1
|
DeLalio LJ, Billaud M, Ruddiman CA, Johnstone SR, Butcher JT, Wolpe AG, Jin X, Keller TCS, Keller AS, Rivière T, Good ME, Best AK, Lohman AW, Swayne LA, Penuela S, Thompson RJ, Lampe PD, Yeager M, Isakson BE. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J Biol Chem 2019; 294:6940-6956. [PMID: 30814251 DOI: 10.1074/jbc.ra118.006982] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/15/2019] [Indexed: 11/06/2022] Open
Abstract
Pannexin 1 (PANX1)-mediated ATP release in vascular smooth muscle coordinates α1-adrenergic receptor (α1-AR) vasoconstriction and blood pressure homeostasis. We recently identified amino acids 198-200 (YLK) on the PANX1 intracellular loop that are critical for α1-AR-mediated vasoconstriction and PANX1 channel function. We report herein that the YLK motif is contained within an SRC homology 2 domain and is directly phosphorylated by SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) at Tyr198 We demonstrate that PANX1-mediated ATP release occurs independently of intracellular calcium but is sensitive to SRC family kinase (SFK) inhibition, suggestive of channel regulation by tyrosine phosphorylation. Using a PANX1 Tyr198-specific antibody, SFK inhibitors, SRC knockdown, temperature-dependent SRC cells, and kinase assays, we found that PANX1-mediated ATP release and vasoconstriction involves constitutive phosphorylation of PANX1 Tyr198 by SRC. We specifically detected SRC-mediated Tyr198 phosphorylation at the plasma membrane and observed that it is not enhanced or induced by α1-AR activation. Last, we show that PANX1 immunostaining is enriched in the smooth muscle layer of arteries from hypertensive humans and that Tyr198 phosphorylation is detectable in these samples, indicative of a role for membrane-associated PANX1 in small arteries of hypertensive humans. Our discovery adds insight into the regulation of PANX1 by post-translational modifications and connects a significant purinergic vasoconstriction pathway with a previously identified, yet unexplored, tyrosine kinase-based α1-AR constriction mechanism. This work implicates SRC-mediated PANX1 function in normal vascular hemodynamics and suggests that Tyr198-phosphorylated PANX1 is involved in hypertensive vascular pathology.
Collapse
Affiliation(s)
- Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | - Marie Billaud
- the Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Claire A Ruddiman
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | | | - Joshua T Butcher
- the Department of Physiology, Augusta University, Augusta, Georgia 30912
| | - Abigail G Wolpe
- From the Robert M. Berne Cardiovascular Research Center.,Department of Cell Biology, and
| | - Xueyao Jin
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - T C Stevenson Keller
- From the Robert M. Berne Cardiovascular Research Center.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Alexander S Keller
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | - Thibaud Rivière
- the Department of Life and Health Sciences, University of Bordeaux, 33000 Bordeaux, France
| | | | - Angela K Best
- From the Robert M. Berne Cardiovascular Research Center
| | - Alexander W Lohman
- the Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Leigh Anne Swayne
- the Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Silvia Penuela
- the Departments of Anatomy and Cell Biology and Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada, and
| | - Roger J Thompson
- the Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul D Lampe
- the Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mark Yeager
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
2
|
Bastounis EE, Yeh YT, Theriot JA. Matrix stiffness modulates infection of endothelial cells by Listeria monocytogenes via expression of cell surface vimentin. Mol Biol Cell 2018; 29:1571-1589. [PMID: 29718765 PMCID: PMC6080647 DOI: 10.1091/mbc.e18-04-0228] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix stiffness (ECM) is one of the many mechanical forces acting on mammalian adherent cells and an important determinant of cellular function. While the effect of ECM stiffness on many aspects of cellular behavior has been studied previously, how ECM stiffness might mediate susceptibility of host cells to infection by bacterial pathogens is hitherto unexplored. To address this open question, we manufactured hydrogels of varying physiologically relevant stiffness and seeded human microvascular endothelial cells (HMEC-1) on them. We then infected HMEC-1 with the bacterial pathogen Listeria monocytogenes (Lm) and found that adhesion of Lm to host cells increases monotonically with increasing matrix stiffness, an effect that requires the activity of focal adhesion kinase (FAK). We identified cell surface vimentin as a candidate surface receptor mediating stiffness-dependent adhesion of Lm to HMEC-1 and found that bacterial infection of these host cells is decreased when the amount of surface vimentin is reduced. Our results provide the first evidence that ECM stiffness can mediate the susceptibility of mammalian host cells to infection by a bacterial pathogen.
