gen Subj 2021; 1865:130005. [PMID: 34509570 DOI: 10.1016/j.bbagen.2021.130005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cytoskeletal protein filamin A is critical for the outside-in signaling of integrins. Although molecular mechanisms of filamin-integrin interactions are not fully understood. Mostly, the membrane distal (MD) part of the cytosolic tail (CT) of β subunit of integrin is known to interact with filamin A domain 21 (FLNa-Ig2). However, binary and ternary complexes of full-length CTs of leucocyte specific ß2 integrins with FLNa-Ig21 are yet to be elucidated. METHODS Binding interactions of the CTs of integrin αMß2 with FLNa-Ig21 are extensively investigated by NMR, ITC, cell-based functional assays and computational docking. RESULTS The αM CT demonstrates interactions with FLNa-Ig21 forming a binary complex. Filamin/αM interface is mediated by sidechain-sidechain interactions among non-polar and aromatic residues involving MP helix of αM and the canonical CD face of FLNa-Ig21. Functional assays delineated an interfacial residue Y1137 of αM CT is critical for in-cell binding to FLNa-Ig2. In addition, full-length ß2 CT occupies two distinct binding sites in complex with FLNa-Ig21. A ternary complex of FLNa-Ig21 with CTs has been characterized. In the ternary complex, αM CT moves away to a distal site of FLNa-Ig21 with fewer interactions. CONCLUSION Our findings demonstrate a plausible dual role of filamin in integrin regulation. The molecular interactions of the ternary complex are critical for the resting state of integrins whereas stable FLNa-Ig21/αM CT binary complex perhaps be required for the activated state. GENERAL SIGNIFICANCE Filamin binding to both α and β CTs of other integrins could be essential in regulating bidirectional signaling mechanisms.
Collapse
Affiliation(s)
- Lewis Lu Zhiping
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Li-Teng Ong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Deepak Chatterjee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
37
|
Gigli M, Stolfo D, Graw SL, Merlo M, Gregorio C, Nee Chen S, Dal Ferro M, PaldinoMD A, De Angelis G, Brun F, Jirikowic J, Salcedo EE, Turja S, Fatkin D, Johnson R, van Tintelen JP, Te Riele ASJM, Wilde AAM, Lakdawala NK, Picard K, Miani D, Muser D, Maria Severini G, Calkins H, James CA, Murray B, Tichnell C, Parikh VN, Ashley EA, Reuter C, Song J, Judge DP, McKenna WJ, Taylor MRG, Sinagra G, Mestroni L. Phenotypic Expression, Natural History, and Risk Stratification of Cardiomyopathy Caused by Filamin C Truncating Variants. Circulation 2021; 144:1600-1611. [PMID: 34587765 DOI: 10.1161/circulationaha.121.053521] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Filamin C truncating variants (FLNCtv) cause a form of arrhythmogenic cardiomyopathy: the mode of presentation, natural history, and risk stratification of FLNCtv remain incompletely explored. We aimed to develop a risk profile for refractory heart failure and life-threatening arrhythmias in a multicenter cohort of FLNCtv carriers. METHODS FLNCtv carriers were identified from 10 tertiary care centers for genetic cardiomyopathies. Clinical and outcome data were compiled. Composite outcomes were all-cause mortality/heart transplantation/left ventricle assist device (D/HT/LVAD), nonarrhythmic death/HT/LVAD, and sudden cardiac death/major ventricular arrhythmias. Previously established cohorts of 46 patients with LMNA and 60 with DSP-related arrhythmogenic cardiomyopathies were used for prognostic comparison. RESULTS Eighty-five patients carrying FLNCtv were included (42±15 years, 53% men, 45% probands). Phenotypes were heterogeneous at presentation: 49% dilated cardiomyopathy, 25% arrhythmogenic left dominant cardiomyopathy, 3% arrhythmogenic right ventricular cardiomyopathy. Left ventricular ejection fraction was <50% in 64% of carriers and 34% had right ventricular fractional area changes (RVFAC=(right ventricular end-diastolic area - right ventricular end-systolic area)/right ventricular end-diastolic area) <35%. During follow-up (median time 61 months), 19 (22%) carriers experienced D/HT/LVAD, 13 (15%) experienced nonarrhythmic death/HT/LVAD, and 23 (27%) experienced sudden cardiac death/major ventricular arrhythmias. The sudden cardiac death/major ventricular arrhythmias incidence of FLNCtv carriers did not significantly differ from LMNA carriers and DSP carriers. In FLNCtv carriers, left ventricular ejection fraction was associated with the risk of D/HT/LVAD and nonarrhythmic death/HT/LVAD. CONCLUSIONS Among patients referred to tertiary referral centers, FLNCtv arrhythmogenic cardiomyopathy is phenotypically heterogeneous and characterized by a high risk of life-threatening arrhythmias, which does not seem to be associated with the severity of left ventricular dysfunction.
