1
|
Sakib S, Andoy NMO, Yang JYC, Galang A, Sullan RMA, Zou S. Antimicrobial and anti-inflammatory effects of polyethyleneimine-modified polydopamine nanoparticles on a burn-injured skin model. Biomater Sci 2025; 13:1770-1783. [PMID: 39995391 DOI: 10.1039/d4bm01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Chronic infections involving bacterial biofilms pose significant treatment challenges due to the resilience of biofilms against existing antimicrobials. Here, we introduce a nanomaterial-based platform for treating Staphylococcus epidermidis biofilms, both in isolation and within a biofilm-infected burn skin model. Our approach leverages biocompatible and photothermal polydopamine nanoparticles (PDNP), functionalized with branched polyethyleneimine (PEI) and loaded with the antibiotic rifampicin, to target bacteria dwelling within biofilms. A key innovation of our method is its ability to not only target planktonic S. epidermidis but also effectively tackle biofilm-embedded bacteria. We demonstrated that PDNP-PEI interacts effectively with the bacterial surface, facilitating laser-activated photothermal eradication of planktonic S. epidermidis. In a 3D skin burn injury model, PDNP-PEI demonstrates anti-inflammatory and reactive oxygen species (ROS)-scavenging effects, reducing inflammatory cytokine levels and promoting healing. The rifampicin-loaded PDNP-PEI (PDNP-PEI-Rif) platform further shows significant efficacy against bacteria inside biofilms. The PDNP-PEI-Rif retained its immunomodulatory activity and efficiently eradicated biofilms grown on our burn-injured 3D skin model, effectively addressing the challenges of biofilm-related infections. This achievement marks a significant advancement in infection management, with the potential for a transformative impact on clinical practice.
Collapse
Affiliation(s)
- Sadman Sakib
- Metrology Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| | - Nesha May O Andoy
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
| | - Jessica Y C Yang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
| | - Anna Galang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada.
| | - Ruby May A Sullan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada.
| | - Shan Zou
- Metrology Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| |
Collapse
|
2
|
Logullo J, Diniz-Lima I, Rocha JDB, Cortê-Real S, Silva-Júnior EBD, Guimarães-de-Oliveira JC, Morrot A, Fonseca LMD, Freire-de-Lima L, Decote-Ricardo D, Freire-de-Lima CG. Increased Trypanosoma cruzi Growth during Infection of Macrophages Cultured on Collagen I Matrix. Life (Basel) 2023; 13:life13041063. [PMID: 37109592 PMCID: PMC10143308 DOI: 10.3390/life13041063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The interactions between cell and cellular matrix confers plasticity to each body tissue, influencing the cellular migratory capacity. Macrophages rely on motility to promote their physiological function. These phagocytes are determinant for the control of invasive infections, and their immunological role largely depends on their ability to migrate and adhere to tissue. Therefore, they interact with the components of the extracellular matrix through their adhesion receptors, conferring morphological modifications that change their shape during migration. Nevertheless, the need to use in vitro cell growth models with the conditioning of three-dimensional synthetic matrices to mimic the dynamics of cell-matrix interaction has been increasingly studied. This becomes more important to effectively understand the changes occurring in phagocyte morphology in the context of infection progression, such as in Chagas disease. This disease is caused by the intracellular pathogen Trypanosoma cruzi, capable of infecting macrophages, determinant cells in the anti-trypanosomatid immunity. In the present study, we sought to understand how an in vitro extracellular matrix model interferes with T. cruzi infection in macrophages. Using different time intervals and parasite ratios, we evaluated the cell morphology and parasite replication rate in the presence of 3D collagen I matrix. Nevertheless, microscopy techniques such as scanning electron microscopy were crucial to trace macrophage-matrix interactions. In the present work, we demonstrated for the first time that the macrophage-matrix interaction favors T. cruzi in vitro replication and the release of anti-inflammatory cytokines during macrophage infection, in addition to drastically altering the morphology of the macrophages and promoting the formation of migratory macrophages.