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Yi-Ting Yeh
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Julie A Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
3
|
Anguita E, Villalobo A. Src-family tyrosine kinases and the Ca 2+ signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:915-932. [PMID: 27818271 DOI: 10.1016/j.bbamcr.2016.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023]
Abstract
In this review, we shall describe the rich crosstalk between non-receptor Src-family kinases (SFKs) and the Ca2+ transient generated in activated cells by a variety of extracellular and intracellular stimuli, resulting in diverse signaling events. The exchange of information between SFKs and Ca2+ is reciprocal, as it flows in both directions. These kinases are main actors in pathways leading to the generation of the Ca2+ signal, and reciprocally, the Ca2+ signal modulates SFKs activity and functions. We will cover how SFKs participate in the generation of the cytosolic Ca2+ rise upon activation of a series of receptors and the mechanism of clearance of this Ca2+ signal. The role of SFKs modulating Ca2+-translocating channels participating in these events will be amply discussed. Finally, the role of the Ca2+ sensor protein calmodulin on the activity of c-Src, and potentially on other SFKs, will be outlined as well. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Estefanía Anguita
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
4
|
Eberwein P, Laird D, Schulz S, Reinhard T, Steinberg T, Tomakidi P. Modulation of focal adhesion constituents and their down-stream events by EGF: On the cross-talk of integrins and growth factor receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2183-98. [DOI: 10.1016/j.bbamcr.2015.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/27/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
|
5
|
Karimian G, Buist-Homan M, Mikus B, Henning RH, Faber KN, Moshage H. Angiotensin II protects primary rat hepatocytes against bile salt-induced apoptosis. PLoS One 2012; 7:e52647. [PMID: 23300732 PMCID: PMC3530435 DOI: 10.1371/journal.pone.0052647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/19/2012] [Indexed: 02/06/2023] Open
Abstract
Angiotensin II (AT-II) is a pro-fibrotic compound that acts via membrane-bound receptors (AT-1R/AT-2R) and thereby activates hepatic stellate cells (HSCs). AT-II receptor blockers (ARBs) are thus important candidates in the treatment of liver fibrosis. However, multiple case reports suggest that AT-1R blockers may induce hepatocyte injury. Therefore, we investigated the effect of AT-II and its receptor blockers on cytokine-, oxidative stress- and bile salt-induced cell death in hepatocytes. Primary rat hepatocytes were exposed to TNF-α/Actinomycin D, the ROS-generating agent menadione or the bile salts: glycochenodeoxycholic acid (GCDCA) and tauro-lithocholic acid-3 sulfate (TLCS), to induce apoptosis. AT-II (100 nmol/L) was added 10 minutes prior to the cell death-inducing agent. AT-1R antagonists (Sartans) and the AT-2R antagonist PD123319 were used at 1 µmol/L. Apoptosis (caspase-3 activity, acridine orange staining) and necrosis (Sytox green staining) were quantified. Expression of CHOP (marker for ER stress) and AT-II receptor mRNAs were quantified by Q-PCR. AT-II dose-dependently reduced GCDCA-induced apoptosis of hepatocytes (−50%, p<0.05) without inducing necrosis. In addition, AT-II reduced TLCS-induced apoptosis of hepatocytes (−50%, p<0.05). However, AT-II did not suppress TNF/Act-D and menadione-induced apoptosis. Only the AT-1R antagonists abolished the protective effect of AT-II against GCDCA-induced apoptosis. AT-II increased phosphorylation of ERK and a significant reversal of the protective effect of AT-II was observed when signaling kinases, including ERK, were inhibited. Moreover, AT-II prevented the GCDCA-induced expression of CHOP (the marker of the ER-mediated apoptosis).
Collapse
Affiliation(s)
- Golnar Karimian
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
The race for a cure to cancer continues, fueled by unprecedented discoveries of fundamental biology underlying carcinogenesis and tumorigenesis. The expansion of the target list and tools to approach them is moving the oncology community extraordinarily rapidly to clinical trials, bringing new hope for cancer patients. This effort is also propelling biological discoveries in cardiovascular research, because many of the targets being explored in cancer play fundamental roles in the heart and vasculature. The combined efforts of cardiovascular and cancer biologists, along with clinical investigators in these fields, will be needed to understand how to safely exploit these efforts. Here, we discuss a few of the many research foci in oncology where we believe such collaboration will be particularly important.
Collapse
Affiliation(s)
- Xuyang Peng
- Cardiovascular Medicine, Vanderbilt University Medical Center, PRB 359B Pierce Ave., Nashville, TN 37232, USA.
| | | | | |
Collapse
|
7
|
Aroor AR, Lee YJ, Shukla SD. Activation of MEK 1/2 and p42/44 MAPK by angiotensin II in hepatocyte nucleus and their potentiation by ethanol. Alcohol 2009; 43:315-22. [PMID: 19560630 PMCID: PMC2743527 DOI: 10.1016/j.alcohol.2009.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 12/31/2008] [Accepted: 04/13/2009] [Indexed: 02/07/2023]
Abstract
Hepato-subcellular effect of angiotensin II (Ang II) and ethanol on the p42/44 mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK 1/2) was investigated in the nucleus of rat hepatocytes. Hepatocytes were treated with ethanol (100 mM) for 24h and stimulated with Ang II (100 nM, 5 min). The levels of p42/44 MAPK and MEK 1/2 were monitored in the nuclear fraction using antibodies. Ang II itself caused significant accumulation of phosphorylated p42/44 MAPK (phospho-p42/44 MAPK) in the nucleus without any significant translocation of p42/44 MAPK protein thereby suggesting activation of p42/44 MAPK in the nucleus. Ang II caused marked accumulation of phosphorylated MEK 1/2 (phospho-MEK 1/2) in the nucleus without any significant accumulation of MEK 1/2 protein. Ratio of phospho-MEK 1/2 to MEK 1/2 protein in the nucleus after Ang II treatment was 2.4 times greater than control suggesting phosphorylation of MEK 1/2 inside the nucleus. Ethanol had no effect on the protein level or the activation of p42/44 MAPK in the nucleus. Ethanol treatment potentiated nuclear activation of p42/44 MAPK by Ang II but not translocation of p42/44 MAPK protein. This was accompanied by potentiation of Ang II-stimulated accumulation of phospho-MEK 1/2 in the nucleus by ethanol. MEK 1/2 inhibitor, U-0126 inhibited Ang II response and its potentiation by ethanol. These results suggest that Ang II-mediated accumulation of phospho-p42/44 MAPK in the hepatocyte nucleus involves MEK 1/2-dependent activation and this effect is potentiated by ethanol.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | | | | |
Collapse
|
8
|
Lee KS, Park JH, Lee S, Lim HJ, Park HY. PPARδ activation inhibits angiotensin II induced cardiomyocyte hypertrophy by suppressing intracellular Ca2+signaling pathway. J Cell Biochem 2009; 106:823-34. [DOI: 10.1002/jcb.22038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Jiménez E, Pérez de la Blanca E, Urso L, González I, Salas J, Montiel M. Angiotensin II induces MMP 2 activity via FAK/JNK pathway in human endothelial cells. Biochem Biophys Res Commun 2009; 380:769-74. [PMID: 19338750 DOI: 10.1016/j.bbrc.2009.01.142] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Matrix metalloproteinases (MMPs) play an important role in the pathogenesis of cardiovascular diseases and are modified in response to a variety of stimuli such as bioactive peptides, cytokines and/or grown factors. In this study, we demonstrated that angiotensin II (Ang II) induces a time- and dose-dependent increase in the activity of metalloproteinase 2 (MMP 2) in human umbilical vein endothelial cells (HUVEC). The effect of Ang II was markedly attenuated in cells pretreated with wortmannin and LY294002, two selective inhibitors of phosphatidylinositol-3-kinase (PI3K), indicating that PI3K plays a key role in regulating MMP 2 activity. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific Src-family tyrosine kinase inhibitor PP2, demonstrating the involvement of protein tyrosine kinases, and particularly Src-family tyrosine kinases on the downstream signaling pathway of Ang II receptors. Furthermore, Ang II-induced MMP 2 activation was markedly blocked by SP600125, a selective c-Jun N-terminal kinase (JNK) inhibitor, or pre-treatment of cells with antisense oligonucleotide to focal adhesion kinase (FAK), indicating that both molecules were important for the activation of MMP 2 by Ang II receptor stimulation. In conclusion, these results suggest that Ang II mediates an increase in MMP 2 activity in macrovascular endothelial cells through signal transduction pathways dependent on PI3K and Src-family tyrosine kinases activation, as well as JNK and FAK phosphorylation.
Collapse
Affiliation(s)
- Eugenio Jiménez
- Departamento de Bioquímica y Biología Molecular, Universidad de Málaga, Boulevard Louis Pasteur 32, 29071 Málaga, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Weng YI, Aroor AR, Shukla SD. Ethanol inhibition of angiotensin II-stimulated Tyr705 and Ser727 STAT3 phosphorylation in cultured rat hepatocytes: relevance to activation of p42/44 mitogen-activated protein kinase. Alcohol 2008; 42:397-406. [PMID: 18411006 DOI: 10.1016/j.alcohol.2008.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 02/22/2008] [Accepted: 02/26/2008] [Indexed: 12/16/2022]
Abstract
Angiotensin (Ang) II-stimulated phosphorylation of signal transducer and activator transcription (STAT) 3 in rat hepatocytes and the effects of ethanol on this activation were investigated. Angiotensin II (100 nM) stimulated Tyr705 and Ser727 phosphorylation of STAT3 and formation of sis-inducing factor complexes. In the presence of U-0126 (10microM), a p42/44 mitogen-activated protein kinase (MAPK) kinase inhibitor, Ang II further increased Tyr705 phosphorylation of STAT3 but completely abrogated Ser727 phosphorylation of STAT3. Inhibition of p42/44MAPK also increased STAT3 DNA-binding activity. Pretreatment with ethanol (100mM) for 24h resulted in decrease in Tyr705 phosphorylation of STAT3 by ethanol alone and inhibition of Tyr705 phosphorylation of STAT3 stimulated by Ang II. Although ethanol potentiates Ang II stimulated p42/44 MAPK activation in hepatocytes, ethanol inhibited Ser727 phosphorylation of STAT3 stimulated by Ang II. Angiotensin II-stimulated STAT3-binding activity was not significantly affected by ethanol treatment. These results suggest a negative regulation of Ang II-stimulated STAT3 tyrosine phosphorylation and STAT3-binding activity through p42/44 MAPK activation in hepatocytes. However, ethanol modulation of Ang II-stimulated STAT3 phosphorylation occurs by MAPK independent mechanisms. Ethanol potentiation of MAPK signaling without suppression of STAT3 function may modulate the course of alcoholic liver injury.
Collapse
|
11
|
Fintha A, Sebe A, Masszi A, Terebessy T, Huszár T, Rosivall L, Mucsi I. Angiotensin II activates plasminogen activator inhibitor-I promoter in renal tubular epithelial cells via the AT1receptor. ACTA ACUST UNITED AC 2007; 94:19-30. [PMID: 17444273 DOI: 10.1556/aphysiol.94.2007.1-2.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) regulates normal extracellular matrix (ECM) metabolism and it is a key regulator of the fibrotic process. Both angiotensin II (Ang II) and angiotensin IV (Ang IV) have been reported to stimulate PAI-1 expression. It is not known how PAI-1 expression is regulated by the renin-angiotensin system (RAS) in renal tubular cells. METHODS To dissect signaling mechanisms contributing to the up-regulation of the PAI-1 promoter, porcine proximal tubular cells stably expressing the rabbit AT1 receptor (LLC-PK/AT1) were transiently transfected with a luciferase reporter construct containing the PAI-1 promoter. Promoter activation was assessed by measuring luciferase activity from cell lysates. RESULTS Ang II dose-dependently stimulated the transcriptional activity of the PAI-1 promoter in renal proximal tubular cells whereas Ang IV had no consistent effect on the promoter activity. Neither inhibition of the Extracellular Signal Regulated Kinase (ERK) cascade nor inhibition of the c-Jun-N-terminal Kinase (JNK) pathway did reduce the stimulation of the PAI-1 promoter by Ang II. However, genistein, a tyrosine kinase inhibitor blocked the effect of Ang II. CONCLUSION Ang II but not Ang IV activates the PAI-1 promoter in renal proximal tubular cells and this effect is mediated by tyrosine kinases.
Collapse
Affiliation(s)
- A Fintha
- Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
12
|
Krishna SB, Alfonso LF, Thekkumkara TJ, Abbruscato TJ, Bhat GJ. Angiotensin II induces phosphorylation of glucose-regulated protein-75 in WB rat liver cells. Arch Biochem Biophys 2007; 457:16-28. [PMID: 17109810 PMCID: PMC2577571 DOI: 10.1016/j.abb.2006.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/06/2006] [Accepted: 10/12/2006] [Indexed: 01/19/2023]
Abstract
Studies in vascular smooth muscle cells suggest that, angiotensin II (Ang II)-mediated cellular response requires transactivation of epidermal growth factor receptor (EGF-R), and involves tyrosine phosphorylation of caveolin-1. Here we demonstrate that, exposure of WB rat liver cells to Ang II does not cause transactivation of EGF-R, but did rapidly activate p42/p44 mitogen-activated protein (MAP) kinases suggesting that it activates MAP kinases independent of EGF-R transactivation. We observed that the phospho-specific anti-caveolin-1 antibody detected a tyrosine phosphorylated, 75kDa protein in Ang II-treated cells which we identified as glucose regulated protein-75 (GRP-75). Phosphoamino acid analysis showed that Ang II induced its phosphorylation at tyrosine, serine and threonine residues and was localized to the cytoplasm. The ability of Ang-II to induce GRP-75 phosphorylation suggests that it may play a role in the protection of cytoplasmic proteins from the damaging effect of oxidative stress known to be produced during Ang-II induced signaling.
Collapse
Affiliation(s)
- Sharath B. Krishna
- Department of Pharmaceutical Sciences and Cancer Biology Center Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106
| | - Lloyd F. Alfonso
- Department of Pharmaceutical Sciences and Cancer Biology Center Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106
| | - Thomas J. Thekkumkara
- Department of Pharmaceutical Sciences and Cancer Biology Center Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106
| | - Thomas J. Abbruscato
- Department of Pharmaceutical Sciences and Cancer Biology Center Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106
| | - G. Jayarama Bhat
- Department of Pharmaceutical Sciences and Cancer Biology Center Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106
| |
Collapse
|
13
|
Shah BH, Baukal AJ, Chen HD, Shah AB, Catt KJ. Mechanisms of endothelin-1-induced MAP kinase activation in adrenal glomerulosa cells. J Steroid Biochem Mol Biol 2006; 102:79-88. [PMID: 17113976 PMCID: PMC3196343 DOI: 10.1016/j.jsbmb.2006.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCRs) such as angiotensin II, bradykinin and endothelin-1 (ET-1) are critically involved in the regulation of adrenal function, including aldosterone production from zona glomerulosa cells. Whereas, substantial data are available on the signaling mechanisms of ET-1 in cardiovascular tissues, such information in adrenal glomerulosa cells is lacking. Bovine adrenal glomerulosa (BAG) cells express receptors for endothelin-1 (ET-1) and their stimulation caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), extracellularly regulated signal kinases (ERK1/2), and their dependent proteins, p90 ribosomal S6 kinase (RSK-1) and CREB. ET-1 elicited these responses predominantly through activation of a G(i)-linked cascade with a minor contribution from the G(q)/PKC pathway. Whereas, selective inhibition of EGF-R kinase with AG1478 caused complete inhibition of EGF-induced ERK/RSK-1/CREB activation, it caused only partial reduction (30-40%) of such ET-1-induced responses. Consistent with this, inhibition of matrix metalloproteinases (MMPs) with GM6001 reduced ERK1/2 activation by ET-1, consistent with partial involvement of the MMP-dependent EGF-R activation in this cascade. Activation of ERK/RSK-1/CREB by both ET-1 and EGF was abolished by inhibition of Src, indicating its central role in ET-1 signaling in BAG cells. Moreover, the signaling characteristics of ET-1 in cultured BAG cells closely resembled those observed in clonal adrenocortical H295R cells. The ET-1-induced proliferation of BAG and H295 R cells was much smaller than that induced by Ang II or FGF. These data demonstrate that ET-1 causes ERK/RSK-1/CREB phosphorylation predominantly through activation of G(i) and Src, with a minor contribution from MMP-dependent EGF-R transactivation.
Collapse
Affiliation(s)
- Bukhtiar H Shah
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
14
|
Alexander LD, Ding Y, Alagarsamy S, Cui XL, Douglas JG. Arachidonic acid induces ERK activation via Src SH2 domain association with the epidermal growth factor receptor. Kidney Int 2006; 69:1823-32. [PMID: 16598196 DOI: 10.1038/sj.ki.5000363] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Within the kidney, angiotensin II type 2 (AT(2)) receptor mediates phospholipase A(2) (PLA(2)) activation, arachidonic acid release, epidermal growth factor (EGF) receptor transactivation, and mitogen-activated protein kinase activation. Arachidonic acid mimics this transactivation by an undetermined mechanism. The role of c-Src in mediating angiotensin II and arachidonic acid signaling was determined by employing immunocomplex kinase assay, Western blotting analysis, and protein immunoblotting on co-precipitated EGF receptor (EGFR) proteins and agarose conjugates of glutathione S-transferase fusion proteins containing the c-Src homology 2 (SH2) and SH3 domains. Angiotensin II induced extracellular signal-regulated kinase (ERK) activation in primary cultures of rabbit proximal tubule cells via the activation of c-Src and association of the EGFR with the c-Src SH2 domain, effects that were mimicked by arachidonic acid and its inactive analogue eicosatetraynoic acid. Inhibition of PLA(2) by mepacrine and methyl arachidonyl fluorophosphate, AT(2) receptor by PD123319, Src family kinases by, 1-(tert-butyl)-3-(4-chlorophenyl)-4-aminopyrazolo[3,4-d] pyrimidine (PP2) and c-Src by overexpression of a dominant-negative mutant of c-Src abrogated these effects. However, inhibitors of arachidonic acid metabolic pathways did not block these effects. The present work provides a new and novel paradigm for transactivation of a kinase receptor linked to a fatty acid, which may apply to activation of a variety of phospholipases and accompanying arachidonic acid release.
Collapse
Affiliation(s)
- L D Alexander
- Department of Natural Sciences, The University of Michigan-Dearborn, 48128, USA.
| | | | | | | | | |
Collapse
|
15
|
Park PH, Lim RW, Shukla SD. Involvement of histone acetyltransferase (HAT) in ethanol-induced acetylation of histone H3 in hepatocytes: potential mechanism for gene expression. Am J Physiol Gastrointest Liver Physiol 2005; 289:G1124-36. [PMID: 16081763 DOI: 10.1152/ajpgi.00091.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ethanol treatment increases gene expression in the liver through mechanisms that are not clearly understood. Histone acetylation has been shown to induce transcriptional activation. We have investigated the characteristics and mechanisms of ethanol-induced histone H3 acetylation in rat hepatocytes. Immunocytochemical and immunoblot analysis revealed that ethanol treatment significantly increased H3 acetylation at Lys9 with negligible effects at Lys14, -18, and -23. Acute in vivo administration of alcohol in rats produced the same results as in vitro observations. Nuclear extracts from ethanol-treated hepatocytes increased acetylation in H3 peptide to a greater extent than extracts from untreated cells, suggesting that ethanol either increased the expression level or the specific activity of histone acetyltransferases (HAT). Use of different H3 peptides indicated that ethanol selectively modulated HAT(s) targeting H3-Lys9. Treatment with acetate, an ethanol metabolite, also increased acetylation of H3-Lys9 and modulated HAT(s) in the same manner as ethanol, suggesting that acetate mediates the ethanol-induced effect on HAT. Inhibitors of MEK (U0126) and JNK (SP600125), but not p38 MAPK inhibitor (SB203580), suppressed ethanol-induced H3 acetylation. However, U0126 and SP600125 did not significantly affect ethanol-induced effect on HAT, suggesting that ERK and JNK regulate histone acetylation through a separate pathway(s) that does not involve modulation of HAT. Chromatin immunoprecipitation assay demonstrated that ethanol treatment increased the association of the class I alcohol dehydrogenase (ADH I) gene with acetylated H3-Lys9. These data provide first evidence that ethanol increases acetylation of H3-Lys9 through modulation of HAT(s) and that histone acetylation may underlie the mechanism for ethanol-induced ADH I gene expression.
Collapse
Affiliation(s)
- Pil-Hoon Park
- Dept. of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, MO 65212, USA
| | | | | |
Collapse
|
16
|
Shah BH, Baukal AJ, Shah FB, Catt KJ. Mechanisms of extracellularly regulated kinases 1/2 activation in adrenal glomerulosa cells by lysophosphatidic acid and epidermal growth factor. Mol Endocrinol 2005; 19:2535-48. [PMID: 15928312 DOI: 10.1210/me.2005-0082] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The regulation of adrenal function, including aldosterone production from adrenal glomerulosa cells, is dependent on a variety of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). In many cell types, GPCR-mediated MAPK activation is mediated through transactivation of RTKs, in particular the epidermal growth factor (EGF) receptor (EGF-R). However, the extent to which this cross-communication between GPCRs and RTKs is operative in the adrenal glomerulosa has not been defined. Bovine adrenal glomerulosa cells express receptors for lysophosphatidic acid (LPA) and EGF. In cultured bovine adrenal glomerulosa cells, LPA, which is predominantly coupled to Gi and partially to Gq/protein kinase C alpha and epsilon, caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), EGF-R, protein kinase B/Akt, extracellularly regulated signal kinases 1/2, and their dependent protein, p90 ribosomal S6 kinase. Overexpression of dominant negative mutants of Ras or EGF-R, and selective inhibition of EGF-R kinase with AG1478, significantly reduced LPA-induced ERK1/2 phosphorylation. However, this was not impaired by inhibition of matrix metalloproteinase (MMP) and heparin-binding EGF. LPA-induced ERK1/2 activation occurs predominantly through EGF-R transactivation by Gi/Src and partly through activation of protein kinase C, which acts downstream of EGF-R and Ras. In contrast, LPA-induced phosphorylation of Shc and ERK1/2 in clonal hepatocytes (C9 cells) was primarily mediated through MMP-dependent transactivation of the EGF-R. These observations in adrenal glomerulosa and hepatic cells demonstrate that LPA phosphorylates ERK1/2 through EGF-R transactivation in a MMP-dependent or -independent manner in individual target cells. This reflects the ability of GPCRs expressed in cell lines and neoplastic cells to utilize distinct signaling pathways that can elicit altered responses compared with those of native tissues.
Collapse
Affiliation(s)
- Bukhtiar H Shah
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda Maryland 20892-4510, USA.
| | | | | | | |
Collapse
|
17
|
Calandrella SO, Barrett KE, Keely SJ. Transactivation of the epidermal growth factor receptor mediates muscarinic stimulation of focal adhesion kinase in intestinal epithelial cells. J Cell Physiol 2005; 203:103-10. [PMID: 15389641 DOI: 10.1002/jcp.20190] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously shown that the Gq protein coupled receptor (GqPCR) agonist, carbachol (CCh), transactivates and recruits epidermal growth factor receptor (EGFr)-dependent signaling mechanisms in intestinal epithelial cells. Increasing evidence suggests that GqPCR agonists can also recruit focal adhesion-dependent signaling pathways in some cell types. Therefore, the aim of the present study was to investigate if CCh stimulates activation of the focal adhesion-associated protein, focal adhesion kinase (FAK), in intestinal epithelia and, if so, to examine the signaling mechanisms involved. Experiments were carried out on monolayers of T84 cells grown on permeable supports. CCh rapidly induced tyrosine phosphorylation of FAK in T84 cells. This effect was accompanied by phosphorylation of another focal adhesion-associated protein, paxillin, and association of FAK with paxillin. CCh-stimulated FAK phosphorylation was inhibited by a chelator of intracellular Ca2+, BAPTA/AM (20 microM), and was mimicked by thapsigargin (2 microM), which mobilizes intracellular Ca2+ in a receptor-independent fashion. CCh also induced association of FAK with the EGFr and FAK phosphorylation was attenuated by an EGFr inhibitor, tyrphostin AG1478, and an inhibitor of Src family kinases, PP2. The actin cytoskeleton disruptor, cytochalasin D (20 microM), abolished FAK phosphorylation in response to CCh but did not alter CCh-induced EGFr or ERK MAPK activation. In summary, these data demonstrate that agonists of GqPCRs have the ability to induce FAK activation in intestinal epithelial cells. GqPCR-induced FAK activation is mediated by via a pathway involving transactivation of the EGFr and alterations in the actin cytoskeleton.
Collapse
Affiliation(s)
- Sean O Calandrella
- Department of Medicine, University of California, San Diego, San Diego, California, USA
| | | | | |
Collapse
|
18
|
Gioli-Pereira L, Nascimento EA, Santos EL, Bracht A, Juliano MA, Pesquero JB, Borges DR, Kouyoumdjian M. Fate of bradykinin on the rat liver when administered by the venous or arterial route. J Gastroenterol Hepatol 2005; 20:463-73. [PMID: 15740493 DOI: 10.1111/j.1440-1746.2005.03580.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIM Bradykinin (BK) infused into the portal vein elicits a hypertensive response via the B2 receptor (B2R) and is efficiently hydrolyzed by the liver. Our purpose was to characterize the mechanism of interaction between BK and the liver. METHOD BK, HOE-140 (a B2R antagonist), des-R(9)-BK (a B1R agonist) and enzyme inhibitors were used in monovascular or bivascular perfusions and in isolated liver cell assays. RESULTS Des-R(9)-BK did not elicit a portal hypertensive response (PHR); BK infused into the hepatic artery elicited a calcium-dependent PHR and a calcium-independent arterial hypertensive response (HAHR), with the latter being almost abolished by naproxen. BK has a predominant distribution in the extracellular space and an average hepatic extraction of 8% in the steady state. Hydrolysis products of infused BK (R(1)-F(5) and R(1)-P(7)) did not elicit PHR. Angiotensin converting enzyme (ACE) is concentrated in the perivenous region and B2R in the periportal region. Microphysiometry showed that BK (and not a B1 agonist) interacts with stellate cells and the endothelial sinusoidal/Kupffer cell fraction. This effect was inhibited by the B2R antagonist. CONCLUSIONS Events can be summarized as: the hypertensive action of BK on sinusoidal cells of the periportal region is followed by its hydrolysis by ACE which is primarily present in the perivenous region; there is no functional B1R in the normal liver; BK induces HAHR via eicosanoid release and PHR by a distinct pathway on the B2R. Our data suggest that BK may participate in the modulation of sinusoidal microvasculature tonus both in the portal and the arterial routes.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Bradykinin/administration & dosage
- Bradykinin/analogs & derivatives
- Bradykinin/pharmacokinetics
- Bradykinin/pharmacology
- Bradykinin B2 Receptor Antagonists
- Chromatography, High Pressure Liquid
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Extracellular Space/metabolism
- Fluorescent Antibody Technique
- Hepatic Artery
- Hydrolysis/drug effects
- Hypertension, Portal/drug therapy
- Hypertension, Portal/metabolism
- Hypertension, Portal/physiopathology
- Infusions, Intra-Arterial
- Infusions, Intravenous
- Kupffer Cells/cytology
- Kupffer Cells/drug effects
- Kupffer Cells/metabolism
- Liver/cytology
- Liver/drug effects
- Liver/metabolism
- Liver Circulation/drug effects
- Liver Circulation/physiology
- Male
- Mass Spectrometry
- Peptidyl-Dipeptidase A/metabolism
- Portal Pressure/drug effects
- Portal Pressure/physiology
- Portal Vein
- Rats
- Rats, Wistar
- Receptor, Bradykinin B2/metabolism
Collapse
|
19
|
Montiel M, de la Blanca EP, Jiménez E. Angiotensin II induces focal adhesion kinase/paxillin phosphorylation and cell migration in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2005; 327:971-8. [PMID: 15652490 DOI: 10.1016/j.bbrc.2004.12.110] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Indexed: 12/13/2022]
Abstract
In the present study, we demonstrated that Ang II provokes a transitory enhancement of focal adhesion kinase (FAK) and paxillin phosphorylation in human umbilical endothelial cells (HUVEC). Moreover, Ang II induces a time- and dose-dependent augmentation in cell migration, but does not affect HUVEC proliferation. The effect of Ang II on FAK and paxillin phosphorylation was markedly attenuated in cells pretreated with wortmannin and LY294002, indicating that phosphoinositide 3-kinase (PI3K) plays an important role in regulating FAK activation. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific inhibitor PP2 for Src family kinases, demonstrating the involvement of protein tyrosine kinases, and particularly Src family of tyrosine kinases, in the downstream signalling pathway of Ang II receptors. Furthermore, FAK and paxillin phosphorylation was markedly blocked after treatment of HUVEC with AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) phosphorylation. Pretreatment of cells with inhibitors of PI3K, Src family tyrosine kinases, and EGFR also decreased HUVEC migration. In conclusion, these results suggest that Ang II mediates an increase in FAK and paxillin phosphorylation and induces HUVEC migration through signal transduction pathways dependent on PI3K and Src tyrosine kinase activation and EGFR transactivation.
Collapse
Affiliation(s)
- Mercedes Montiel
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| | | | | |
Collapse
|
20
|
Ciarimboli G, Schlatter E. Regulation of organic cation transport. Pflugers Arch 2004; 449:423-41. [PMID: 15688244 DOI: 10.1007/s00424-004-1355-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 09/27/2004] [Indexed: 01/11/2023]
Abstract
Transport of organic cations (OC) is important for the recycling of endogenous OC and also a necessary step for detoxification of exogenous OC in the body. Even though the identification and characterisation of numerous OC transporters in recent years has allowed the elucidation of molecular mechanisms underlying OC transport, elucidation of the regulation of this transport is just beginning. This review summarises the general properties of OC transport and then analyses the literature on the regulation of these processes. Studies on short- and long-term regulation of OC transport are considered separately. Important aspects of short-term regulation have been clarified and the regulatory pathways of several OC transporters have been characterised. Short-term regulation appears to be transporter subtype-, tissue- and species-dependent and to involve transporter phosphorylation. Transporter phosphorylation may alter the affinity for substrates or/and expression on the plasma membrane. Even though several studies have shown long-term regulation of OC transport, the pathophysiological meaning of these changes are not well understood. In this case, regulation seems to be subtype-, tissue- and gender-specific. Further research is necessary to clarify this important issue of regulation of OC transport.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Experimentelle Nephrologie, Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Domagkstrasse 3a, 48149, Münster, Germany.
| | | |
Collapse
|
21
|
Li X, Lerea KM, Li J, Olson SC. Src kinase mediates angiotensin II-dependent increase in pulmonary endothelial nitric oxide synthase. Am J Respir Cell Mol Biol 2004; 31:365-72. [PMID: 15191917 DOI: 10.1165/rcmb.2004-0098oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have previously demonstrated that angiotensin II (Ang II) stimulates nitric oxide (NO) production in bovine pulmonary artery endothelial cells (BPAECs) by increasing NO synthase (NOS) expression via the type 2 receptor. The purpose of this study was to identify the Ang II-dependent signaling pathway that mediates this increase in endothelial NOS (eNOS). The Ang II-dependent increase in eNOS expression is prevented when BPAECs are pretreated with the tyrosine kinase inhibitors, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-D]pyrimidine, which also blocked Ang II-dependent mitogen-activated protein kinase (MAPK) kinase/extracellular-regulated protein kinase (MEK)-1 and MAPK phosphorylation, suggesting that Src is upstream of MAPK in this pathway. Transfection of BPAECs with an Src dominant negative mutant cDNA prevented the Ang II-dependent Src activation and increase in eNOS protein expression. PD98059, a MEK-1 inhibitor, prevented the Ang II-dependent phosphorylation of extracellular-regulated protein kinases 1 and 2 and increase in eNOS expression. Neither AG1478, an epidermal growth factor receptor kinase inhibitor, nor AG1295, a platelet derived growth factor receptor kinase inhibitor, had any effect on Ang II-stimulated Src activity, MAPK activation, or eNOS expression. Pertussis toxin prevented the Ang II-dependent increase in Src activity, MAPK activation, and eNOS expression. These data suggest that Ang II stimulates Src tyrosine kinase via a pertussis toxin-sensitive pathway, which in turn activates the MAPK pathway, resulting in increased eNOS protein expression in BPAECs.
Collapse
Affiliation(s)
- Xinmei Li
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | |
Collapse
|
22
|
Zahradka P, Litchie B, Storie B, Helwer G. Transactivation of the insulin-like growth factor-I receptor by angiotensin II mediates downstream signaling from the angiotensin II type 1 receptor to phosphatidylinositol 3-kinase. Endocrinology 2004; 145:2978-87. [PMID: 14976148 DOI: 10.1210/en.2004-0029] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiotensin II (AngII) activates phosphatidylinositol 3-kinase (PI3-kinase), a known effector of receptor tyrosine kinases. Treatment of smooth muscle cells with AngII has also been shown to promote phosphorylation of various tyrosine kinase receptors. We therefore investigated the relationship between AngII and IGF-I receptor activation in smooth muscle cells with a phosphorylation-specific antibody. Our experiments showed that IGF-I receptor phosphorylation was maximally stimulated within 10 min by AngII. Inclusion of an IGF-I-neutralizing antibody in the culture media did not prevent IGF-I receptor phosphorylation after AngII treatment, which argues that a paracrine/autocrine loop is not required. Furthermore, this process was blocked by losartan and 1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP-1), indicating stimulation of IGF-I receptor phosphorylation occurs via AngII type 1 receptor-dependent activation of Src kinase. The functional significance of IGF-I receptor transactivation was examined with selective inhibitors of the IGF-I receptor kinase (AG1024, AG538). When AngII-treated cells were incubated with AG1024 or AG538, phosphorylation of the regulatory p85 subunit of PI3-kinase was blocked. