1
|
Hasan HF, Mohmed HK, Galal SM. Scorpion bradykinin potentiating factor mitigates lung damage induced by γ-irradiation in rats: Insights on AngII/ACE/Ang(1-7) axis. Toxicon 2021; 203:58-65. [PMID: 34626598 DOI: 10.1016/j.toxicon.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
The goal of this research is to study the mitigating impact of bradykinin potentiating factor (BPF) found in scorpion Androctonus bicolor venom on irradiation-induced lung damage as a new functional target for angiotensin-converting enzyme inhibitors (ACEIs). Male rats were exposed to 7 Gy of γ-radiation as a single dose, with a biweekly intraperitoneal injection of 1 μg/g BPF. Gamma irradiation not only boosted the ACE activity and angiotensin II (Ang II) level, in lung tissue but also significantly depressed the angiotensin (1-7) (Ang (1-7)) that, lead to lung toxicity through a significant elevation of pulmonary levels of CXC-chemokine receptor 4 (CXCR4), toll-like receptor 4 (TLR4), nitric oxide (NO) and lactate dehydrogenase (LDH) activity with a marked disruption in oxidative stress markers, via a reduction in the level of total thiol (tSH) and superoxide dismutase (SOD) activity associated with an elevation in protein carbonyl (PCO) contents. In addition, apoptotic consequences of gamma irradiation were evidenced by raising the levels of mitogen-activated protein kinase (MAPK), C-Jun N-Terminal Kinases (JNK), and cleaved caspase-3. BPF administration leads to ACE inhibition, consequently sustaining decreased Ang II alongside increased Ang (1-7) production. Those sensitive molecules reduce irradiated lung issues. In conclusion, BPF significantly diminished the biochemical and histopathological consequences of radiation through renin-angiotensin system (RAS) control and ACE suppression in the lung.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt.
| | - Heba Karam Mohmed
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Shereen Mohamed Galal
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Godisela KK, Reddy SS, Reddy PY, Kumar CU, Reddy VS, Ayyagari R, Reddy GB. Role of sorbitol-mediated cellular stress response in obesity-associated retinal degeneration. Arch Biochem Biophys 2020; 679:108207. [PMID: 31760123 DOI: 10.1016/j.abb.2019.108207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Obesity is a global health problem associated with several diseases including ocular complications. Earlier we reported progressive retinal degeneration because of obesity in a spontaneous obese rat (WNIN/Ob) model. In the current study, we examined the molecular mechanisms leading to retinal degeneration in WNIN/Ob rat. METHODS Sorbitol was estimated by the fluorometric method in the retina of WNIN/Ob rats at different age (3-, 6- and 12- months), along with their respective lean rats. Immunoblotting was performed in the retina to assess the status of the insulin signaling pathway, ER stress and cellular stress (p38MAPK and ERK1/2). Human SK-N-SH cells were treated with 0.5 and 1.0 M sorbitol for 30 min to study insulin signaling, ER stress, and cellular stress. TUNEL assay was done to measure apoptosis. The retinal function in the rats was determined by electroretinogram. RESULTS A gradual but significantly higher intracellular sorbitol accumulation was observed in the retina of obese rats from 3- to 12-months. The cellular osmotic stress has activated the insulin signaling mechanism without activating AKT and also triggered ER stress. Both the stresses activated the ERK and p38MAPK signaling causing apoptosis in the retina leading to retinal degeneration. Retinal dysfunction was confirmed by altered scotopic and photopic electroretinogram responses. These in vivo results were mimicked in SK-N-SH cells when exposed to sorbitol in vitro. CONCLUSIONS These results suggest cellular stress due to sorbitol accumulation impairing the ER function, thereby leading to progressive retinal degeneration under obese conditions.
Collapse
Affiliation(s)
- Kishore K Godisela
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | | | - P Yadagiri Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | - Ch Uday Kumar
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | - V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
3
|
Chen CW, Hu S, Tsui KH, Hwang GS, Chen ST, Tang TK, Cheng HT, Yu JW, Wang HC, Juang HH, Wang PS, Wang SW. Anti-inflammatory Effects of Gossypol on Human Lymphocytic Jurkat Cells via Regulation of MAPK Signaling and Cell Cycle. Inflammation 2019; 41:2265-2274. [PMID: 30136021 DOI: 10.1007/s10753-018-0868-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gossypol, a natural polyphenolic compound extracted from cottonseed oil, has been reported to possess pharmacological properties via modulation cell cycle and immune signaling pathway. However, whether gossypol has anti-inflammatory effects against phytohemagglutinin (PHA)-induced cytokine secretion in T lymphocytes through similar mechanism remains unclear. Using the T lymphocytes Jurkat cell line, we found that PHA exposure caused dramatic increase in interleukin-2 (IL-2) mRNA expression as well as IL-2 secretion. All of these PHA-stimulated reactions were attenuated in a dose-dependent manner by being pretreated with gossypol. However, gossypol did not show any in vitro cytotoxic effect at doses of 5-20 μM. As a possible mechanism underlying gossypol action, such as pronounced suppression IL-2 release, robust decreased PHA-induced phosphorylation of p38 and c-Jun N-terminal kinase expressions was found with gossypol pretreatment, but not significant phosphorylation of extracellular signal-regulated kinase expression. Furthermore, gossypol could suppress the Jurkat cells' growth, which was associated with increased percentage of G1/S phase and decreased fraction of G2 phase in flow cytometry test. We conclude that gossypol exerts anti-inflammatory effects probably through partial attenuation of mitogen-activated protein kinase (phosphorylated JNK and p38) signaling and cell cycle arrest in Jurkat cells.