Collapse
Affiliation(s)
- Jorgete Logullo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Juliana Dutra B Rocha
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Suzana Cortê-Real
- Laboratório de Biologia Estrural, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
| | - Elias Barbosa da Silva-Júnior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | | | - Alexandre Morrot
- Laboratório de Imunoparasitogia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Leonardo Marques da Fonseca
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
3
|
Teplický T, Mateašík A, Balázsiová Z, Kajo K, Vallová M, Filová B, Trnka M, Čunderlíková B. Phenotypical modifications of immune cells are enhanced by extracellular matrix. Exp Cell Res 2021; 405:112710. [PMID: 34174319 DOI: 10.1016/j.yexcr.2021.112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/20/2021] [Accepted: 06/19/2021] [Indexed: 12/31/2022]
Abstract
Immune cells not only constitute tumour microenvironment but they may even affect disease prognosis as a result of dual functional roles that they may play in tumour tissues. Two frequently used established immune cell lines (lymphocytic Jurkat and monocytic THP-1) were used to test whether microenvironmental factors, especially molecular components of extracellular matrix, can shape the phenotype of immune cells. Proliferation, morphological and phenotypical analyses were applied to compare behaviour of the immune cells, typically cultured as suspensions in culture medium, with their behaviour in collagen type I-based and Matrigel-based 3D cultures. Density of both immune cell types in routine suspension cultures affected their subsequent proliferation in extracellular matrices. THP-1 cells appeared to be more sensitive to their surrounding microenvironment as judged from extracellular matrix type-dependent changes in their cell doubling times and from slight increase in their diameters in both extracellular matrix-containing cell cultures. Moreover, even chemically uninduced monocytic THP-1 cells were present in a minor fraction as CD68 positive cell population in collagen type I matrix indicating their partial differentiation to macrophages. Observed modifications of immune cells by microenvironmental factors may have profound implications for their roles in healthy and pathological tissues.
Collapse
Affiliation(s)
- Tibor Teplický
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Anton Mateašík
- International Laser Centre, Slovak Centre of Scientific and Technical Information, Bratislava, Slovakia
| | - Zuzana Balázsiová
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia; Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Vallová
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Barbora Filová
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Trnka
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Beata Čunderlíková
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; International Laser Centre, Slovak Centre of Scientific and Technical Information, Bratislava, Slovakia.
| |
Collapse
|
4
|
Human macrophages and osteoclasts resorb β-tricalcium phosphate in vitro but not mouse macrophages. Micron 2019; 125:102730. [PMID: 31415983 DOI: 10.1016/j.micron.2019.102730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/12/2019] [Accepted: 07/29/2019] [Indexed: 11/22/2022]
Abstract
β-TCP is a resorbable bony biomaterial but its biodegradation mechanisms in vivo remains unclear. Osteoclast can resorb β-TCP but a role for macrophages has also been suggested by in vivo studies. However no in vitro study has clearly evidenced the action of macrophages in the resorption process. We prepared flat β-TCP tablets with a smooth surface to investigate the in vitro capability of murine (RAW 264.7) and human macrophage cells (PBMCs) to resorb the biomaterial. In parallel, these cells were differentiated into multinucleated osteoclasts with M-CSF and RANK-L. The action of these cells was evaluated by scanning electron microscopy and Raman microspectroscopy after a 21 day culture on the tablets. Human macrophages and osteoclasts derived from PBMCs appeared able to resorb β-TCP by forming resorption pits at the surface of the flat tablets. RAW macrophages were unable to resorb β-TCP but they exhibited this possibility when they have been differentiated into osteoclasts. These cells can engulf β-TCP grains in their cytoplasm as evidenced by light and TEM microscopy with production of carbonic anhydrase (revealed by the immunogold technique in TEM). The resorbed areas were characterized by severe degradation of the grains showing speckled and stick-like aspects indicating a chemical corrosion. The effect was maximal at the grain boundaries which have a slightly different chemical composition. Changes in the Raman spectrum were observed between the resorbed and un-resorbed β-TCP suggesting crystal modifications. In contrast, un-differentiated murine macrophages were not able to chemically attack β-TCP and no resorption pit was observed. RAW cell is not a representative model of the macrophage-biomaterial interactions that occur in human. This in vitro study evidences that both human osteoclasts and macrophages represent active cell populations capable to resorb β-TCP.
Collapse
|
5
|
Kim H, Chung H, Kim J, Choi D, Shin Y, Kang YG, Kim B, Seo S, Chung S, Seok SH. Macrophages-Triggered Sequential Remodeling of Endothelium-Interstitial Matrix to Form Pre-Metastatic Niche in Microfluidic Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900195. [PMID: 31179226 PMCID: PMC6548952 DOI: 10.1002/advs.201900195] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/01/2019] [Indexed: 05/07/2023]
Abstract
The primed microenvironment of future metastatic sites, called the pre-metastatic niche, is a prerequisite for overt metastasis. However, a mechanistic understanding of the contributions of recruited cells to the niche is hindered by complex in vivo systems. Herein, a microfluidic platform that incorporates endothelial cells and extracellular matrix (ECM) scaffolds is developed, and the distinct role of recruited monocytes and macrophages in establishing pre-metastatic niches is delineated. It is observed that monocyte-derived matrix metalloproteinase 9 facilitates cancer cell extravasation through destruction of endothelial tight junctions. Furthermore, subsequent cancer cell invasiveness is significantly enhanced. Close examination of ECM structures reveals that cancer cells move within characteristic "microtracks" generated by macrophages, suggesting that macrophages could serve as a compensatory mechanism for the reduced migratory capacity of cancer cells. Thus, the first evidence of monocyte/macrophage-induced remodeling is shown, and these findings will open up new horizons for improving characterization of the pre-metastatic niche and corresponding immunotherapies.
Collapse
Affiliation(s)
- Hyunho Kim
- School of Mechanical EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Hyewon Chung
- Department of Microbiology and ImmunologyInstitute of Endemic DiseaseCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Jaehoon Kim
- School of Mechanical EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Dong‐Hee Choi
- School of Mechanical EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Yoojin Shin
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Yong Guk Kang
- Department of Bio‐Convergence EngineeringCollege of Health ScienceKorea UniversitySeoul02841Republic of Korea
| | - Beop‐Min Kim
- Department of Bio‐Convergence EngineeringCollege of Health ScienceKorea UniversitySeoul02841Republic of Korea
| | - Sang‐Uk Seo
- Department of Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Seok Chung
- School of Mechanical EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and ImmunologyInstitute of Endemic DiseaseCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| |
Collapse
|
6
|
Mahmoudzadeh A, Mohsenifar A, Rahmani-Cherati T. Collagen-chitosan 3-D nano-scaffolds effects on macrophage phagocytosis and pro-inflammatory cytokine release. J Immunotoxicol 2016; 13:526-34. [PMID: 27042873 DOI: 10.3109/1547691x.2016.1139642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Macrophages are effector cells in the innate and adaptive immune systems and in situ exist within three-dimensional (3-D) microenvironments. As there has been an increase in interest in the use of 3-D scaffolds to mimic natural microenvironments in vitro, this study examined the impact on cultured mice peritoneal macrophages using standard 2-D plates as compared to 3-D collagen-chitosan scaffolds. Here, 2-D and 3-D cultured macrophages were evaluated for responses to lipopolysaccharide (LPS), dexamethasone (Dex), BSA (bovine serum albumin), safranal (herbal component isolated from safranal [Saf]) and Alyssum homolocarpum mucilage (A. muc: mixed herbal components). After treatments, cultured macrophages were evaluated for viability, phagocytic activity and release of tumor necrosis factor (TNF)-α and interleukin (IL)-1β pro-inflammatory cytokines. Comparison of 2-D vs 3-D cultures showed that use of either system - with or without any exogenous agent - had no effect on cell viability. In the case of cell function, macrophages cultured on scaffolds had increases in phagocytic activity relative to that by cells on 2-D plates. In general, the test herbal components Saf and A. muc. had more impact than any of the other exogenous agents on nanoparticle uptake. With respect to production of TNFα and IL-1β, compared to the 2-D cells, scaffold cells tended to have significantly different levels of production of each cytokine, with the effect varying (higher or lower) depending on the test agent used. However, unlike with particle uptake, here, while Saf and A. muc. led to significantly greater levels of cytokine formation by the 3-D culture cells vs that by the 2-D plate cells, there was no net effect (stimulatory) vs control cultures. These results illustrated that collagen-chitosan scaffolds could provide a suitable 3-D microenvironment for macrophage phagocytosis and could also impact on the formation of pro-inflammatory cytokines.
