1
|
Kobayashi K, Wakasa H, Han L, Koyama T, Tsugami Y, Nishimura T. Lactose on the basolateral side of mammary epithelial cells inhibits milk production concomitantly with signal transducer and activator of transcription 5 inactivation. Cell Tissue Res 2022; 389:501-515. [PMID: 35748981 DOI: 10.1007/s00441-022-03651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
Mammary epithelial cells (MECs) are the only cells capable of synthesizing lactose. During lactation, alveolar MECs secrete lactose through the apical membrane into the alveolar lumen, whereas alveolar tight junctions (TJs) block the leakage of lactose into the basolateral sides of the MECs. However, lactose leaks from the alveolar lumen into the blood plasma in the mastitis and after weaning. This exposes the basolateral membrane of MECs to lactose. The relationship between lactose in blood plasma and milk production has been suggested. The present study determined whether lactose exposure on the basolateral membrane of mouse MECs adversely affects milk production in vitro. Restricted exposure to lactose on the basolateral side of the MECs was performed using a culture model, in which MECs on the cell culture insert exhibit milk production and less-permeable TJs. The results indicated that lactose exposure on the basolateral side inhibited casein and lipid production in the MECs. Interestingly, lactose exposure on the apical side did not show detectable effects on milk production in the MECs. Basolateral lactose exposure also caused the inactivation of STAT5, a primary transcriptional factor for milk production. Furthermore, p38 and JNK were activated by basolateral lactose exposure. The activation of p38 and JNK following anisomycin treatment reduced phosphorylated STAT5, and inhibitors of p38 blocked the reduction of phosphorylated STAT5 by basolateral lactose exposure. These findings suggest that lactose functions as a partial inhibitor for milk production but only when it directly makes contact with the basolateral membrane of MECs.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan.
| | - Haruka Wakasa
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Liang Han
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Taku Koyama
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Yusaku Tsugami
- Laboratory of Animal Histophysiology, Graduate School of Integrated Science for Life Faculty of Applied Biological Science, Hiroshima University, 1-4-4Higashi-Hiroshima, Kagamiyama, 739-8528, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| |
Collapse
|
2
|
Kuroyanagi G, Tokuda H, Fujita K, Kawabata T, Sakai G, Kim W, Hioki T, Tachi J, Matsushima-Nishiwaki R, Otsuka T, Iida H, Kozawa O. Upregulation of TGF-β-induced HSP27 by HSP90 inhibitors in osteoblasts. BMC Musculoskelet Disord 2022; 23:495. [PMID: 35619094 PMCID: PMC9134601 DOI: 10.1186/s12891-022-05419-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/27/2022] [Indexed: 06/02/2024] Open
Abstract
Background Heat shock protein (HSP) 90 functions as a molecular chaperone and is constitutively expressed and induced in response to stress in many cell types. We have previously demonstrated that transforming growth factor-β (TGF-β), the most abundant cytokine in bone cells, induces the expression of HSP27 through Smad2, p44/p42 mitogen-activated protein kinase (MAPK), p38 MAPK, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in mouse osteoblastic MC3T3-E1 cells. This study investigated the effects of HSP90 on the TGF-β-induced HSP27 expression and the underlying mechanism in mouse osteoblastic MC3T3-E1 cells. Methods Clonal osteoblastic MC3T3-E1 cells were treated with the HSP90 inhibitors and then stimulated with TGF-β. HSP27 expression and the phosphorylation of Smad2, p44/p42 MAPK, p38 MAPK, and SAPK/JNK were evaluated by western blot analysis. Result HSP90 inhibitors 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG) and onalespib significantly enhanced the TGF-β-induced HSP27 expression. TGF-β inhibitor SB431542 reduced the enhancement by 17-DMAG or onalespib of the TGF-β-induced HSP27 expression levels. HSP90 inhibitors, geldanamycin, onalespib, and 17-DMAG did not affect the TGF-β-stimulated phosphorylation of Smad2. Geldanamycin did not affect the TGF-β-stimulated phosphorylation of p44/p42 MAPK or p38 MAPK but significantly enhanced the TGF-β-stimulated phosphorylation of SAPK/JNK. Onalespib also increased the TGF-β-stimulated phosphorylation of SAPK/JNK. Furthermore, SP600125, a specific inhibitor for SAPK/JNK, significantly suppressed onalespib or geldanamycin’s enhancing effect of the TGF-β-induced HSP27 expression levels. Conclusion Our results strongly suggest that HSP90 inhibitors upregulated the TGF-β-induced HSP27 expression and that these effects of HSP90 inhibitors were mediated through SAPK/JNK pathway in osteoblasts. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05419-1.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan. .,Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan. .,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Metabolic Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kazuhiko Fujita
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tetsu Kawabata
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Go Sakai
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Dermatology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Junko Tachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
3
|
Saadeldin IM, Swelum AAA, Elsafadi M, Mahmood A, Yaqoob SH, Alfayez M, Alowaimer AN. Effects of all-trans retinoic acid on the in vitro maturation of camel (Camelus dromedarius) cumulus-oocyte complexes. J Reprod Dev 2019; 65:215-221. [PMID: 30760649 PMCID: PMC6584179 DOI: 10.1262/jrd.2018-073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All-trans retinoic acid (RA) is a metabolite of vitamin A and has pleiotropic actions on many different biological processes, including cell growth and differentiation, and is involved in different aspects of fertility and developmental biology. In the current study, we investigated the effects of RA on camel (Camelus dromedarius) cumulus-oocyte complex in vitro maturation (IVM). IVM medium was supplemented with 0, 10, 20, and 40 µM RA. Application of 20 µM RA significantly reduced the proportion of degenerated oocytes and significantly improved oocyte meiosis and first polar body extrusion compared to the control and other experimental groups. Retinoic acid significantly reduced the mRNA transcript levels of apoptosis-related genes, including BAX and P53, and reduced the BAX/BCL2 ratio. In addition, RA significantly reduced the expression of the Transforming growth factor beta (TGFβ) pathway-related transcripts associated with the actin cytoskeleton, ACTA2 and TAGLN; however, RA increased TGFβ expression in cumulus cells. The small molecule SB-431542 inhibits the TGFβ pathway by inhibiting the activity of activin receptor-like kinases (ALK-4, ALK-5, and ALK-7); however, combined supplementation with RA during IVM compensated for the inhibitory effect of SB-431542 on cumulus expansion, oocyte meiosis I, and first polar body extrusion in activated oocytes. The current study shows the beneficial effects of RA on camel oocyte IVM and provides a model to study the multifunctional mechanisms involved in cumulus expansion and oocyte meiosis, particularly those involved in the TGFβ pathway.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Syed Hilal Yaqoob
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Saudi Society for Camel Studies, Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
S100A3 a partner protein regulating the stability/activity of RARα and PML-RARα in cellular models of breast/lung cancer and acute myeloid leukemia. Oncogene 2019; 38:2482-2500. [PMID: 30532072 PMCID: PMC6484772 DOI: 10.1038/s41388-018-0599-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/01/2018] [Accepted: 10/20/2018] [Indexed: 01/14/2023]
Abstract
All trans-retinoic acid (ATRA) is used in the treatment of acute promyelocytic leukemia (APL) and it is a promising agent also in solid tumors. The pharmacological activity of ATRA is mediated by the ligand-activated RAR and RXR transcription factors. In the present study, we define the basal and ATRA dependent RARα interactome in a RARα-overexpressing breast cancer cellular model, identifying 28 nuclear proteins. We focus our attention on the S100A3 calcium-binding protein, which interacts with RARα constitutively. In ATRA-sensitive breast cancer cells, S100A3 binds to RARα in basal conditions and binding is reduced by the retinoid. The interaction of S100A3 with RARα is direct and in lung cancer, APL and acute-myeloid-leukemia (AML) cells. In APL, S100A3 interacts not only with RARα, but also with PML-RARα. The interaction surface maps to the RARα ligand-binding domain, where the I396 residue plays a crucial role. Binding of S100A3 to RARα/PML-RARα controls the constitutive and ATRA-dependent degradation of these receptors. S100A3 knockdown decreases the amounts of RARα in breast- and lung cancer cells, inducing resistance to ATRA-dependent anti-proliferative/differentiating effects. Conversely, S100A3 knockdown in PML-RARα+ APL and PML-RARα- AML cells reduces the amounts of RARα/PML-RARα and increases basal and ATRA-induced differentiation. In this cellular context, opposite effects on RARα/PML-RARα levels and ATRA-induced differentiation are observed upon S100A3 overexpression. Our results provide new insights into the molecular mechanisms controlling RARα activity and have practical implications, as S100A3 represents a novel target for rational drug combinations aimed at potentiating the activity of ATRA.
Collapse
|
5
|
Hang K, Ye C, Chen E, Zhang W, Xue D, Pan Z. Role of the heat shock protein family in bone metabolism. Cell Stress Chaperones 2018; 23:1153-1164. [PMID: 30187197 PMCID: PMC6237693 DOI: 10.1007/s12192-018-0932-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins (HSPs) are a family of proteins produced by cells in response to exposure to stressful conditions. In addition to their role as chaperones, they also play an important role in the cardiovascular, immune, and other systems. Normal bone tissue is maintained by bone metabolism, particularly by the balance between osteoblasts and osteoclasts, which are physiologically regulated by multiple hormones and cytokines. In recent years, studies have reported the vital role of HSPs in bone metabolism. However, the conclusions remain largely controversial, and the exact mechanisms are still unclear, so a review and analyses of previous studies are of importance. This article reviews the current understanding of the roles and effects of HSPs on bone cells (osteoblasts, osteoclasts, and osteocytes), in relation to bone metabolism.
Collapse
Affiliation(s)
- Kai Hang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| | - Chenyi Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| | - Erman Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| | - Wei Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| | - Deting Xue
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| | - Zhijun Pan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| |
Collapse
|
6
|
Kainuma S, Tokuda H, Yamamoto N, Kuroyanagi G, Fujita K, Kawabata T, Sakai G, Matsushima-Nishiwaki R, Kozawa O, Otsuka T. Heat shock protein 27 (HSPB1) suppresses the PDGF-BB-induced migration of osteoblasts. Int J Mol Med 2017; 40:1057-1066. [PMID: 28902366 PMCID: PMC5593454 DOI: 10.3892/ijmm.2017.3119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 27 (HSP27/HSPB1), one of the small heat shock proteins, is constitutively expressed in various tissues. HSP27 and its phosphorylation state participate in the regulation of multiple physiological and pathophysiological cell functions. However, the exact roles of HSP27 in osteoblasts remain unclear. In the present study, we investigated the role of HSP27 in the platelet-derived growth factor‑BB (PDGF‑BB)‑stimulated migration of osteoblast-like MC3T3-E1 cells. PDGF-BB by itself barely upregulated the expression of HSP27 protein, but stimulated the phosphorylation of HSP27 in these cells. The PDGF-BB‑induced cell migration was significantly downregulated by HSP27 overexpression. The PDGF-BB-induced migrated cell numbers of the wild‑type HSP27-overexpressing cells and the phospho‑mimic HSP27-overexpressing (3D) cells were less than those of the unphosphorylatable HSP27-overexpressing (3A) cells. PD98059, an inhibitor of MEK1/2, SB203580, an inhibitor of p38 mitogen-activated protein kinase, and SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) reduced the PDGF-BB-induced migration of these cells, whereas Akt inhibitor or rapamycin, an inhibitor of upstream kinase of p70 S6 kinase (mTOR), barely affected the migration. However, the PDGF-BB-induced phosphorylation of p44/p42 MAPΚ, p38 MAPK and SAPK/JNK was not affected by HSP27 overexpression. There were no significant differences in the phosphorylation of p44/p42 MAPΚ, p38 MAP kinase or SAPK/JNK between the 3D cells and the 3A cells. These results strongly suggest that HSP27 functions as a negative regulator in the PDGF-BB-stimulated migration of osteoblasts, and the suppressive effect is amplified by the phosphorylation state of HSP27.
Collapse
Affiliation(s)
- Shingo Kainuma
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Naohiro Yamamoto
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kazuhiko Fujita
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Tetsu Kawabata
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Go Sakai
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | | | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
7
|
Yamamoto N, Tokuda H, Kuroyanagi G, Kainuma S, Matsushima-Nishiwaki R, Fujita K, Kozawa O, Otsuka T. Heat shock protein 22 (HSPB8) limits TGF-β-stimulated migration of osteoblasts. Mol Cell Endocrinol 2016; 436:1-9. [PMID: 27396899 DOI: 10.1016/j.mce.2016.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/22/2016] [Accepted: 07/06/2016] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (HSPs) are induced in response to various physiological and environmental conditions such as chemical and heat stress, and recognized to function as molecular chaperones. HSP22 (HSPB8), a low-molecular weight HSP, is ubiquitously expressed in many cell types. However, the precise role of HSP22 in bone metabolism remains to be clarified. In the present study, we investigated whether HSP22 is implicated in the transforming growth factor-β (TGF-β)-stimulated migration of osteoblast-like MC3T3-E1 cells. Although protein levels of HSP22 were clearly detected in unstimulated MC3T3-E1 cells, TGF-β failed to induce the protein levels. The TGF-β-stimulated migration was significantly up-regulated by knockdown of HSP22 expression. The cell migration stimulated by platelet-derived growth factor-BB was also enhanced by HSP22 knockdown. SB203580, an inhibitor of p38 mitogen-activated protein kinase, PD98059, an inhibitor of MEK1/2, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase had no effects on the TGF-β-induced migration. SIS3, a specific inhibitor of TGF-β-dependent Smad3 phosphorylation, significantly reduced the migration with or without TGF-β stimulation. Smad2, Smad3, Smad4 or Smad7 was not coimmunoprecipitated with HSP22. On the other hand, the TGF-β-induced Smad2 phosphorylation was enhanced by HSP22 down-regulation. The protein levels of TGF-β type II receptor (TGF-β RII) but not TGF-β type I receptor (TGF-β RI) was significantly up-regulated in HSP22 knockdown cells compared with those in the control cells. However, the levels of TGF-β RII mRNA in HSP22 knockdown cells were little different from those of the control cells. Neither TGF-β RI nor TGF-β RII was coimmunoprecipitated with HSP22. SIS3 reduced the amplification by HSP22 knockdown of the TGF-β-stimulated cell migration almost to the basal level. Our results strongly suggest that HSP22 functions as a negative regulator in the TGF-β-stimulated migration of osteoblasts via suppression of the Smad-dependent pathway, resulting from modulating the protein levels of TGF-β RII.
Collapse
Affiliation(s)
- Naohiro Yamamoto
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.
| | - Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shingo Kainuma
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | - Kazuhiko Fujita
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
8
|
Li M, Fuchs S, Böse T, Schmidt H, Hofmann A, Tonak M, Unger R, Kirkpatrick CJ. Mild heat stress enhances angiogenesis in a co-culture system consisting of primary human osteoblasts and outgrowth endothelial cells. Tissue Eng Part C Methods 2013; 20:328-39. [PMID: 23998634 DOI: 10.1089/ten.tec.2013.0087] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The repair and regeneration of large bone defects, including the formation of functional vasculature, represents a highly challenging task for tissue engineering and regenerative medicine. Recent studies have shown that vascularization and ossification can be stimulated by mild heat stress (MHS), which would offer the option to enhance the bone regeneration process by relatively simple means. However, the mechanisms of MHS-enhanced angiogenesis and osteogenesis, as well as potential risks for the treated cells are unclear. We have investigated the direct effect of MHS on angiogenesis and osteogenesis in a co-culture system of human outgrowth endothelial cells (OECs) and primary osteoblasts (pOBs), and assessed cytotoxic effects, as well as the levels of various heat shock proteins (HSPs) synthesized under these conditions. Enhanced formation of microvessel-like structures was observed in co-cultures exposed to MHS (41°C, 1 h), twice per week, over a time period of 7-14 days. As shown by real-time polymerase chain reaction (PCR), the expression of vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), and tumor necrosis factor-alpha was up-regulated in MHS-treated co-cultures 24 h post-treatment. At the protein level, significantly elevated VEGF and Ang-1 concentrations were observed in MHS-treated co-cultures and pOB mono-cultures compared with controls, indicating paracrine effects associated with MHS-induced angiogenesis. MHS-stimulated co-cultures and OEC mono-cultures released higher levels of Ang-2 than untreated cultures. On the other hand MHS treatment of co-cultures did not result in a clear effect regarding osteogenesis. Nevertheless, real-time PCR demonstrated that MHS increased the expression of mitogen-activated protein kinase, interleukin-6, and bone morphogenetic protein 2, known as HSP-related molecules in angiogenic and osteogenic regulation pathways. In agreement with these observations, the expression of some selected HSPs also increased at both the mRNA and protein levels in MHS-treated co-cultures.
Collapse
Affiliation(s)
- Ming Li
- 1 REPAIR-Lab, Institute of Pathology, University Medical Centre of the Johannes Gutenberg University , Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tian WX, Li JK, Qin P, Wang R, Ning GB, Qiao JG, Li HQ, Bi DR, Pan SY, Guo DZ. Screening of differentially expressed genes in the growth plate of broiler chickens with tibial dyschondroplasia by microarray analysis. BMC Genomics 2013; 14:276. [PMID: 23617778 PMCID: PMC3648502 DOI: 10.1186/1471-2164-14-276] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 04/18/2013] [Indexed: 12/18/2022] Open
Abstract
Background Tibial dyschondroplasia (TD) is a common skeletal disorder in broiler chickens. It is characterized by the presence of a non-vascularized and unmineralized cartilage in the growth plate. Previous studies have investigated differential expression of genes related to cartilage development during latter stages of TD. The aim of our study was to identify differentially expressed genes (DEGs) in the growth plate of broiler chickens, which were associated with early stage TD. We induced TD using tetramethylthiuram disulfide (thiram) for 1, 2, and 6 days and determined DEGs with chicken Affymetrix GeneChip assays. The identified DEGs were verified by quantitative polymerase chain reaction (qPCR) assays. Results We identified 1630 DEGs, with 82, 1385, and 429 exhibiting at least 2.0-fold changes (P < 0.05) at days 1, 2, and 6, respectively. These DEGs participate in a variety of biological processes, including cytokine production, oxidation reduction, and cell surface receptor linked signal transduction on day 1; lipid biosynthesis, regulation of growth, cell cycle, positive and negative gene regulation, transcription and transcription regulation, and anti-apoptosis on day 2; and regulation of cell proliferation, transcription, dephosphorylation, catabolism, proteolysis, and immune responses on day 6. The identified DEGs were associated with the following pathways: neuroactive ligand-receptor interaction on day 1; synthesis and degradation of ketone bodies, terpenoid backbone biosynthesis, ether lipid metabolism, JAK-STAT, GnRH signaling pathway, ubiquitin mediated proteolysis, TGF-β signaling, focal adhesion, and Wnt signaling on day 2; and arachidonic acid metabolism, mitogen-activated protein kinase (MAPK) signaling, JAK-STAT, insulin signaling, and glycolysis on day 6. We validated seven DEGs by qPCR. Conclusions Our findings demonstrate previously unrecognized changes in gene transcription associated with early stage TD. The DEGs we identified by microarray analysis will be used in future studies to clarify the molecular pathogenic mechanisms of TD. From these findings, potential pathways involved in early stage TD warrant further investigation.
Collapse
Affiliation(s)
- Wen-xia Tian
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Xiao HB, Liu RH, Ling GH, Xiao L, Xia YC, Liu FY, Li J, Liu YH, Chen QK, Lv JL, Zhan M, Yang SK, Kanwar YS, Sun L. HSP47 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1 through ERK1/2 and JNK MAPK pathways. Am J Physiol Renal Physiol 2012; 303:F757-65. [PMID: 22718885 DOI: 10.1152/ajprenal.00470.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Heat shock protein (HSP)47 is a collagen-specific molecular chaperone that is essential for the biosynthesis of collagen molecules. It is likely that increased levels of HSP47 contribute to the assembly of procollagen and thereby cause an excessive accumulation of collagens in disease processes associated with fibrosis. Although HSP47 promotes renal fibrosis, the underlying mechanism and associated signaling events have not been clearly delineated. We examined the role of HSP47 in renal fibrosis using a rat unilateral ureteral obstruction model and transforming growth factor (TGF)-β(1)-treated human proximal tubular epithelial (HK-2) cells. An upregulation of HSP47 in both in vivo and in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of HSP47 by short interfering RNA suppressed the expression of ECM proteins and PAI-1. In addition, TGF-β(1)-induced HSP47 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of HSP47, the chaperoning effect of which on TGF-β(1) would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.
Collapse
Affiliation(s)
- Hong-bo Xiao
- Department of Nephrology, The Second Xiangya Hospital, Kidney Institute of Central South University, No. 139 Remin Middle Rd., Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chung E, Rylander MN. Response of preosteoblasts to thermal stress conditioning and osteoinductive growth factors. Cell Stress Chaperones 2012; 17:203-14. [PMID: 22116637 PMCID: PMC3273562 DOI: 10.1007/s12192-011-0300-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 11/28/2022] Open
Abstract
Conditioning protocols involving mechanical stress independently or with chemical cues such as growth factors (GFs) possess significant potential to enhance bone regeneration. However, utilization of thermal stress conditioning alone or with GFs for bone therapy has been under-investigated. In this study, a preosteoblast cell line (MC3T3-E1) was exposed to treatment with water bath heating (44°C, 4 and 8 min) and osteoinductive GFs (bone morphogenetic protein-2 and transforming growth factor-β1) individually or in combination to investigate whether these stimuli could promote induction of bone-related markers, an angiogenic factor, and heat shock proteins (HSPs). Cells remained viable when heating durations were less than 20 min at 40ºC, 16 min at 42ºC, and 10 min at 44ºC. Increasing heating duration at 44°C, promoted gene expression of HSPs, osteocalcin (OCN), and osteopontin (OPN) at 8 h post-heating (PH). Heating in combination with GFs caused the greatest gene induction of osteoprotegerin (OPG; 6.9- and 1.6-fold induction compared to sham-treated and GF only treated groups, respectively) and vascular endothelial growth factor (VEGF; 16.0- and 1.6-fold compared to sham and GF-only treated groups, respectively) at 8 h PH. Both heating and GFs independently suppressed the matrix metalloproteinase-9 (MMP-9) gene. GF treatment caused a more significant decrease in MMP-9 protein secretion to non-detectable levels compared to heating alone at 72 h PH. Secretion of OCN, OPN, and OPG increased with the addition of GFs but diminished with heating as measured by ELISA at 72 h PH. These results suggest that conditioning protocols utilizing heating and GFs individually or in combination can induce HSPs, bone-related proteins, and VEGF while also causing downregulation of osteoclastic activity, potentially providing a promising bone therapeutic strategy.
Collapse
Affiliation(s)
- Eunna Chung
- School of Biomedical Engineering and Sciences, Virginia Tech–Wake Forest University, Virginia Tech, ICTAS Bldg., Stanger Street (MC 0298), Blacksburg, VA 24061 USA
| | - Marissa Nichole Rylander
- School of Biomedical Engineering and Sciences, Virginia Tech–Wake Forest University, Virginia Tech, ICTAS Bldg., Stanger Street (MC 0298), Blacksburg, VA 24061 USA
- Department of Mechanical Engineering, Virginia Tech, Virginia Tech, ICTAS Bldg., Stanger Street (MC 0298), Blacksburg, VA 24061 USA
| |
Collapse
|
12
|
Chung E, Rylander MN. Response of a preosteoblastic cell line to cyclic tensile stress conditioning and growth factors for bone tissue engineering. Tissue Eng Part A 2011; 18:397-410. [PMID: 21919794 DOI: 10.1089/ten.tea.2010.0414] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone regeneration can be accelerated by utilizing mechanical stress and growth factors (GFs). However, a limited understanding exists regarding the response of preosteoblasts to tensile stress alone or with GFs. We measured cell proliferation and expression of heat-shock proteins (HSPs) and other bone-related proteins by preosteoblasts following cyclic tensile stress (1%-10% magnitude) alone or in combination with bone morphogenetic protein-2 (BMP-2) and transforming growth factor-β1 (TGF-β1). Tensile stress (3%) with GFs induced greater gene upregulation of osteoprotegerin (3.3 relative fold induction [RFI] compared to sham-treated samples), prostaglandin E synthase 2 (2.1 RFI), and vascular endothelial growth factor (VEGF) (11.5 RFI), compared with samples treated with stimuli alone or sham-treated samples. The most significant increases in messenger RNA expression occurred with GF addition to either static-cultured or tensile-loaded (1% elongation) cells for the following genes: HSP47 (RFI=2.53), cyclooxygenase-2 (RFI=72.52), bone sialoprotein (RFI=11.56), and TGF-β1 (RFI=8.05). Following 5% strain with GFs, VEGF secretion increased 64% (days 3-6) compared with GF alone and cell proliferation increased 23% compared with the sham-treated group. GF addition increased osteocalcin secretion but decreased matrix metalloproteinase-9 significantly (days 3-6). Tensile stress and GFs in combination may enhance bone regeneration by initiating angiogenic and anti-osteoclastic effects and promote cell growth.
Collapse
Affiliation(s)
- Eunna Chung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
13
|
Pourghadamyari H, Moohebati M, Parizadeh SMR, Falsoleiman H, Dehghani M, Fazlinezhad A, Akhlaghi S, Tavallaie S, Sahebkar A, Paydar R, Ghayour-Mobarhan M, Ferns GA. Serum antibody titers against heat shock protein 27 are associated with the severity of coronary artery disease. Cell Stress Chaperones 2011; 16:309-16. [PMID: 21107776 PMCID: PMC3077226 DOI: 10.1007/s12192-010-0241-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/24/2010] [Accepted: 10/28/2010] [Indexed: 12/16/2022] Open
Abstract
Antibody titers to several heat shock proteins (anti-Hsps) have been reported to be associated with the severity and progression of cardiovascular disease. However, there are little data regarding anti-Hsp27 titers in patients with coronary artery disease (CAD). A total of 400 patients with suspected CAD were recruited. Based on the results of coronary angiography, these patients were classified into CAD(+) (n = 300) and CAD(-) (n = 100) groups defined as patients with ≥50% and <50% stenosis of any major coronary artery, respectively. Eighty-three healthy subjects were also recruited as the control group. Serum anti-Hsp27 IgG titers were measured using an in-house enzyme-linked immunosorbent assay. CAD(+) patients had significantly higher anti-Hsp27 titers compared with both CAD(-) and control groups. Anti-Hsp27 titers were also higher in the CAD(-) group compared with the control group. With regard to the number of affected vessels in the CAD(+) group, patients with three-vessel disease had higher anti-Hsp27 titers compared with both two-vessel disease (2VD) and one-vessel disease (1VD) subgroups. However, there was no significant difference between 1VD and 2VD subgroups. In multiple linear regression analysis, the number of narrowed vessels and smoking were significant independent determinants of serum anti-Hsp27 titers. The present findings indicate that serum anti-Hsp27 titers may be associated with the presence and severity of coronary artery disease.
Collapse
Affiliation(s)
- Hossein Pourghadamyari
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Mohsen Moohebati
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Department of Cardiology, Faculty of Medicine, MUMS, Mashhad, Iran
| | | | - Homa Falsoleiman
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Department of Cardiology, Faculty of Medicine, MUMS, Mashhad, Iran
| | - Mashalla Dehghani
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Department of Cardiology, Faculty of Medicine, MUMS, Mashhad, Iran
| | - Afsoon Fazlinezhad
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Department of Cardiology, Faculty of Medicine, MUMS, Mashhad, Iran
| | - Saeed Akhlaghi
- Deputy of Research, Faculty of Medicine, MUMS, Mashhad, Iran
| | - Shima Tavallaie
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Amirhossein Sahebkar
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Cardiovascular Research Center, Avicenna (Bu-Ali) Research Institute, MUMS, Mashhad, Iran
| | - Roghayeh Paydar
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Cardiovascular Research Center, Avicenna (Bu-Ali) Research Institute, MUMS, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, MUMS, Mashhad, Iran
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Gordon A. Ferns
- Institute for Science and Technology in Medicine, University of Keele, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, Staffordshire ST4 7QB UK
| |
Collapse
|
14
|
Kwon SM, Kim SA, Fujii S, Maeda H, Ahn SG, Yoon JH. Transforming Growth Factor .BETA.1 Promotes Migration of Human Periodontal Ligament Cells through Heat Shock Protein 27 Phosphorylation. Biol Pharm Bull 2011; 34:486-9. [DOI: 10.1248/bpb.34.486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Seong-Min Kwon
- Department of Pathology, School of Dentistry, Chosun University
| | - Soo-A Kim
- Department of Biochemistry, College of Oriental Medicine, Dongguk University
| | - Shinsuke Fujii
- Department of Endodontology, Faculty of Dental Science, Kyushu University Hospital
| | - Hidefumi Maeda
- Department of Endodontology, Faculty of Dental Science, Kyushu University Hospital
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University
| | - Jung-Hoon Yoon
- Department of Pathology, School of Dentistry, Chosun University
| |
Collapse
|
15
|
Kwon SM, Kim SA, Yoon JH, Ahn SG. Transforming growth factor beta1-induced heat shock protein 27 activation promotes migration of mouse dental papilla-derived MDPC-23 cells. J Endod 2010; 36:1332-5. [PMID: 20647091 DOI: 10.1016/j.joen.2010.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/21/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Transforming growth factor beta1 (TGFbeta1) regulates cellular functions including cell growth, differentiation, angiogenesis, migration, and metastasis. The TGFbeta1 signal transduction pathways are mostly undefined in mouse dental papilla-derived MDPC-23 cells. In this study, we investigated TGFbeta1-induced migration focusing on heat shock protein 27 (Hsp27) activation. METHODS Cellular responses mediated by TGFbeta1 in MDPC-23 cells were measured by Western blot and MTT assays. Cell migration was determined by counting migrated cells using the chemotaxis cell migration assay. RESULTS TGFbeta1 induced cell migration and increased the phosphorylation of Hsp27 and p38 MAPK in MDPC-23 cells. However, TGFbeta1 did not affect Akt/NF-kappaB signaling to regulate the migration of MDPC-23 cells. Inhibiting p38 MAPK with SB203580 blocked TGFbeta1-induced Hsp27 activation and cell migration. CONCLUSION Hsp27 phosphorylation followed by p38 MAPK activation was required for TGFbeta1-induced migration, and Hsp27 itself contributed to MDPC-23 cell migration.
Collapse
Affiliation(s)
- Seong-Min Kwon
- Department of Pathology, School of Dentistry Chosun University, Gwangju 501-759, Korea
| | | | | | | |
Collapse
|
16
|
Zhu Y, Zhu J, Wan X, Zhu Y, Zhang T. Gene expression of sHsps, Hsp40 and Hsp60 families in normal and abnormal embryonic development of mouse forelimbs. Toxicol Lett 2010; 193:242-51. [DOI: 10.1016/j.toxlet.2010.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/25/2022]
|
17
|
Paduch R, Jakubowicz-Gil J, Kandefer-Szerszen M. Expression of HSP27, HSP72 and MRP proteins in in vitro co-culture of colon tumour cell spheroids with normal cells after incubation with rhTGF- beta1 and/or CPT-11. J Biosci 2010; 34:927-40. [PMID: 20093746 DOI: 10.1007/s12038-009-0107-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We studied the expression of inducible heat shock protein (HSP27, HSP72) and multidrug-resistance protein (MRP) in co-cultures of human colon carcinoma cell spheroids obtained from different grades of tumour with normal human colon epithelium, myofibroblast and endothelial cell monolayers. We also measured the influence of recombinant human transforming growth factor beta1 (rhTGF-beta1) and camptothecin (CPT-11), added as single agents or in combination, on the levels of the HSPs, MRP, interleukin (IL)-6 and nitric oxide (NO). An immunoblotting analysis with densitometry showed that rhTGF-beta1 and/or CPT-11 increased HSP27, HSP72 and MRP expression in tumour cells and myofibroblasts, as well as in co-cultures compared with appropriate controls. By contrast, in colonic epithelium, inhibition of HSPs and MRP was comparable with that of the control. In endothelial cells, HSP72 was undetectable. Direct interaction of colon tumour spheroids with normal myofibroblasts caused a significant, tumour-grade dependent increase in IL-6 production. Production of IL-6 was significantly lowered by rhTGF-beta1 and/or CPT-11. Tumour cell spheroids cultivated alone produced larger amounts of NO than normal cells. In co-culture, the level of the radical decreased compared with the sum of NO produced by the monocultures of the two types of cells. rhTGF-beta1 and/or CPT-11 decreased NO production both in tumour and normal cell monocultures and their co-cultures. In conclusion, direct interactions between tumour and normal cells influence the expression of HSP27, HSP72 and MRP, and alter IL-6 and NO production. rhTGF-beta1 and/or CPT-11 may potentate resistance to chemotherapy by increasing HSP and MRP expression but, on the other hand, they may limit tumour cell spread by decreasing the level of some soluble mediators of inflammation (IL-6 and NO).
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | | | | |
Collapse
|
18
|
Vargha R, Bender TO, Riesenhuber A, Endemann M, Kratochwill K, Aufricht C. Effects of epithelial-to-mesenchymal transition on acute stress response in human peritoneal mesothelial cells. Nephrol Dial Transplant 2008; 23:3494-500. [DOI: 10.1093/ndt/gfn353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
(−)-Epigallocatechin gallate reduces transforming growth factor β-stimulated HSP27 induction through the suppression of stress-activated protein kinase/c-Jun N-terminal kinase in osteoblasts. Life Sci 2008; 82:1012-7. [DOI: 10.1016/j.lfs.2008.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 02/12/2008] [Accepted: 02/26/2008] [Indexed: 11/21/2022]
|
20
|
Id-1 promotes TGF-beta1-induced cell motility through HSP27 activation and disassembly of adherens junction in prostate epithelial cells. Exp Cell Res 2007; 313:3983-99. [PMID: 17916352 DOI: 10.1016/j.yexcr.2007.08.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 08/17/2007] [Accepted: 08/23/2007] [Indexed: 01/31/2023]
Abstract
Id-1 (inhibitor of differentiation or DNA binding-1) has been positively associated with cell proliferation, cell cycle progression, and invasiveness during tumorigenesis. In addition, Id-1 has been shown to modulate cellular sensitivity to TGF-beta1 (transforming growth factor beta1). Here we demonstrate a novel role of Id-1 in promoting TGF-beta1-induced cell motility in a non-malignant prostate epithelial cell line, NPTX. We found that Id-1 promoted F-actin stress fiber formation in response to TGF-beta1, which was associated with increased cell-substrate adhesion and cell migration in NPTX cells. In addition, this positive effect of Id-1 on TGF-beta1-induced cell motility was mediated through activation of MEK-ERK signaling pathway and subsequent phosphorylation of HSP27 (heat shock protein 27). Furthermore, Id-1 disrupted the adherens junction complex in TGF-beta1-treated cells through down-regulation of E-cadherin, redistribution of beta-catenin, along with up-regulation of N-cadherin. These lines of evidence reveal a novel tumorigenic role of Id-1 through reorganization of actin cytoskeleton and disassembly of cell-cell adhesion in response to TGF-beta1 in human prostate epithelial cells, and suggest that intracellular Id-1 levels might be a determining factor for switching TGF-beta1 from a growth inhibitor to a tumor promoter during prostate carcinogenesis.
Collapse
|
21
|
Takai S, Tokuda H, Yoshida M, Yasuda E, Matsushima-Nishiwaki R, Harada A, Kato K, Kozawa O. Prostaglandin D2 induces the phosphorylation of HSP27 in osteoblasts: function of the MAP kinase superfamily. Prostaglandins Leukot Essent Fatty Acids 2006; 75:61-7. [PMID: 16876988 DOI: 10.1016/j.plefa.2006.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 06/05/2006] [Accepted: 06/08/2006] [Indexed: 11/17/2022]
Abstract
We previously reported that prostaglandin D(2) (PGD(2)) stimulates the induction of heat shock protein 27 (HSP27) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether PGD(2) stimulates the phosphorylation of HSP27 in MC3T3-E1 cells exposed to heat shock. In the cultured MC3T3-E1 cells, PGD(2) markedly stimulated the phosphorylation of HSP27 at Ser-15 and Ser-85 in a time-dependent manner. Among the mitogen-activated protein (MAP) kinase superfamily, p44/p42 MAP kinase and p38 MAP kinase were phosphorylated by PGD(2) which had little effect on the phosphorylation of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). The PGD(2)-induced phosphorylation of HSP27 was attenuated by PD169316, an inhibitor of p38 MAP kinase or PD98059, a MEK inhibitor. SP600125, a SAPK/JNK inhibitor did not affect the HSP27 phosphorylation. In addition, PD169316 suppressed the PGD(2)-induced phosphorylation of MAPKAP kinase 2. These results strongly suggest that PGD(2) stimulates HSP27 phosphorylation via p44/p42 MAP kinase and p38 MAP kinase but not SAPK/JNK in osteoblasts.
Collapse
Affiliation(s)
- Shinji Takai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu L, Chen S, Bergan RC. MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene 2006; 25:2987-98. [PMID: 16407830 DOI: 10.1038/sj.onc.1209337] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although cell invasion is a necessary early step in cancer metastasis, its regulation is not well understood. We have previously shown, in human prostate cancer, that transforming growth factor beta (TGFbeta)-mediated increases in cell invasion are dependent upon activation of the serine/threonine kinase, p38 MAP kinase. In the current study, downstream effectors of p38 MAP kinase were sought by first screening for proteins phosphorylated after TGFbeta treatment, only in the absence of chemical inhibitors of p38 MAP kinase. This led us to investigate mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2), a known substrate of p38 MAP kinase, as well as heat-shock protein 27 (HSP27), a known substrate of MAPKAPK2, in both PC3 and PC3-M human prostate cells. After transient transfection, wild-type MAPKAPK2 and HSP27 both increased TGFbeta-mediated matrix metalloproteinase type 2 (MMP-2) activity, as well as cell invasion, which in turn was inhibited by SB203580, an inhibitor of p38 MAP kinase. Conversely, dominant-negative MAPKAPK2 blocked phosphorylation of HSP27, whereas dominant-negative MAPKAPK2 or mutant, non-phosphorylateable, HSP27 each blocked TGFbeta-mediated increases in MMP-2, as well as cell invasion. Similarly, knock down of MAPKAPK2, HSP27 or both together, by siRNA, also blocked TGFbeta-mediated cell invasion. This study demonstrates that both MAPKAPK2 and HSP27 are necessary for TGFbeta-mediated increases in MMP-2 and cell invasion in human prostate cancer.
Collapse
Affiliation(s)
- L Xu
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Medical School, Chicago, IL, USA
| | | | | |
Collapse
|
23
|
Ghayor C, Rey A, Caverzasio J. Prostaglandin-dependent activation of ERK mediates cell proliferation induced by transforming growth factor beta in mouse osteoblastic cells. Bone 2005; 36:93-100. [PMID: 15664007 DOI: 10.1016/j.bone.2004.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 10/07/2004] [Accepted: 10/15/2004] [Indexed: 10/26/2022]
Abstract
Transforming growth factor beta (TGF(beta)) is a major coupling factor for bone turnover and is known to stimulate osteoblastic proliferation. Recent information indicates that, in addition to the Smad pathway, TGF(beta) also activates MAP kinases in osteoblastic cells. The role of these signaling cascades in cell proliferation induced by TGF(beta) as well as the cellular and molecular mechanisms of their activation by TGF(beta) has been investigated in this study. In MC3T3-E1 cells, TGF(beta) enhanced cell proliferation by about 2-fold and induced activation of the three MAP kinases, extracellular regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). Surprisingly, however, whereas activation of Smad2 was rapid and maximal after 15-min incubation, activation of MAP kinases was delayed with p38 stimulation detected after 1-h exposure and activation of ERK and JNK after 3 h, suggesting indirect activation of MAP kinases by TGF(beta). Among factors known to be released in response to TGF(beta) in osteoblastic cells and influence their growth, prostaglandins (PGs) were good candidates that were further investigated for mediating TGF(beta)-induced activation of MAP kinases and cell proliferation. Indomethacin, a selective inhibitor of PG synthesis, completely blunted cell proliferation induced by TGF(beta) and markedly reduced activation of MAP kinases without influencing Smad2 phosphorylation. EP4A, a specific PGE2 receptor antagonist, also blunted TGF(beta)-induced osteoblastic proliferation. In addition to these effects, PGE2 rapidly activated MAP kinases in MC3T3-E1 cells and increased cell proliferation by about 2-fold. The role of each MAP kinases in mediating TGF(beta)- and PGE2-induced cell proliferation was investigated using selective inhibitors. U0126, a specific inhibitor of the ERK pathway, completely blocked both TGF(beta)- and PGE2-induced cell proliferation whereas SB203580 and SP600125, which are selective inhibitors of, respectively, p38 and JNK pathways, had no effect. Finally, the effect of PGE2 on activation of ERK was mimicked by phorbol esters and not by forskolin, and was associated with activation of protein kinase C. This latter effect and the stimulation of ERK induced by PGE2 were completely blocked by a specific inhibitor of PKC. In conclusion, data presented in this study strongly suggest that the local release of PGE2 is involved in cell proliferation induced by TGF(beta) in osteoblastic cells. This effect is mediated by the ERK pathway activated by a PKC-dependent mechanism.
Collapse
Affiliation(s)
- Chafik Ghayor
- Department of Rehabilitation and Geriatrics, Service of Bone Diseases, University Hospital of Geneva, CH-1211 Geneva 14, Switzerland
| | | | | |
Collapse
|
24
|
Heng BC, Cao T, Stanton LW, Robson P, Olsen B. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res 2004; 19:1379-94. [PMID: 15312238 DOI: 10.1359/jbmr.040714] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 03/02/2004] [Accepted: 05/18/2004] [Indexed: 01/29/2023]
Abstract
A major area in regenerative medicine is the application of stem cells in bone reconstruction and bone tissue engineering. This will require well-defined and efficient protocols for directing the differentiation of stem cells into the osteogenic lineage, followed by their selective purification and proliferation in vitro. The development of such protocols would reduce the likelihood of spontaneous differentiation of stem cells into divergent lineages on transplantation, as well as reduce the risk of teratoma formation in the case of embryonic stem cells. Additionally, such protocols could provide useful in vitro models for studying osteogenesis and bone development, and facilitate the genetic manipulation of stem cells for therapeutic applications. The development of pharmokinetic and cytotoxicity/genotoxicity screening tests for bone-related biomaterials and drugs could also use protocols developed for the osteogenic differentiation of stem cells. This review critically examines the various strategies that could be used to direct the differentiation of stem cells into the osteogenic lineage in vitro.
Collapse
Affiliation(s)
- Boon Chin Heng
- Faculty of Dentistry, National University of Singapore, 119074 Singapore
| | | | | | | | | |
Collapse
|
25
|
Imamura T, Kanai F, Kawakami T, Amarsanaa J, Ijichi H, Hoshida Y, Tanaka Y, Ikenoue T, Tateishi K, Kawabe T, Arakawa Y, Miyagishi M, Taira K, Yokosuka O, Omata M. Proteomic analysis of the TGF-beta signaling pathway in pancreatic carcinoma cells using stable RNA interference to silence Smad4 expression. Biochem Biophys Res Commun 2004; 318:289-296. [PMID: 15110786 DOI: 10.1016/j.bbrc.2004.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Indexed: 11/24/2022]
Abstract
Smad4 is a tumor-suppressor gene that is lost or mutated in 50% of pancreatic carcinomas. Smad4 is also an intracellular transmitter of transforming growth factor-beta (TGF-beta) signals. Although its tumor-suppressor function is presumed to reside in its capacity to mediate TGF-beta-induced growth inhibition, there seems to be a Smad4-independent TGF-beta signaling pathway. Here, we succeeded in establishing Smad4 knockdown (S4KD) pancreatic cancer cell lines using stable RNA interference. Smad4 protein expression and TGF-beta-Smad4 signaling were impaired in S4KD cells, and we compared the proteomic changes with TGF-beta stimulation using two-dimensional gel electrophoresis (2-DE) and mass spectrometry. We identified five proteins that were up-regulated and seven proteins that were down-regulated; 10 of them were novel targets for TGF-beta. These proteins function in processes such as cytoskeletal regulation, cell cycle, and oxidative stress. Introducing siRNA-mediated gene silencing into proteomics revealed a novel TGF-beta signal pathway that did not involve Smad4.
Collapse
Affiliation(s)
- Takaaki Imamura
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Malmström J, Lindberg H, Lindberg C, Bratt C, Wieslander E, Delander EL, Särnstrand B, Burns JS, Mose-Larsen P, Fey S, Marko-Varga G. Transforming Growth Factor-β1 Specifically Induce Proteins Involved in the Myofibroblast Contractile Apparatus. Mol Cell Proteomics 2004; 3:466-77. [PMID: 14766930 DOI: 10.1074/mcp.m300108-mcp200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transforming growth factor-beta(1) (TGF-beta(1)) induces alpha-smooth muscle actin (alpha-SMA) and collagen synthesis in fibroblast both in vivo and in vitro and plays a significant role in tissue repair and the development of fibrosis. During these processes the fibroblasts differentiate into activated fibroblasts (so called myofibroblasts), characterized by increased alpha-SMA expression. Because TGF-beta(1) is considered the main inducer of the myofibroblast phenotype and cytoskeletal changes accompany this differentiation, the main objective of this investigation was to study how TGF-beta(1) alters protein expression of cytoskeletal-associated proteins. Metabolic labeling of cell cultures by [(35)S]methionine, followed by protein separation on two-dimensional gel electrophoresis, displayed approximately 2500 proteins in the pI interval of 3-10. Treatment of TGF-beta(1) led to specific spot pattern changes that were identified by mass spectrometry and represent specific induction of several members of the contractile apparatus such as calgizzarin, cofilin, and profilin. These proteins have not previously been shown to be regulated by TGF-beta(1), and the functional role of these proteins is to participate in the depolymerization and stabilization of the microfilaments. These results show that TGF-beta(1) induces not only alpha-SMA but a whole set of actin-associated proteins that may contribute to the increased contractile properties of the myofibroblast. These proteins accompany the induced expression of alpha-SMA and may participate in the formation of stress fibers, cell contractility, and cell spreading characterizing the myofibroblasts phenotype.
Collapse
Affiliation(s)
- Johan Malmström
- Department of Molecular Sciences, AstraZeneca R&D Lund, SE-221 87 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tokuda H, Niwa M, Ishisaki A, Nakajima K, Ito H, Kato K, Kozawa O. Involvement of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) in prostaglandin F2alpha-induced heat shock protein 27 in osteoblasts. Prostaglandins Leukot Essent Fatty Acids 2004; 70:441-7. [PMID: 15062846 DOI: 10.1016/j.plefa.2003.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 09/18/2003] [Indexed: 11/21/2022]
Abstract
We have reported that prostaglandin F2(alpha) (PGF2(alpha)) activates p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells, and that p44/p42 MAP kinase plays a role in the PGF2(alpha)-induced heat shock protein 27 (HSP27). In the present study, we investigated the involvement of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), a member of the MAP kinase superfamily, in PGF2(alpha)-induced HSP27 in MC3T3-E1 cells. PGF2(alpha) time dependently induced the phosphorylation of SAPK/JNK. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced the PGF2(alpha)-stimulated HSP27 accumulation. The inhibitory effect of SP600125 was dose dependent in the range between 0.1 and 30 microM. SP600125 reduced the PGF2(alpha)-increased level of HSP27 mRNA. SP600125 suppressed the phosphorylation of SAPK/JNK induced by PGF2(alpha), but did not affect the PGF2(alpha)-induced phosphorylation of p44/p42 MAP kinase. On the other hand, PD98059, a specific inhibitor of the upstream kinase of p44/p42 MAP kinase, which reduced the phosphorylation of p44/p42 MAP kinase stimulated by PGF2(alpha), had little effect on the PGF2(alpha)-induced phosphorylation of SAPK/JNK. These results strongly suggest that SAPK/JNK plays a part in PGF2(alpha)-induced HSP27 in addition to p44/p42 MAP kinase in osteoblasts.
Collapse
Affiliation(s)
- H Tokuda
- Department of Pharmacology, Gifu University School of Medicine, Gifu 500-8705, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Embryos of the brine shrimp, Artemia franciscana, either develop directly into swimming larvae or are released from females as encysted gastrulae (cysts) which enter diapause, a reversible state of dormancy. Metabolic activity in diapause cysts is very low and these embryos are remarkably resistant to physiological stresses. Encysting embryos, but not those undergoing uninterrupted development, synthesize large amounts of two proteins, namely p26 and artemin. Cloning and sequencing demonstrated p26 is a small heat shock/alpha-crystallin protein while artemin has structural similarity to ferritin. p26 exhibits molecular chaperone activity in vitro, moves reversibly into nuclei during stress and confers thermotolerance on transformed organisms, suggesting critical roles in cyst development. The function of artemin is unknown. Encysted Artemia also contain an abundance of trehalose, a disaccharide capable of protecting embryos. Artemia represent a novel experimental system where the developmental functions of small heat shock/alpha-crystallin proteins and other stress response elements can be explored.
Collapse
Affiliation(s)
- Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1.
| |
Collapse
|
29
|
Tokuda H, Hatakeyama D, Akamatsu S, Tanabe K, Yoshida M, Shibata T, Kozawa O. Involvement of MAP kinases in TGF-beta-stimulated vascular endothelial growth factor synthesis in osteoblasts. Arch Biochem Biophys 2003; 415:117-25. [PMID: 12801520 DOI: 10.1016/s0003-9861(03)00225-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transforming growth factor-beta (TGF-beta) reportedly induces vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. We have recently shown that TGF-beta activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in these cells. In the present study, we investigated the exact mechanism of TGF-beta behind the synthesis of VEGF in MC3T3-E1 cells. PD98059 and U-0126, specific inhibitors of MEK, suppressed the VEGF synthesis induced by TGF-beta. U-0126 inhibited the TGF-beta-induced p44/p42 MAP kinase phosphorylation. SB203580 and PD169316, inhibitors of p38 MAP kinase, reduced the TGF-beta-stimulated VEGF synthesis. SB202474, a negative control for p38 MAP kinase inhibitor, did not affect the VEGF synthesis. A combination with PD98059 and SB203580 almost completely suppressed the TGF-beta-induced VEGF synthesis. Retinoic acid, which alone failed to affect VEGF synthesis, markedly enhanced the VEGF synthesis stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-increased levels of VEGF mRNA. The amplifications by retinoic acid of TGF-beta-increased VEGF synthesis and levels of VEGF mRNA were reduced by PD98059 or SB203580. The combination of PD98059 and SB203580 almost completely suppressed the enhancement by retinoic acid of VEGF synthesis induced by TGF-beta. Taken together, our results strongly suggest that both p44/p42 MAP kinase and p38 MAP kinase take part in TGF-beta-stimulated VEGF synthesis in osteoblasts, and that retinoic acid upregulates the VEGF synthesis.
Collapse
Affiliation(s)
- Haruhiko Tokuda
- Department of Internal Medicine, Chubu National Hospital, National Institute for Longevity Sciences, Obu, Aichi 474-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Tokuda H, Kato K, Oiso Y, Kozawa O. Contrasting effects of triiodothyronine on heat shock protein 27 induction and vascular endothelial growth factor synthesis stimulated by TGF-beta in osteoblasts. Mol Cell Endocrinol 2003; 201:33-8. [PMID: 12706291 DOI: 10.1016/s0303-7207(03)00004-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In osteoblast-like MC3T3-E1 cells, we recently reported that transforming growth factor-beta (TGF-beta) stimulates the induction of heat shock protein 27 (HSP27). In the present study, we investigated the effects of triiodothyronine (T(3)) on the TGF-beta-stimulated induction of HSP27 and synthesis of vascular endothelial growth factor (VEGF) in these cells. T(3) by itself had little effect on the level of HSP27, however, it significantly reduced the TGF-beta-stimulated HSP27 accumulation in a dose-dependent manner in the range between 1 pM and 100 nM. The TGF-beta-stimulated increase in the level of mRNA for HSP27 was also attenuated by T(3). On the other hand, T(3), which alone stimulated the release of VEGF, more than additively stimulated the TGF-beta-induced VEGF release. T(3) enhanced the TGF-beta-induced increase in the levels of mRNA for VEGF. These results strongly suggest that T(3) has contrasting effects on HSP27 induction and VEGF synthesis induced by TGF-beta in osteoblasts.
Collapse
Affiliation(s)
- H Tokuda
- Department of Internal Medicine, Chubu National Hospital: National Institute for Longevity Sciences, Obu, Japan
| | | | | | | |
Collapse
|