Collapse
Affiliation(s)
- Marta Gigli
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Davide Stolfo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.).,Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (D.S.)
| | - Sharon L Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Marco Merlo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Caterina Gregorio
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Italy (C.G.).,MOX-Modeling and Scientific Computing Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy (C.G.)
| | - Suet Nee Chen
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Matteo Dal Ferro
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Alessia PaldinoMD
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Giulia De Angelis
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Francesca Brun
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Jean Jirikowic
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Ernesto E Salcedo
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Sylvia Turja
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, and St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia (D.F., R.J.).,Cardiology Department, St Vincent's Hospital, Sydney, Australia (D.F.)
| | - Renee Johnson
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, and St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia (D.F., R.J.)
| | - J Peter van Tintelen
- Division of Medicine, Department of Genetics and Cardiology, University Medical Center, Utrecht, the Netherlands (J.P.v.T., A.S.J.M.T.R.).,Netherlands Heart Institute, Utrecht (J.P.v.T., A.S.J.M.T.R.)
| | - Anneline S J M Te Riele
- Division of Medicine, Department of Genetics and Cardiology, University Medical Center, Utrecht, the Netherlands (J.P.v.T., A.S.J.M.T.R.).,Netherlands Heart Institute, Utrecht (J.P.v.T., A.S.J.M.T.R.)
| | - Arthur A M Wilde
- Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, the Netherlands (A.W.)
| | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.K.L., K.P.)
| | - Kermshlise Picard
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.K.L., K.P.)
| | - Daniela Miani
- University Hospital of Udine, Italy (D. Miani, D. Muser)
| | - Daniele Muser
- University Hospital of Udine, Italy (D. Miani, D. Muser)
| | | | - Hugh Calkins
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M., C.T.)
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M., C.T.)
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M., C.T.)
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M., C.T.)
| | - Victoria N Parikh
- Stanford Center for Inherited Cardiovascular Disease, CA (V.N.P., E.A.A., C.R.)
| | - Euan A Ashley
- Stanford Center for Inherited Cardiovascular Disease, CA (V.N.P., E.A.A., C.R.)
| | - Chloe Reuter
- Stanford Center for Inherited Cardiovascular Disease, CA (V.N.P., E.A.A., C.R.)
| | - Jiangping Song
- National Center for Cardiovascular Diseases in Beijing, China (J.S.)
| | | | - William J McKenna
- Institute of Cardiovascular Science, University College of London, United Kingdom (W.J.M.)
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| |
Collapse
|
38
|
Chung S, Le TP, Vishwakarma V, Cheng YL, Andrew DJ. Isoform-specific roles of the Drosophila filamin-type protein Jitterbug (Jbug) during development. Genetics 2021; 219:iyab100. [PMID: 34173831 PMCID: PMC8860385 DOI: 10.1093/genetics/iyab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
Filamins are highly conserved actin-crosslinking proteins that regulate organization of the actin cytoskeleton. As key components of versatile signaling scaffolds, filamins are implicated in developmental anomalies and cancer. Multiple isoforms of filamins exist, raising the possibility of distinct functions for each isoform during development and in disease. Here, we provide an initial characterization of jitterbug (jbug), which encodes one of the two filamin-type proteins in Drosophila. We generate Jbug antiserum that recognizes all of the spliced forms and reveals differential expression of different Jbug isoforms during development, and a significant maternal contribution of Jbug protein. To reveal the function of Jbug isoforms, we create new genetic tools, including a null allele that deletes all isoforms, hypomorphic alleles that affect only a subset, and UAS lines for Gal4-driven expression of the major isoforms. Using these tools, we demonstrate that Jbug is required for viability and that specific isoforms are required in the formation of actin-rich protrusions including thoracic bristles in adults and ventral denticles in the embryo. We also show that specific isoforms of Jbug show differential localization within epithelia and that maternal and zygotic loss of jbug disrupts Crumbs (Crb) localization in several epithelial cell types.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thao Phuong Le
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vishakha Vishwakarma
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yim Ling Cheng
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
39
|
Agarwal R, Paulo JA, Toepfer CN, Ewoldt JK, Sundaram S, Chopra A, Zhang Q, Gorham J, DePalma SR, Chen CS, Gygi SP, Seidman CE, Seidman JG. Filamin C Cardiomyopathy Variants Cause Protein and Lysosome Accumulation. Circ Res 2021; 129:751-766. [PMID: 34405687 PMCID: PMC9053646 DOI: 10.1161/circresaha.120.317076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Radhika Agarwal
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Radcliffe Department of Medicine, University of Oxford, OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
| | - Subramanian Sundaram
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Qi Zhang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven R. DePalma
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - J. G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
40
|
Chen Y, Wei X, Zhang Z, He Y, Huo B, Guo X, Feng X, Fang ZM, Jiang DS, Zhu XH. Downregulation of Filamin a Expression in the Aorta Is Correlated With Aortic Dissection. Front Cardiovasc Med 2021; 8:690846. [PMID: 34485398 PMCID: PMC8414519 DOI: 10.3389/fcvm.2021.690846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Filamins (FLNs) are actin cross-linking proteins, and as scaffolding proteins, FLNs are closely associated with the stabilization of the cytoskeleton. Nevertheless, the biological importance of FLNs in aortic dissection (AD) has not been well-elucidated. In this study, we first reanalyzed datasets downloaded from the Gene Expression Omnibus (GEO) database, and we found that in addition to the extracellular matrix, the actin cytoskeleton is a key structure associated with AD. Given that FLNs are involved in remodeling the cytoskeleton to affect cellular functions, we measured their expression levels in the aortas of patients with Stanford type A AD (TAAD). Our results showed that the mRNA and protein levels of FLNA were consistently decreased in dissected aortas of both humans and mice, while the FLNB protein level was upregulated despite decreased FLNB mRNA levels, and comparable expression levels of FLNC were observed between groups. Furthermore, the immunohistochemistry results demonstrated that FLNA was highly expressed in smooth muscle cells (SMCs) of aorta in non-AD samples, and downregulated in the medial layer of the dissected aortas of humans and mice. Moreover, we revealed that FOS and JUN, forming a dimeric transcription factor called AP-1 (activating protein-1), were positively correlated with the expression of FLNA in aorta. Either overexpression of FOS or JUN alone, or overexpression of FOS and JUN together, facilitated the expression of FLNA in primary cultured human aortic SMCs. In the present study, we not only detected the expression pattern of FLNs in aortas of humans and mice with or without AD, but we also found that the expression of FLNA in the AD samples was significantly reduced and that AP-1 might regulate the expression of FLNA. Our findings will contribute to the elucidation of the pathological mechanisms of AD and provide potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zihao Zhang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
41
|
Wade EM, Jenkins ZA, Morgan T, Gimenez G, Gibson H, Peng H, Sanchez Russo R, Skraban CM, Bedoukian E, Robertson SP. Exon skip-inducing variants in FLNA in an attenuated form of frontometaphyseal dysplasia. Am J Med Genet A 2021; 185:3675-3682. [PMID: 34272929 DOI: 10.1002/ajmg.a.62424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