Collapse
Affiliation(s)
| | - Afshin Mohsenifar
- b Research and Development Department , South Pirozan, Shahrak Qods , Tehran , Iran
| | | |
Collapse
|
7
|
Zerva I, Simitzi C, Siakouli-Galanopoulou A, Ranella A, Stratakis E, Fotakis C, Athanassakis I. Implantable vaccine development using in vitro antigen-pulsed macrophages absorbed on laser micro-structured Si scaffolds. Vaccine 2015; 33:3142-9. [PMID: 25979803 DOI: 10.1016/j.vaccine.2015.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/05/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
To overcome the limiting antigenic repertoire of protein sub-units and the side effects of adjuvants applied in second generation vaccines, the present work combined in vitro and in vivo manipulations to develop biomaterials allowing natural antigen-loading and presentation in vitro and further activation of the immune response in vivo. 3-dimensional laser micro-textured implantable Si-scaffolds supported mouse macrophage adherence, allowed natural seeding with human serum albumin (antigen) and specific antibody and inflammatory cytokine production in vitro. Implantation of Si-scaffolds loaded with antigen-activated macrophages induced an inflammatory reaction along with antigen-specific antibody production in vivo, which could be detected even 30 days post implantation. Analysis of implant histology using scanning electron microscopy showed that Si-scaffolds could be stable for a 6-month period. Such technology leads to personalized implantable vaccines, opening novel areas of research and treatment.
Collapse
Affiliation(s)
- Ioanna Zerva
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion 71409, Crete, Greece
| | - Chara Simitzi
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion 71409, Crete, Greece; Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Vassilika Vouton, Heraklion 71409, Crete, Greece
| | | | - Anthi Ranella
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Vassilika Vouton, Heraklion 71409, Crete, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Vassilika Vouton, Heraklion 71409, Crete, Greece
| | - Costas Fotakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Vassilika Vouton, Heraklion 71409, Crete, Greece; Department of Physics, University of Crete, Vassilika Vouton, Heraklion 71409, Crete, Greece
| | - Irene Athanassakis
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion 71409, Crete, Greece.
| |
Collapse
|
8
|
Murray MY, Birkland TP, Howe JD, Rowan AD, Fidock M, Parks WC, Gavrilovic J. Macrophage migration and invasion is regulated by MMP10 expression. PLoS One 2013; 8:e63555. [PMID: 23691065 PMCID: PMC3653827 DOI: 10.1371/journal.pone.0063555] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/03/2013] [Indexed: 12/31/2022] Open
Abstract
This study was designed to identify metalloproteinase determinants of macrophage migration and led to the specific hypothesis that matrix metalloproteinase 10 (MMP10/stromelysin-2) facilitates macrophage migration. We first profiled expression of all MMPs in LPS-stimulated primary murine bone marrow-derived macrophages and Raw264.7 cells and found that MMP10 was stimulated early (3 h) and down-regulated later (24 h). Based on this pattern of expression, we speculated that MMP10 plays a role in macrophage responses, such as migration. Indeed, using time lapse microscopy, we found that RNAi silencing of MMP10 in primary macrophages resulted in markedly reduced migration, which was reversed with exogenous active MMP10 protein. Mmp10 (-/-) bone marrow-derived macrophages displayed significantly reduced migration over a two-dimensional fibronectin matrix. Invasion of primary wild-type macrophages into Matrigel supplemented with fibronectin was also markedly impaired in Mmp10 (-/-) cells. MMP10 expression in macrophages thus emerges as an important moderator of cell migration and invasion. These findings support the hypothesis that MMP10 promotes macrophage movement and may have implications in understanding the control of macrophages in several pathologies, including the abnormal wound healing response associated with pro-inflammatory conditions.