Collapse
Affiliation(s)
- Chien-Wei Chen
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Division of Geriatric Urology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Bioinformation Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Guey-Shyang Hwang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tswen-Kei Tang
- Department of Nursing, National Quemoy University, Kinmen County, Taiwan
| | - Hao-Tsai Cheng
- Division of Gastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ju-Wen Yu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hsiao-Chiu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Horng-Heng Juang
- Bioinformation Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Paulus S Wang
- Medical Center of Aging Research, China Medical University Hospital, Taichung, Taiwan, Republic of China. .,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China.
| | - Shyi-Wu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China. .,Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Tsai JS, Chao CH, Lin LY. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability. PLoS One 2016; 11:e0147011. [PMID: 26751215 PMCID: PMC4709241 DOI: 10.1371/journal.pone.0147011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/28/2015] [Indexed: 01/07/2023] Open
Abstract
Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins.
Collapse
Affiliation(s)
- Jia-Shiuan Tsai
- Institute of Molecular and Cellular Biology, and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Cheng-Han Chao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan, ROC
| | - Lih-Yuan Lin
- Institute of Molecular and Cellular Biology, and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
- * E-mail:
| |
Collapse
|
5
|
Abstract
Ionizing radiation, like a variety of other cellular stress factors, can activate or down-regulate multiple signaling pathways, leading to either increased cell death or increased cell proliferation. Modulation of the signaling process, however, depends on the cell type, radiation dose, and culture conditions. The mitogen-activated protein kinase (MAPK) pathway transduces signals from the cell membrane to the nucleus in response to a variety of different stimuli and participates in various intracellular signaling pathways that control a wide spectrum of cellular processes, including growth, differentiation, and stress responses, and is known to have a key role in cancer progression. Multiple signal transduction pathways stimulated by ionizing radiation are mediated by the MAPK superfamily including the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. The ERK pathway, activated by mitogenic stimuli such as growth factors, cytokines, and phorbol esters, plays a major role in regulating cell growth, survival, and differentiation. In contrast, JNK and p38 MAPK are weakly activated by growth factors but respond strongly to stress signals including tumor necrosis factor (TNF), interleukin-1, ionizing and ultraviolet radiation, hyperosmotic stress, and chemotherapeutic drugs. Activation of JNK and p38 MAPK by stress stimuli is strongly associated with apoptotic cell death. MAPK signaling is also known to potentially influence tumor cell radiosensitivity because of their activity associated with radiation-induced DNA damage response. This review will discuss the MAPK signaling pathways and their roles in cellular radiation responses.
Collapse
Affiliation(s)
- Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Zhu J, Li Y, Guan C, Chen Z. Anti-proliferative and pro-apoptotic effects of 3,3'-diindolylmethane in human cervical cancer cells. Oncol Rep 2012; 28:1063-8. [PMID: 22736073 DOI: 10.3892/or.2012.1877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/25/2012] [Indexed: 12/18/2022] Open
Abstract
The antitumor effects of Indo-3-carbinol (I3C) have been proven in many human carcinoma cells. However, the roles of 3,3-diindolylmethane (DIM), an important polymer converted from I3C under pH 5.0-7.0, on the growth and proliferation of cervical cancer HeLa and SiHa cells still remain unrevealed. In the present study, we investigated the potential anti-proliferative and pro-apoptotic effects of DIM on HeLa and SiHa cells. Cell proliferation was detected by Cell Counting kit-8 and apoptosis was analyzed by flow cytometry. In addition, morphological changes accompanying cell apoptosis were observed using an inverted microscope after Hoechst 33258 staining. In addition, expression changes of proteins involved in the MAPK and PI3K pathways were determined by western blotting. DIM treatment inhibited the proliferation and induced apoptosis of HeLa and SiHa cells significantly in a time- and dose-dependent manner. Moreover, SiHa cells were more sensitive to DIM treatment than HeLa cells (P<0.05). In addition, the expression of ERK, p38 and p-p38, which are involved in the MAPK pathway, was downregulated by DIM treatment. Another protein involved in the MAPK pathway, JNK, was upregulated. Furthermore, DIM treatment significantly suppressed the expression of Akt, p-Akt, PI3K p110α, PI3K p110β, PI3K class III, GSK3-β, p-PDK1 and p-c-Raf which are involved in the PI3K pathway. These results demonstrate that DIM exerts antitumor effects on HeLa and SiHa cells through its anti-proliferative and pro-apoptotic roles, especially for SiHa cells. The molecular mechanism for these effects may be related to its regulatory effects on MAPK and PI3K pathway and apoptosis proteins. DIM may be a preventive and therapeutic agent against cervical cancer.