Pathogenic variation in the X-linked gene FLNA causes a wide range of human developmental phenotypes. Loss-of-function is usually male embryonic-lethal, and most commonly results in a neuronal migration disorder in affected females. Gain-of-function variants cause a spectrum of skeletal dysplasias that present with variable additional, often distinctive, soft-tissue anomalies in males and females. Here we present two, unrelated, male individuals with novel, intronic variants in FLNA that are predicted to be pathogenic. Their phenotypes are reminiscent of the gain-of-function spectrum without the skeletal manifestations. Most strikingly, they manifest urethral anomalies, cardiac malformations, and keloid scarring, all commonly encountered features of frontometaphyseal dysplasia. Both variants prevent inclusion of exon 40 into the FLNA transcript, predicting the in-frame deletion of 42 amino acids, however the abundance of FLNA protein was equivalent to that observed in healthy individuals. Loss of these 42 amino acids removes sites that mediate key FLNA functions, including binding of some ligands and phosphorylation. This phenotype further expands the spectrum of the FLNA filaminopathies.
Collapse
Affiliation(s)
- Emma M Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Hayley Gibson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Hui Peng
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Cara M Skraban
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emma Bedoukian
- The Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
42
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
43
|
Bandaru S, Ala C, Zhou AX, Akyürek LM. Filamin A Regulates Cardiovascular Remodeling. Int J Mol Sci 2021; 22:ijms22126555. [PMID: 34207234 PMCID: PMC8235345 DOI: 10.3390/ijms22126555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023] Open
Abstract
Filamin A (FLNA) is a large actin-binding cytoskeletal protein that is important for cell motility by stabilizing actin networks and integrating them with cell membranes. Interestingly, a C-terminal fragment of FLNA can be cleaved off by calpain to stimulate adaptive angiogenesis by transporting multiple transcription factors into the nucleus. Recently, increasing evidence suggests that FLNA participates in the pathogenesis of cardiovascular and respiratory diseases, in which the interaction of FLNA with transcription factors and/or cell signaling molecules dictate the function of vascular cells. Localized FLNA mutations associate with cardiovascular malformations in humans. A lack of FLNA in experimental animal models disrupts cell migration during embryogenesis and causes anomalies, including heart and vessels, similar to human malformations. More recently, it was shown that FLNA mediates the progression of myocardial infarction and atherosclerosis. Thus, these latest findings identify FLNA as an important novel mediator of cardiovascular development and remodeling, and thus a potential target for therapy. In this update, we summarized the literature on filamin biology with regard to cardiovascular cell function.
Collapse
Affiliation(s)
- Sashidar Bandaru
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Chandu Ala
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Alex-Xianghua Zhou
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Levent M. Akyürek
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
- Correspondence:
| |
Collapse
|
44
|
Pal J, Becker AC, Dhamija S, Seiler J, Abdelkarim M, Sharma Y, Behr J, Meng C, Ludwig C, Kuster B, Diederichs S. Systematic analysis of migration factors by MigExpress identifies essential cell migration control genes in non-small cell lung cancer. Mol Oncol 2021; 15:1797-1817. [PMID: 33934493 PMCID: PMC8253088 DOI: 10.1002/1878-0261.12973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/07/2022] Open
Abstract
Cell migration is an essential process in health and in disease, including cancer metastasis. A comprehensive inventory of migration factors is nonetheless lacking-in part due to the difficulty in assessing migration using high-throughput technologies. Hence, there are currently very few screens that systematically reveal factors controlling cell migration. Here, we introduce MigExpress as a platform for the 'identification of Migration control genes by differential Expression'. MigExpress exploits the combination of in-depth molecular profiling and the robust quantitative analysis of migration capacity in a broad panel of samples and identifies migration-associated genes by their differential expression in slow- versus fast-migrating cells. We applied MigExpress to investigate non-small cell lung cancer (NSCLC), which is the most frequent cause of cancer mortality mainly due to metastasis. In 54 NSCLC cell lines, we comprehensively determined mRNA and protein expression. Correlating the transcriptome and proteome profiles with the quantified migration properties led to the discovery and validation of FLNC, DSE, CPA4, TUBB6, and BICC1 as migration control factors in NSCLC cells, which were also negatively correlated with patient survival. Notably, FLNC was the least expressed filamin in NSCLC, but the only one controlling cell migration and correlating with patient survival and metastatic disease stage. In our study, we present MigExpress as a new method for the systematic analysis of migration factors and provide a comprehensive resource of transcriptomic and proteomic data of NSCLC cell lines related to cell migration.
Collapse
Affiliation(s)
- Jagriti Pal
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Andrea C Becker
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Sonam Dhamija
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jeanette Seiler
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mahmoud Abdelkarim
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Yogita Sharma
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Jürgen Behr
- Leibniz Institute for Food Systems, Technical University of Munich, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany.,Chair of Proteomics and Bioanalytics, DKTK Partner Site Munich, Freising, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Kim HR, Park JS, Karabulut H, Yasmin F, Jun CD. Transgelin-2: A Double-Edged Sword in Immunity and Cancer Metastasis. Front Cell Dev Biol 2021; 9:606149. [PMID: 33898417 PMCID: PMC8060441 DOI: 10.3389/fcell.2021.606149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Transgelin-2, a small actin-binding protein, is the only transgelin family member expressed in immune cells. In T and B lymphocytes, transgelin-2 is constitutively expressed, but in antigen-presenting cells, it is significantly upregulated upon lipopolysaccharide stimulation. Transgelin-2 acts as a molecular staple to stabilize the actin cytoskeleton, and it competes with cofilin to bind filamentous (F)-actin. This action may enable immune synapse stabilization during T-cell interaction with cognate antigen-presenting cells. Furthermore, transgelin-2 blocks Arp2/3 complex-nucleated actin branching, which is presumably related to small filopodia formation, enhanced phagocytic function, and antigen presentation. Overall, transgelin-2 is an essential part of the molecular armament required for host defense against neoplasms and infectious diseases. However, transgelin-2 acts as a double-edged sword, as its expression is also essential for a wide range of tumor development, including drug resistance and metastasis. Thus, targeting transgelin-2 can also have a therapeutic advantage for cancer treatment; selectively suppressing transgelin-2 expression may prevent multidrug resistance in cancer chemotherapy. Here, we review newly discovered molecular characteristics of transgelin-2 and discuss clinical applications for cancer and immunotherapy.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Hatice Karabulut
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Fatima Yasmin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
46
|
Weirich KL, Stam S, Munro E, Gardel ML. Actin bundle architecture and mechanics regulate myosin II force generation. Biophys J 2021; 120:1957-1970. [PMID: 33798565 DOI: 10.1016/j.bpj.2021.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022] Open
Abstract
The actin cytoskeleton is a soft, structural material that underlies biological processes such as cell division, motility, and cargo transport. The cross-linked actin filaments self-organize into a myriad of architectures, from disordered meshworks to ordered bundles, which are hypothesized to control the actomyosin force generation that regulates cell migration, shape, and adhesion. Here, we use fluorescence microscopy and simulations to investigate how actin bundle architectures with varying polarity, spacing, and rigidity impact myosin II dynamics and force generation. Microscopy reveals that mixed-polarity bundles formed by rigid cross-linkers support slow, bidirectional myosin II filament motion, punctuated by periods of stalled motion. Simulations reveal that these locations of stalled myosin motion correspond to sustained, high forces in regions of balanced actin filament polarity. By contrast, mixed-polarity bundles formed by compliant, large cross-linkers support fast, bidirectional motion with no traps. Simulations indicate that trap duration is directly related to force magnitude and that the observed increased velocity corresponds to lower forces resulting from both the increased bundle compliance and filament spacing. Our results indicate that the microstructures of actin assemblies regulate the dynamics and magnitude of myosin II forces, highlighting the importance of architecture and mechanics in regulating forces in biological materials.
Collapse
Affiliation(s)
- Kimberly L Weirich
- James Franck Institute, University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina
| | - Samantha Stam
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Department of Molecular and Cellular Biology, University of California, Davis, Davis, California
| | - Edwin Munro
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, Illinois
| | - Margaret L Gardel
- James Franck Institute, University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Department of Physics, University of Chicago, Chicago, Illinois.
| |
Collapse
|
47
|
Evangelista T, Lornage X, Carlier PG, Bassez G, Brochier G, Chanut A, Lacène E, Bui MT, Metay C, Oppermann U, Böhm J, Laporte J, Romero NB. A Heterozygous Mutation in the Filamin C Gene Causes an Unusual Nemaline Myopathy With Ring Fibers. J Neuropathol Exp Neurol 2021; 79:908-914. [PMID: 32607581 DOI: 10.1093/jnen/nlaa052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant pathogenic variants in the filamin C gene (FLNC) have been associated with myofibrillar myopathies, distal myopathies, and isolated cardiomyopathies. Mutations in different functional domains of FLNC can cause various clinical phenotypes. A novel heterozygous missense variant c.608G>A, p.(Cys203Tyr) in the actin binding domain of FLCN was found to cause an upper limb distal myopathy (MIM #614065). The muscle MRI findings are similar to those observed in FLNC-myofibrillar myopathy (MIM #609524). However, the muscle biopsy revealed >20% of muscle fibers with nemaline bodies, in addition to numerous ring fibers and a predominance of type 1 fibers. Overall, this case shows some unique and rare aspects of FLNC-myopathy constituting a new morphologic phenotype of FLNC-related myopathies.
Collapse
Affiliation(s)
- Teresinha Evangelista
- From the Neuromuscular Morphology Unit, Myology Institute.,Sorbonne Université, AP-HP, INSERM, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Xavière Lornage
- Department of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | | | - Guillaume Bassez
- From the Neuromuscular Morphology Unit, Myology Institute.,Sorbonne Université, AP-HP, INSERM, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Guy Brochier
- From the Neuromuscular Morphology Unit, Myology Institute.,Sorbonne Université, AP-HP, INSERM, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Anais Chanut
- From the Neuromuscular Morphology Unit, Myology Institute
| | - Emmanuelle Lacène
- From the Neuromuscular Morphology Unit, Myology Institute.,Sorbonne Université, AP-HP, INSERM, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Mai-Thao Bui
- From the Neuromuscular Morphology Unit, Myology Institute
| | - Corinne Metay
- AP-HP, Centre de Génétique Moléculaire et Chromosomique, UF de Cardiomyogénétique et Myogénétique Moléculaire et Cellulaire, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Ursula Oppermann
- Department of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Johann Böhm
- Department of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Norma B Romero
- From the Neuromuscular Morphology Unit, Myology Institute.,Sorbonne Université, AP-HP, INSERM, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| |
Collapse
|
48
|
Kim J, Lee DW, Jang JH, Kim M, Yim J, Jang DH. Case Report: Co-occurrence of Duchenne Muscular Dystrophy and Frontometaphyseal Dysplasia 1. Front Pediatr 2021; 9:628190. [PMID: 33718301 PMCID: PMC7952453 DOI: 10.3389/fped.2021.628190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/02/2022] Open
Abstract
Herein, we present a rare case of co-occurring Duchenne muscular dystrophy (DMD) and frontometaphyseal dysplasia 1 (FMD1), two different X-linked diseases, in a 7-year-old boy. He presented with proximal muscle weakness and elevated creatine phosphokinase levels. A multiplex ligation-dependent probe amplification study of DMD revealed the de novo duplications of exons 2-37, thereby confirming the diagnosis of DMD. Initial evaluation revealed atypical features, such as facial dysmorphism, multiple joint contractures, and severe scoliosis, at an early age. However, these were overlooked and were assumed to be atypical manifestations of DMD. Then, the patient's maternal cousin was diagnosed with FMD1 with pathogenic missense variant in FLNA (NM_001110556.2: c.3557C>T/p.Ser1186Leu). A family genetic test revealed that the patient and his mother had the same pathogenic variant in FLNA. The patient's atypical manifestations were considered symptoms of FMD1. Therefore, if one disease does not fully explain the patient's clinical features, an expanded genetic study is needed to detect coincidental disease.
Collapse
Affiliation(s)
- Jaewon Kim
- Department of Rehabilitation Medicine, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Dong-Woo Lee
- Department of Rehabilitation Medicine, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jisook Yim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
49
|
Lamsoul I, Dupré L, Lutz PG. Molecular Tuning of Filamin A Activities in the Context of Adhesion and Migration. Front Cell Dev Biol 2020; 8:591323. [PMID: 33330471 PMCID: PMC7714767 DOI: 10.3389/fcell.2020.591323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
The dynamic organization of actin cytoskeleton meshworks relies on multiple actin-binding proteins endowed with distinct actin-remodeling activities. Filamin A is a large multi-domain scaffolding protein that cross-links actin filaments with orthogonal orientation in response to various stimuli. As such it plays key roles in the modulation of cell shape, cell motility, and differentiation throughout development and adult life. The essentiality and complexity of Filamin A is highlighted by mutations that lead to a variety of severe human disorders affecting multiple organs. One of the most conserved activity of Filamin A is to bridge the actin cytoskeleton to integrins, thereby maintaining the later in an inactive state. We here review the numerous mechanisms cells have developed to adjust Filamin A content and activity and focus on the function of Filamin A as a gatekeeper to integrin activation and associated adhesion and motility.
Collapse
Affiliation(s)
- Isabelle Lamsoul
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Loïc Dupré
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Pierre G Lutz
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
50
|
Ebner JN, Ritz D, von Fumetti S. Abiotic and past climatic conditions drive protein abundance variation among natural populations of the caddisfly Crunoecia irrorata. Sci Rep 2020; 10:15538. [PMID: 32968134 PMCID: PMC7512004 DOI: 10.1038/s41598-020-72569-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Deducing impacts of environmental change on species and the populations they form in nature is an important goal in contemporary ecology. Achieving this goal is hampered by our limited understanding of the influence of naturally occurring environmental variation on the molecular systems of ecologically relevant species, as the pathways underlying fitness-affecting plastic responses have primarily been studied in model organisms and under controlled laboratory conditions. Here, to test the hypothesis that proteome variation systematically relates to variation in abiotic conditions, we establish such relationships by profiling the proteomes of 24 natural populations of the spring-dwelling caddisfly Crunoecia irrorata. We identified protein networks whose abundances correlated with environmental (abiotic) gradients such as in situ pH, oxygen- and nitrate concentrations but also climatic data such as past thermal minima and temperature seasonality. Our analyses suggest that variations in abiotic conditions induce discrete proteome responses such as the differential abundance of proteins associated with cytoskeletal function, heat-shock proteins and proteins related to post-translational modification. Identifying these drivers of proteome divergence characterizes molecular "noise", and positions it as a background against which molecular signatures of species' adaptive responses to stressful conditions can be identified.
Collapse
Affiliation(s)
- Joshua Niklas Ebner
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Danilo Ritz
- Proteomics Core Facility, University of Basel, Biozentrum Basel, Switzerland
| | - Stefanie von Fumetti
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|