Collapse
Affiliation(s)
- Megan Y. Murray
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Timothy P. Birkland
- Center for Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - Jonathan D. Howe
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Andrew D. Rowan
- Musculoskeletal Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, United Kingdom
| | - Mark Fidock
- Pfizer Global Research and Development, Sandwich, Kent, United Kingdom
| | - William C. Parks
- Center for Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - Jelena Gavrilovic
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Barthelemi S, Robinet J, Garnotel R, Antonicelli F, Schittly E, Hornebeck W, Lorimier S. Mechanical forces-induced human osteoblasts differentiation involves MMP-2/MMP-13/MT1-MMP proteolytic cascade. J Cell Biochem 2012; 113:760-72. [DOI: 10.1002/jcb.23401] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Kiran MS, Viji RI, Kumar SV, Prabhakaran AA, Sudhakaran PR. Changes in expression of VE-cadherin and MMPs in endothelial cells: Implications for angiogenesis. Vasc Cell 2011; 3:6. [PMID: 21349163 PMCID: PMC3045352 DOI: 10.1186/2045-824x-3-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/14/2011] [Indexed: 12/02/2022] Open
Abstract
The mechanism of cell-cell contact dependent regulation of pericellular proteolysis in angiogenesis was examined by studying the expression of MMPs using isolated HUVECs in culture. Zymography, Immunoblot and RT-PCR analysis showed that the production and secretion of matrixmetalloproteinase-2 and matrixmetalloproteinase-9 by HUVECs in culture were high when they remain as individual cells and significantly decreased during later stages of culture when cells developed cell-cell contact and tubular network-like structure. As MMPs decreased there was significant upregulation of VE-cadherin in cells undergoing angiogenic transition. Investigations to understand the signaling pathways downstream of VE-cadherin showed a relatively high level of β-catenin in the nucleus of endothelial cells in culture during initial stages and decrease in its levels in the nucleus, associated with an increase in the cytosol during later stages of culture. The distribution of β-catenin was found to be regulated by Tyr/Ser phosphorylation status of this protein. Cell-cell contact dependent downregulation of MMPs during angiogenesis was also observed in experiments using proangiogenic substances which caused a rapid rate of downregulation of MMP-2 and MMP-9 and absence of downregulation of MMPs when treated with anti-angiogenic agents.
Collapse
Affiliation(s)
- Manikantan S Kiran
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala-695581, India.
| | | | | | | | | |
Collapse
|
11
|
Saja K, Babu MS, Karunagaran D, Sudhakaran PR. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. Int Immunopharmacol 2007; 7:1659-67. [PMID: 17996675 DOI: 10.1016/j.intimp.2007.08.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 08/04/2007] [Accepted: 08/26/2007] [Indexed: 12/26/2022]
Abstract
Curcumin (1, 7-bis (4-hydroxyl-3-methoxyphenyl)-1, 6 heptadiene-3, 5-dione) is a potent natural anti oxidant and anti-inflammatory agent, which mediates its effects mainly by inhibiting the activity of enzymes like cyclooxygenase, lipooxygenases and phospholipase A2. Here we examined the possibility of curcumin affecting the production of matrix metalloproteinases (MMPs) by peripheral blood mononuclear cells (PBMCs), which play an important role in inflammation. Zymographic analysis and ELISA showed that curcumin significantly inhibited the activity and level of MMPs produced by PBMCs isolated from human and inflammation-induced rabbit in a concentration dependent manner. The administration of curcumin to inflammation-induced rabbits also caused downregulation of MMP-9. Kinetic analysis showed that the effect of curcumin was a delayed one indicating inhibition of de novo protein synthesis. RT-PCR and immunoblot analysis showed inhibition of the production of MMP-9 mRNA and protein respectively by human PBMCs, which were activated in vitro by Artocarpus Lakoocha agglutinin (ALA) lectin. EMSA and super shift showed activation of classical NFkappaB in in vitro activated PBMCs and treatment with curcumin inhibited activation of NFkappaB. Immunoblot analysis suggested that ALA-induced activation of NFkappaB leading to the upregulation of MMP-9 was due to the degradation of IkappaB-alpha. Curcumin inhibited the degradation of IkappaB-alpha, which inhibited the ALA mediated activation of NFkappaB and upregulation of MMP-9. These results indicated that anti-inflammatory effect of curcumin also involves inhibition of the production of MMP-9 in PBMCs.
Collapse
Affiliation(s)
- K Saja
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | | | | | | |
Collapse
|
12
|
Radhika A, Jacob SS, Sudhakaran PR. Influence of oxidatively modified LDL on monocyte-macrophage differentiation. Mol Cell Biochem 2007; 305:133-43. [PMID: 17660956 DOI: 10.1007/s11010-007-9536-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Transendothelial migration of peripheral blood mononuclear cells (PBMCs) and their subsequent interaction with the subendothelial matrix lead to their differentiation to macrophages (mphis). To study whether preexposure of monocytes in circulation to modified proteins influences their differentiation to mphis, an in vitro model system using isolated PBMC in culture was used. The effect of modified proteins such as oxidatively modified LDL (ox-LDL), acetylated and non-enzymatically glycated-BSA (NEG-BSA) on the differentiation process was studied by monitoring the upregulation of mphi specific functions such as endocytosis, production of matrix metalloproteinases (MMPs), expression of surface antigen, activity of beta-glucuronidase and down regulation of monocyte specific myeloperoxidase activity. Rate of endocytosis, production of MMPs and beta-glucuronidase activity were significantly greater in cells treated with modified proteins irrespective of the nature of modification. Both CuSO4 ox-LDL and HOCl ox-LDL increased the rate of expression of the mphi specific functions. FACS analysis showed that the rate of upregulation of mphi specific CD71 and down regulation of monocyte specific CD14 were high in cells supplemented with modified proteins. Studies using PPARgamma antagonist and agonist suggest its involvement in CuSO4 ox-LDL induced monocyte-macrophage (mo-mphi) differentiation whereas the expression of macrophage specific functions in cells exposed to other modified proteins was independent of PPARgamma. PBMC isolated from hypercholesterolemic rabbits in culture expressed mphi specific functions at a faster rate compared to normal controls indicating that these observations are relevant in vivo. These results indicate that preexposure of monocytes to modified proteins promote their differentiation to mphis and may serve as a feed forward type control for clearing modified proteins.
Collapse
Affiliation(s)
- Achuthan Radhika
- Department of Biochemistry, University of Kerala, Kariavattom, Trivandrum, 695 581, India
| | | | | |
Collapse
|
13
|
Sudhakaran PR, Radhika A, Jacob SS. Monocyte macrophage differentiation in vitro: Fibronectin-dependent upregulation of certain macrophage-specific activities. Glycoconj J 2006; 24:49-55. [PMID: 17115276 DOI: 10.1007/s10719-006-9011-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transendothelial migration of monocytes followed by their differentiation into macrophages involves interaction of monocytes with subendothelial matrix. The influence of extracellular matrix on monocyte-macrophage differentiation was studied using an in vitro model system with human PBMC maintained on different matrix protein substrata. Upregulation of macrophage specific marker activities such as endocytosis of modified proteins, changes in expression of cell surface antigen, and production of matrix metalloproteinases was studied. Cells maintained on Fibronectin (Fn) showed significantly higher rate of endocytosis and production of MMP2 and MMP9 when compared to other matrix protein substrata. Immunoblot analysis, ELISA, and zymography showed that Fn-dependent upregulation of MMPs was blocked by antibodies to alpha(5)beta(1) integrin indicating that the Fn effect was mediated by integrins. The Fn effect on mo-mPhi was blocked by genistein and herbimycin. As monocytes differentiate to macrophages there was an increase in the rate of production of Fn. These results indicate the influence of the microenvironment of the cell, particularly Fn, on mo-mPhi differentiation and integrin-mediated downstream signaling through focal adhesion kinase and Src type tyrosine kinase is involved in this.
Collapse
Affiliation(s)
- P R Sudhakaran
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, 695 581 Kerala, India.
| | | | | |
Collapse
|
14
|
Saja K, Chatterjee U, Chatterjee BP, Sudhakaran PR. Activation dependent expression of MMPs in peripheral blood mononuclear cells involves protein kinase A. Mol Cell Biochem 2006; 296:185-92. [PMID: 17043752 DOI: 10.1007/s11010-006-9314-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Monocyte/Macrophages are integral cellular components of inflammation. Matrix metalloproteinases (MMPs) produced by these cells play a crucial role in every aspect of inflammation. Results of the investigations on activation dependent upregulation of MMPs in human peripheral blood mononuclear cells in culture using different lectins as an in vitro model system to mimic inflammatory monocytes are presented. Under normal physiological conditions the monocytes produced only very low amount of MMPs in an indomethacin insensitive PG/cAMP independent manner. Zymographic analysis and ELISA showed that treatment of monocyte with lectins like concanavalin A (ConA), wheat germ agglutinin (WGA) and Artocarpus lakoocha agglutinin (ALA) caused upregulation of MMPs and the maximum effect was produced by ALA. ALA significantly upregulated MMP-9 in a concentration and time dependent manner. Immunoblot analysis and RT-PCR confirmed ALA mediated upregulation of MMP-9 production. Inhibition of ALA effect by indomethacin and reversal of the indomethacin effect by Bt(2)cAMP indicated involvement of cAMP dependent signaling pathway. Further support for the prostaglandin mediated effect was obtained by the upregulation of cyclooxygenase by ALA. H-89, an inhibitor of protein kinase A (PKA), inhibited the expression of MMP-9 indicating that ALA mediated upregulation of MMP-9 is mediated through PKA pathway. Increase in MMP production and increase in cyclooxygenase activity and inhibition of the effect of ALA on MMP production by indomethacin suggested that the ALA activated monocytes in culture can be used as an in vitro model system to study the intracellular signaling process involved in the mediation of inflammatory response.
Collapse
Affiliation(s)
- K Saja
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, 695 581, Kerala, India
| | | | | | | |
Collapse
|
15
|
Yoshimura T, Matsuyama W, Kamohara H. Discoidin domain receptor 1: a new class of receptor regulating leukocyte-collagen interaction. Immunol Res 2006. [PMID: 15888913 DOI: 10.1385/ir: 31: 3: 219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous studies demonstrated that type I collagen, a major component of the extracellular matrix, could influence the differentiation and function of leukocytes; however, it is not clear whether those effects of collagen were based on its interaction with the classic collagen receptors, alpha1beta1 and alpha2beta1 integrins. We recently detected significant upregulation of discoidin domain receptor 1 (DDR1), a new class of collagen receptor, in human leukocytes, including neutrophils, monocytes, and lymphocytes, in vitro, leading to the hypothesis that the leukocyte-activating effects of collagen might be owing to its interaction with DDR1. In this review, we summarize our recent findings demonstrating that DDR1-collagen interaction facilitates the adhesion, migration, differentiation/maturation, and cytokine/chemokine production of leukocytes. We also describe the intracellular signaling pathways activated by DDR1 interaction with collagen.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
16
|
Matsuyama W, Kamohara H, Galligan C, Faure M, Yoshimura T. Interaction of discoidin domain receptor 1 isoform b (DDR1b) with collagen activates p38 mitogen-activated protein kinase and promotes differentiation of macrophages. FASEB J 2003; 17:1286-8. [PMID: 12738814 DOI: 10.1096/fj.02-0320fje] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase activated by collagen. DDR1 is constitutively expressed in a variety of normal and transformed epithelial cells and plays a role in cell migration and differentiation through as yet unidentified signaling pathways. We previously reported inducible expression of DDR1 in human leukocytes and suggested a role for the DDR1a isoform in leukocyte migration through extracellular matrix. Here, we evaluated the contribution of DDR1 in the differentiation of the human monocytic THP-1 cells overexpressing these isoforms and of primary macrophages. Interestingly, collagen activation of DDR1b, but not DDR1a, further promoted phorbol ester-induced differentiation of THP-1 cells as determined by reduced cell proliferation and up-regulated expression of HLA-DR, CD11c, CD14, and CD40. Collagen activation of DDR1b also induced the recruitment and phosphorylation of Shc and subsequent phosphorylation of p38 mitogen-activated protein (MAP) kinase and its substrate ATF2. A p38 MAP kinase inhibitor, SB203580, completely inhibited DDR1b-mediated HLA-DR expression. Activation of DDR1 endogenously expressed on macrophages also up-regulated their HLA-DR expression in a p38 MAP kinase-dependent manner. Thus, DDR1b in response to collagen transduces signals that promote maturation/differentiation of HLA-DR-positive antigen-presenting cells and contributes to the development of adaptive immunity in a tissue microenvironment.
Collapse
Affiliation(s)
- Wataru Matsuyama
- Laboratory of Molecular Immunoregulation, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|