Collapse
Affiliation(s)
- Junyong Zhu
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuchang, Wuhan 430060, PR China.
| | | | | | | |
Collapse
|
7
|
Zhou H, Zhang KX, Li YJ, Guo BY, Wang M, Wang M. Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses high glucose-induced proliferation and collagen synthesis in rat cardiac fibroblasts. Clin Exp Pharmacol Physiol 2011; 38:387-94. [PMID: 21457293 DOI: 10.1111/j.1440-1681.2011.05523.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. Hyperglycaemia promotes the proliferation of cardiac fibroblasts (CFs) and collagen synthesis in CFs. The objectives of the present study were to determine the effects of fasudil hydrochloride hydrate, a Rho-kinase (ROCK) inhibitor, on high glucose (HG)-induced proliferation of CFs and collagen production in rat CFs and to investigate the molecular mechanism of action of fasudil. 2. Rat CFs were cultured in Dulbecco's modified Eagle's medium, supplemented with 5.5 or 25 mmol/L d-glucose or 5.5 mmol/L d-glucose + 19.5 mmol/L mannose, in the presence of absence of fasudil (50 or 100 μmol/L). Proliferation was measured by the 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, whereas the production of Type I collagen was evaluated using ELISA and the expression of ROCK1, c-Jun N-terminal kinase (JNK) and Type I procollagen mRNA was determined by reverse transcription-polymerase chain reaction. Intracellular Type I procollagen protein levels were evaluated using immunocytochemistry. Western blot analysis was used to evaluate the phosphorylation of myosin phosphatase target subunit 1 (MYPT1), JNK and Smad2/3, as well as c-jun protein levels. 3. Both concentrations of fasudil effectively inhibited HG (25 mmol/L d-glucose)-induced increases in the proliferation of CFs and collagen synthesis, concomitant with suppression of HG-induced upregulation of ROCK1 and JNK mRNA expression and c-jun protein levels, as well as the phosphorylation of MYPT1, JNK and Smad2/3. 4. These data suggest that ROCK activation is essential for the proliferation of CFs and collagen synthesis induced by HG. Fasudil suppressed HG-induced increases in the proliferation of CFs and collagen synthesis, which may be associated with inhibition of the JNK and transforming growth factor β/Smad pathways. The results of the present study indicate that inhibition of ROCK may be a novel therapeutic target for the prevention of diabetic cardiac fibrosis.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
8
|
Chen M, Hu DN, Pan Z, Lu CW, Xue CY, Aass I. Curcumin protects against hyperosmoticity-induced IL-1beta elevation in human corneal epithelial cell via MAPK pathways. Exp Eye Res 2009; 90:437-43. [PMID: 20026325 DOI: 10.1016/j.exer.2009.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 12/28/2022]
Abstract
Increased tear osmolarity is an essential feature of dry eye disease. Curcumin, a natural polyphenol extracted from herb turmeric, has recently been reported to have anti-inflammatory effects. However, its anti-inflammatory effects have not been investigated in dry eye disease. It has been reported that elevated osmolarity achieved by adding sodium chloride to the culture medium of corneal epithelial cells increased the production of IL-1beta, a proinflammation cytokine. This in vitro dry eye model was used to test the anti-inflammatory effects of curcumin. In the present study, a 450 mOsM hyperosmotic medium was produced by adding sodium chloride to the culture medium to reach a final concentration of 90mM. Human corneal epithelial cells cultured in this hyperosmotic medium for 24h showed an increase of IL-1beta, IL-6 and TNF-alpha levels in the conditioned medium. IL-1beta was also upregulated at mRNA levels. Activation of p38 MAP kinase (p38), JNK MAP kinase (JNK) and NF-kappaB in cultured corneal epithelial cells were also induced by hyperosmotic conditions. Curcumin at concentrations of 1-30muM did not affect the cell viability of cultured corneal epithelial cells. Pretreatment of curcumin (5muM) completely abolished the increased production of IL-1beta induced by the hyperosmotic medium. Increased phosphorylation of p38 caused by high osmolarity was also completely abolished by curcumin, whereas the phosphorylation of JNK was only partially inhibited. SB 203580 (p38 inhibitor), but not SP 600125 (JNK inhibitor), completely suppressed hyperosmoticity-induced IL-1beta production, indicating that the inhibition of production of IL-1beta by curcumin may be achieved through the p38 signal pathway. Curcumin completely abolished a hyperosmoticity-induced increase of NF-kappaB p65. NF-kappaB inhibitor suppressed hyperosmoticity-induced IL-1beta production. p38 inhibitor suppressed hyperosmoticity-induced NF-kappaB activation, indicating that NF-kappaB activation was dependent on p38 activation. The present study suggests that curcumin might have therapeutic potential for treating dry eye disease.
Collapse
Affiliation(s)
- Min Chen
- Tissue Culture Center, Department of Pathology, New York Eye and Ear Infirmary, 310 E. 14th Street, New York, NY 10003, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kim MJ, Choi SY, Park IC, Hwang SG, Kim C, Choi YH, Kim H, Lee KH, Lee SJ. Opposing roles of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase in the cellular response to ionizing radiation in human cervical cancer cells. Mol Cancer Res 2009; 6:1718-31. [PMID: 19010820 DOI: 10.1158/1541-7786.mcr-08-0032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exposure of cells to ionizing radiation induces activation of multiple signaling pathways that play critical roles in determining cell fate. However, the molecular basis for cell death or survival signaling in response to radiation is unclear at present. Here, we show opposing roles of the c-jun NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways in the mitochondrial cell death in response to ionizing radiation in human cervical cancer cells. Ionizing radiation triggered Bax and Bak activation, Bcl-2 down-regulation, and subsequent mitochondrial cell death. Inhibition of JNK completely suppressed radiation-induced Bax and Bak activation and Bcl-2 down-regulation. Dominant-negative forms of stress-activated protein kinase/extracellular signal-regulated kinase kinase 1 (SEK-1)/mitogen-activated protein kinase kinase-4 (MKK-4) inhibited JNK activation. Radiation also induced phosphoinositide 3-kinase (PI3K) activation. Interestingly, inhibition of PI3K effectively attenuated radiation-induced mitochondrial cell death and increased clonogenic survival. Inhibition of PI3K also suppressed SEK-1/MKK-4 and JNK activation, Bax and Bak activation, and Bcl-2 down-regulation. In contrast, inhibition of p38 MAPK led to enhanced Bax and Bak activation and mitochondrial cell death. RacN17, a dominant-negative form of Rac1, inhibited p38 MAPK activation and increased Bax and Bak activation. Exposure of cells to radiation also induced selective activation of c-Src among Src family kinases. Inhibition of c-Src by pretreatment with Src family kinase inhibitor PP2 or small interfering RNA targeting of c-Src attenuated radiation-induced p38 MAPK and Rac1 activation and enhanced Bax and Bak activation and cell death. Our results support the notion that the PI3K-SEK-1/MKK-4-JNK pathway is required for the mitochondrial cell death in response to radiation, whereas the c-Src-Rac1-p38 MAPK pathway plays a cytoprotective role against mitochondrial cell death.
Collapse
Affiliation(s)
- Min-Jung Kim
- Laboratory of Molecular Biochemistry, Department of Chemistry, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yoon CH, Kim MJ, Park MT, Byun JY, Choi YH, Yoo HS, Lee YM, Hyun JW, Lee SJ. Activation of p38 Mitogen-Activated Protein Kinase Is Required for Death Receptor–Independent Caspase-8 Activation and Cell Death in Response to Sphingosine. Mol Cancer Res 2009; 7:361-70. [DOI: 10.1158/1541-7786.mcr-08-0069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Kim MJ, Byun JY, Yun CH, Park IC, Lee KH, Lee SJ. c-Src-p38 mitogen-activated protein kinase signaling is required for Akt activation in response to ionizing radiation. Mol Cancer Res 2009; 6:1872-80. [PMID: 19074832 DOI: 10.1158/1541-7786.mcr-08-0084] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Akt and mitogen-activated protein kinase (MAPK) pathways have been implicated in tumor cell survival and contribute to radiation resistance. However, the molecular basis for link between MAPK and Akt in cell survival response to radiation is unclear. Here, we show that c-Src-Rac1-p38 MAPK pathway signals Akt activation and cell survival in response to radiation. Ionizing radiation triggered Thr(308) and Ser(473) phosphorylation of Akt. Exposure of cells to radiation also induced p38 MAPK and c-Jun NH(2)-terminal kinase activations. Inhibition of c-Jun NH(2)-terminal kinase suppressed radiation-induced cell death, whereas inhibition of p38 MAPK effectively increased sensitivity to radiation. Interestingly, inhibition of p38 MAPK completely attenuated radiation-induced Ser(473) phosphorylation of Akt but did not affect Thr(308) phosphorylation. Conversely, overexpression of p38 MAPK enhanced Ser(473) phosphorylation of Akt in response to radiation. In addition, inhibition of p38 MAPK failed to alter phosphoinositide 3-kinase and phosphoinositide-dependent protein kinase activities. Ectopic expression of RacN17, dominant-negative form of Rac1, inhibited p38 MAPK activation and Ser(473) phosphorylation of Akt. Following exposure to radiation, c-Src was selectively activated among Src family tyrosine kinases. Inhibition of c-Src attenuated Rac1 and p38 MAPK activations and Ser(473) phosphorylation of Akt. Our results support the notion that the c-Src-Rac1-p38 MAPK pathway is required for activation of Akt in response to radiation and plays a cytoprotective role against radiation in human cancer cells.
Collapse
Affiliation(s)
- Min-Jung Kim
- Laboratory of Molecular Biochemistry, Department of Chemistry, Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
In the diabetic eye, the increased accumulation of sorbitol in the retina has been implicated in the pathogenesis of diabetic retinopathy (DR). Neurodegeneration is an important component of DR as demonstrated by increased neural apoptosis in the retina during experimental and human diabetes. Insulin receptor (IR) activation has been shown to rescue retinal neurons from apoptosis through a phosphoinositide 3-kinase and protein kinase B (Akt) survival cascade. In this study, we examined the IR signaling in sorbitol-induced hyperosmotic stressed retinas.
Collapse
|
13
|
Rajala RVS. Phospho-Site-Specific Antibody Microarray to Study the State of Protein Phosphorylation in the Retina. ACTA ACUST UNITED AC 2008; 1:242. [PMID: 20151040 DOI: 10.4172/jpb.1000031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neurodegeneration is an important component of diabetic retinopathy as demonstrated by increased neural apoptosis in the retina during experimental and human diabetes. Accumulation of sorbitol and fructose and the generation or enhancement of oxidative stress has been reported in the whole retina of diabetic animals. Aldose reductase (AR), the first and the rate limiting enzyme in the pathway reduces glucose to sorbitol and the diabetic complications are prevented by drugs that inhibit AR. In this study we examined the phosphorylation state of various retinal proteins in response to sorbitol-treatment by phosphor-site-specific antibody microarray. Our results suggest that various retinal protein kinases and cytoskeletal proteins either activated or down regulated in response to sorbitol treatment. Further, our study also indicates the activation of retinal insulin- and insulin growth factor 1 receptor and their downstream signaling proteins such as phosphoinositide 3-kinanse and protein kinase B (Akt). Understanding the regulation of retinal proteins involved in polyol (sorbitol) pathway would help to design therapeutic agents for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology and Cell Biology, and Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
14
|
Dilly AK, Rajala RVS. Insulin growth factor 1 receptor/PI3K/AKT survival pathway in outer segment membranes of rod photoreceptors. Invest Ophthalmol Vis Sci 2008; 49:4765-73. [PMID: 18566464 DOI: 10.1167/iovs.08-2286] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The authors previously reported that physiological light induces the tyrosine phosphorylation of insulin receptors (IRs), which leads to the activation of the phosphoinositide 3-kinase (PI3K) and Akt (serine/threonine protein kinase B) survival pathway in rod photoreceptor cells. Tissue-specific deletion of IRs from photoreceptors resulted in stress-induced photoreceptor degeneration. Insulin growth factor 1 receptor (IGF-1R) is highly related in sequence and structure to the IR and shares 70% sequence identity overall and 84% identity within the tyrosine kinase domain. The role of IGF-1R in photoreceptor function is unknown. In this study the authors examined IGF-1R signaling in rod outer segment (ROS) membranes. METHODS IGF-1R localization was examined in the plasma and disc membranes of ROS. Activation of the IGF-1R/PI3K/Akt pathway was analyzed using specific antibodies against phospho-tyrosine, IGF-1R, and phospho-Akt. PI3K activity was determined in the anti-phospho-tyrosine and anti-IGF-1R immunoprecipitates. Glutathione-S-transferase fusion proteins containing two Src homology 2 (SH2) domains of the p85 subunit of PI3K and their mutants were used to study the molecular interaction between IGF-1R and p85. In vivo IGF-1R signaling was studied in rats exposed to physiological light or to constant light. RESULTS IGF-1R is predominately localized to plasma membranes of ROS. These studies indicate that light stress results in an increase in tyrosine phosphorylation of IGF-1R and an increase in PI3K enzyme activity in anti-phosphotyrosine and anti-IGF-1R immunoprecipitates of ROS and retinal homogenates. The authors observed that light stress induces tyrosine phosphorylation of IGF-1R in ROS membranes, which leads to the binding of p85 through N-SH2 and C-SH2 domains. Finally, the authors observed a significant activation of Akt in light-stressed retinas, indicating activation of the Akt survival pathway downstream of IGF-1R activation. CONCLUSIONS Light stress induced the activation of PI3K through activation and binding of IGF-1R, which leads to activation of the Akt survival pathway in photoreceptors.
Collapse
Affiliation(s)
- Ashok K Dilly
- Department of Ophthalmology, Dean A McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|
15
|
Rajala A, Tanito M, Le YZ, Kahn CR, Rajala RVS. Loss of neuroprotective survival signal in mice lacking insulin receptor gene in rod photoreceptor cells. J Biol Chem 2008; 283:19781-92. [PMID: 18480052 DOI: 10.1074/jbc.m802374200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Insulin receptor (IR) signaling provides a trophic signal for transformed retinal neurons in culture, but the role of IR activity in vivo is unknown. We previously reported that light causes increased tyrosine phosphorylation of the IR in vivo, which leads to the downstream activation of the phosphoinositide 3-kinase and Akt pathway in rod photoreceptor cells. The functional role of IR in rod photoreceptor cells is not known. We observed that light stress induced tyrosine phosphorylation of the IR in rod photoreceptor cells, and we hypothesized that IR activation is neuroprotective. To determine whether IR has a neuroprotective role on rod photoreceptor cells, we used the Cre/lox system to specifically inactivate the IR gene in rod photoreceptors. Rod-specific IR knock-out mice have reduced the phosphoinositide 3-kinase and Akt survival signal in rod photoreceptors. The resultant mice exhibited no detectable phenotype when they were raised in dim cyclic light. However, reduced IR expression in rod photoreceptors significantly decreased retinal function and caused the loss of photoreceptors in mice exposed to bright light stress. These results indicate that reduced expression of IR in rod photoreceptor cells increases their susceptibility to light-induced photoreceptor degeneration. These data suggest that the IR pathway is important for photoreceptor survival and that activation of the IR may be an essential element of photoreceptor neuroprotection.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular macromolecules by high urea. High NaCl and urea elevate reactive oxygen species, cause cytoskeletal rearrangement, inhibit DNA replication and transcription, inhibit translation, depolarize mitochondria, and damage DNA and proteins. Nevertheless, cells can accommodate by changes that include accumulation of organic osmolytes and increased expression of heat shock proteins. Failure to accommodate results in cell death by apoptosis. Although the adapted cells survive and function, many of the original perturbations persist, and even contribute to signaling the adaptive responses. This review addresses both the perturbing effects of high NaCl and urea and the adaptive responses. We speculate on the sensors of osmolality and document the multiple pathways that signal activation of the transcription factor TonEBP/OREBP, which directs many aspects of adaptation. The facts that numerous cellular functions are altered by hyperosmolality and remain so, even after adaptation, indicate that both the effects of hyperosmolality and adaptation to it involve profound alterations of the state of the cells.
Collapse
|
17
|
Liu X, Zhao J, Wu Q. Sorbitol regulates energy transfer from allophycocyanin to the terminal emitter within phycobilisomes in Synechocystis sp. Biotechnol Lett 2006; 29:253-9. [PMID: 17091373 DOI: 10.1007/s10529-006-9225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 10/02/2006] [Accepted: 10/02/2006] [Indexed: 10/23/2022]
Abstract
The effects of sorbitol on energy transfer of phycobilisomes (PBSs) in vivo were investigated in a chlN deletion mutant of Synechocystis sp. PCC 6803. When the mutant was grown in the dark, it contained intact and functional PBSs but essentially no chlorophyll or photosystems. Therefore, the structural and functional changes of the mutant PBSs in vivo can be detected by measurement of low temperature (77 K) and room temperature fluorescence emission spectra. Our results, for the first time, demonstrate that sorbitol decreases the energy transfer from allophycocyanin to the terminal emitter, indicating the site for osmotic regulation of excitation transfer in PBSs.
Collapse
Affiliation(s)
- Xingguo Liu
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
18
|
Lezama R, Díaz-Téllez A, Ramos-Mandujano G, Oropeza L, Pasantes-Morales H. Epidermal growth factor receptor is a common element in the signaling pathways activated by cell volume changes in isosmotic, hyposmotic or hyperosmotic conditions. Neurochem Res 2006; 30:1589-97. [PMID: 16362778 DOI: 10.1007/s11064-005-8837-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2005] [Indexed: 01/12/2023]
Abstract
Changes in external osmolarity, including both hyper- or hyposmotic conditions, elicit the tyrosine phosphorylation of a number of tyrosine kinase receptors (TKR). We show here that the epidermal growth factor receptor (EGFR) is activated by both cell swelling (hyposmolarity, isosmotic urea, hyperosmotic sorbitol) or shrinkage (hyperosmotic NaCl or raffinose) and discuss the mechanisms by which these apparently opposed conditions come to the same effect, i.e., EGFR activation. Evidence suggests that this results from early activation of integrins, p38 and tyrosine kinases of the Src family, which are all activated in the two anisosmotic conditions. TKR transactivation by integrins and p38 is likely occurring via an effect on the metalloproteinases. Information discussed in this review, points to TKR as elements in osmotransduction as a useful mechanism to amplify and diversify the initial response to anisosmolarity and cell volume changes, due to their privileged situation as convergence point for numerous intracellular signaling pathways. The variety of effector pathways connected to TKR is advantageous for the cell to cope with the changes in cell volume including adaptation to stress, cytoskeleton remodeling, adhesion reactions, cell survival and the adaptive mechanisms to ultimately restore the original cell volume.
Collapse
Affiliation(s)
- R Lezama
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Naecoual Autonoma de México(UNAM), O4510, México DF, Mexico
| | | | | | | | | |
Collapse
|
19
|
Copp J, Wiley S, Ward MW, van der Geer P. Hypertonic shock inhibits growth factor receptor signaling, induces caspase-3 activation, and causes reversible fragmentation of the mitochondrial network. Am J Physiol Cell Physiol 2005; 288:C403-15. [PMID: 15456696 DOI: 10.1152/ajpcell.00095.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hyperosmotic stress can be encountered by the kidney and the skin, as well as during treatment of acute brain damage. It can lead to cell cycle arrest or apoptosis. Exactly how mammalian cells detect hyperosmolarity and how the cell chooses between cell cycle arrest or death remains to be established. It has been proposed that hyperosmolarity is detected directly by growth factor receptor protein tyrosine kinases. To investigate this, we tested whether growth factors and osmotic stress cooperate in the activation of signaling pathways. Receptors responded normally to the presence of growth factors, and we observed normal levels of GTP-bound Ras under hyperosmotic conditions. In contrast, activation of Raf, Akt, ERK1, ERK2, and c-Jun NH2-terminal kinase was strongly reduced. These observations suggest that hyperosmotic conditions block signaling directly downstream of active Ras. It is thought that apoptotic cell death due to environmental stress is initiated by cytochrome c release from the mitochondria. Visualization of cytochrome c using immunofluorescence showed that hypertonic conditions result in a breakup of the mitochondrial network, which is reestablished within 1 h after hypertonic medium is replaced with isotonic medium. When we carried out live imaging, we observed that the mitochondrial membrane potential disappeared immediately after the onset of hyperosmotic shock. Our observations provide new insights into the hypertonic stress response pathway. In addition, they show that signaling downstream of Ras and mitochondrial dynamics can easily be manipulated by the exposure of cells to hyperosmotic conditions.
Collapse
Affiliation(s)
- Jeremy Copp
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0359, USA
| | | | | | | |
Collapse
|
20
|
Tokudome T, Horio T, Yoshihara F, Suga SI, Kawano Y, Kohno M, Kangawa K. Direct effects of high glucose and insulin on protein synthesis in cultured cardiac myocytes and DNA and collagen synthesis in cardiac fibroblasts. Metabolism 2004; 53:710-5. [PMID: 15164316 DOI: 10.1016/j.metabol.2004.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study examined the direct effects of high glucose and insulin on protein synthesis in cardiac myocytes and DNA and collagen synthesis in cardiac fibroblasts. Cultured rat cardiac myocytes and fibroblasts were grown in media containing normal glucose, high glucose, or osmotic control, and incubated with or without insulin. In cardiac myocytes, high glucose had no effect, but insulin increased protein synthesis and atrial natriuretic peptide (ANP) secretion and gene expression. The extracellular signal-regulated protein kinase (ERK)/mitogen-activated protein kinase (MAPK) inhibitor and the protein kinase C (PKC) inhibitor blocked insulin-induced protein synthesis. In cardiac fibroblasts, high glucose and osmotic control media increased DNA synthesis. Collagen synthesis and fibronectin and transforming growth factor-beta1 (TGF-beta1) mRNA expression were stimulated by high glucose, but not by osmotic control. Insulin increased DNA and collagen synthesis in fibroblasts, and the insulin-induced increase in DNA synthesis was blocked by the phosphatidylinositol 3 kinase (PI3K) inhibitor. Our findings suggest that cardiomyocyte protein synthesis is mainly regulated by insulin rather than high glucose and both high glucose and insulin contribute to fibroblast DNA and collagen synthesis. High glucose accelerates fibroblast DNA synthesis and collagen synthesis, and fibronectin and TGF-beta1 mRNA expression, dependent or independent of osmotic stress. Insulin regulates myocyte protein synthesis and fibroblast DNA synthesis through different intracellular mechanisms.
Collapse
Affiliation(s)
- Takeshi Tokudome
- Research Institute, National Cardiovascular Center, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Perturbations of cell hydration as provoked by changes in ambient osmolarity or under isoosmotic conditions by hormones, second messengers, intracellular substrate accumulation, or reactive oxygen intermediates critically contribute to the physiological regulation of cell function. In general an increase in cell hydration stimulates anabolic metabolism and proliferation and provides cytoprotection, whereas cellular dehydration leads to a catabolic situation and sensitizes cells to apoptotic stimuli. Insulin produces cell swelling by inducing a net K+ and Na+ accumulation inside the cell, which results from a concerted activation of Na+/H+ exchange, Na+/K+/2Cl- symport, and the Na+/K(+)-ATPase. In the liver, insulin-induced cell swelling is critical for stimulation of glycogen and protein synthesis as well as inhibition of autophagic proteolysis. These insulin effects can largely be mimicked by hypoosmotic cell swelling, pointing to a role of cell swelling as a trigger of signal transduction. This article discusses insulin-induced signal transduction upstream of swelling and introduces the hypothesis that cell swelling as a signal amplifyer represents an essential component in insulin signaling, which contributes to the full response to insulin at the level of signal transduction and function. Cellular dehydration impairs insulin signaling and may be a major cause of insulin resistance, which develops in systemic hyperosmolarity, nutrient deprivation, uremia, oxidative challenges, and unbalanced production of insulin-counteracting hormones. Hydration changes affect cell functions at multiple levels (such as transcriptom, proteom, phosphoproteom, and the metabolom) and a system biological approach may allow us to develop a more holistic view on the hydration dependence of insulin signaling in the future.
Collapse
Affiliation(s)
- Freimut Schliess
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
22
|
Park MT, Choi JA, Kim MJ, Um HD, Bae S, Kang CM, Cho CK, Kang S, Chung HY, Lee YS, Lee SJ. Suppression of Extracellular Signal-related Kinase and Activation of p38 MAPK Are Two Critical Events Leading to Caspase-8- and Mitochondria-mediated Cell Death in Phytosphingosine-treated Human Cancer Cells. J Biol Chem 2003; 278:50624-34. [PMID: 14522966 DOI: 10.1074/jbc.m309011200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that the phytosphingosine-induced apoptosis was accompanied by the concomitant induction of both the caspase-8-mediated and mitochondrial activation-mediated apoptosis pathways. In the present study, we investigated the role of mitogen-activated protein kinases (MAPKs) in the activation of these two distinct cell death pathways induced by phytosphingosine in human cancer cells. Phytosphingosine caused strong induction of caspase-8 activity and caspase-independent Bax translocation to the mitochondria. A rapid decrease of phosphorylated ERK1/2 and a marked increase of p38 MAPK phosphorylation were observed within 10 min after phytosphingosine treatment. Activation of ERK1/2 by pretreatment with phorbol 12-myristate 13-acetate or forced expression of ERK1/2 attenuated phytosphingosine-induced caspase-8 activation. However, Bax translocation and caspase-9 activation was unaffected, indicating that down-regulation of the ERK activity is specifically required for the phytosphingosine-induced caspase-8-dependent cell death pathway. On the other hand, treatment with SB203580, a p38 MAPK-specific inhibitor, or expression of a dominant negative form of p38 MAPK suppressed phytosphingosine-induced translocation of the proapoptotic protein, Bax, from the cytosol to mitochondria, cytochrome c release, and subsequent caspase-9 activation but did not affect caspase-8 activation, indicating that activation of p38 MAPK is involved in the mitochondrial activation-mediated cell death pathway. Our results suggest that phytosphingosine can utilize two different MAPK signaling pathways for amplifying the apoptosis cascade, enhancing the understanding of the molecular mechanisms utilized by naturally occurring metabolites to regulate cell death. Molecular dissection of the signaling pathways that activate the apoptotic cell death machinery is critical for both our understanding of cell death events and development of cancer therapeutic agents.
Collapse
Affiliation(s)
- Moon-Taek Park
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Feranchak AP, Kilic G, Wojtaszek PA, Qadri I, Fitz JG. Volume-sensitive tyrosine kinases regulate liver cell volume through effects on vesicular trafficking and membrane Na+ permeability. J Biol Chem 2003; 278:44632-44638. [PMID: 12939281 DOI: 10.1074/jbc.m301958200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In liver cells, the influx of Na+ mediated by nonselective cation (NSC) channels in the plasma membrane contributes importantly to regulation of cell volume. Under basal conditions, channels are closed; but both physiologic (e.g. insulin) and pathologic (e.g. oxidative stress) stimuli that are known to stimulate tyrosine kinases are associated with large increases in membrane Na+ permeability to approximately 80 pA/pF or more. Consequently, the purpose of these studies was to evaluate whether volume-sensitive tyrosine kinases mediate cell volume increases through effects on the activity or distribution of NSC channel proteins. In HTC hepatoma cells, decreases in cell volume evoked by hypertonic exposure increased total cellular tyrosine kinase activity approximately 20-fold. Moreover, hypertonic exposure (320-400 mosM) was followed after a delay by NSC channel activation and partial recovery of cell volume toward basal values (regulatory volume increase (RVI)). The tyrosine kinase inhibitors genistein and erbstatin prevented both NSC channel activation and RVI. Similarly, hypertonic exposure resulted in an increase in p60(c-src) activity, and intracellular dialysis with recombinant p60(c-src) led to activation of NSC currents in the absence of an osmolar gradient. Utilizing FM1-43 fluorescence, exposure to hypertonic media caused a rapid increase in the rate of exocytosis of approximately 40% (p < 0.01), and genistein inhibited both exocytosis and channel activation. These findings indicate that volume-sensitive increases in p60(c-src) and/or related tyrosine kinases play a key role in the regulation of membrane Na+ permeability, suggesting that increases in the NSC conductance may be mediated in part through rapid recruitment of a distinct pool of channel-containing vesicles.
Collapse
Affiliation(s)
- Andrew P Feranchak
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
24
|
Sun W, Wei X, Kesavan K, Garrington TP, Fan R, Mei J, Anderson SM, Gelfand EW, Johnson GL. MEK kinase 2 and the adaptor protein Lad regulate extracellular signal-regulated kinase 5 activation by epidermal growth factor via Src. Mol Cell Biol 2003; 23:2298-308. [PMID: 12640115 PMCID: PMC150715 DOI: 10.1128/mcb.23.7.2298-2308.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lad is an SH2 domain-containing adaptor protein that binds MEK kinase 2 (MEKK2), a mitogen-activated protein kinase (MAPK) kinase kinase for the extracellular signal-regulated kinase 5 (ERK5) and JNK pathways. Lad and MEKK2 are in a complex in resting cells. Antisense knockdown of Lad expression and targeted gene disruption of MEKK2 expression results in loss of epidermal growth factor (EGF) and stress stimuli-induced activation of ERK5. Activation of MEKK2 and the ERK5 pathway by EGF and stress stimuli is dependent on Src kinase activity. The Lad-binding motif is encoded within amino acids 228 to 282 in the N terminus of MEKK2, and expression of this motif blocks Lad-MEKK2 interaction, resulting in inhibition of Src-dependent activation of MEKK2 and ERK5. JNK activation by EGF is similarly inhibited by loss of Lad or MEKK2 expression and by blocking the interaction of MEKK2 and Lad. Our studies demonstrate that Src kinase activity is required for ERK5 activation in response to EGF, MEKK2 expression is required for ERK5 activation by Src, Lad and MEKK2 association is required for Src activation of ERK5, and EGF and Src stimulation of ERK5-regulated MEF2-dependent promoter activity requires a functional Lad-MEKK2 signaling complex.
Collapse
Affiliation(s)
- Weiyong Sun
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jones RA, Smail A, Wilson MR. Detecting mitochondrial permeability transition by confocal imaging of intact cells pinocytically loaded with calcein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3990-7. [PMID: 12180975 DOI: 10.1046/j.1432-1033.2002.03087.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When studied in vitro, mitochondrial permeability transition (MPT) is associated with an increase in mitochondrial permeability to solutes up to 1500 Da in mass and a loss of electrical potential difference across the inner mitochondrial membrane (Deltapsimit). The MPT has been implicated as being important in cellular calcium homeostasis, autophagy and cell death via necrosis and apoptosis. Thus, it is important to develop a valid technique for accurate measurement of this phenomenon in intact cells. We developed a procedure for the detection of MPT in intact cells that avoids the disadvantages associated with earlier approaches. In this new technique, unmodified (green-fluorescent) calcein is simultaneously introduced into the cytosol of millions of cells by the process of pinocytic loading and, to identify the position of individual mitochondria and to measure Deltapsimit, the cells are counter-stained with a red-fluorescing potentiometric dye. Using this approach with a variety of cell types, we demonstrate that cytosolic calcein is excluded from normal polarized mitochondria but enters them during MPT. This technique may be valuable in studies investigating the cellular functions of MPT.
Collapse
Affiliation(s)
- Rachel A Jones
- Department of Biological Sciences, University of Wollongong, New South Wales, Australia
| | | | | |
Collapse
|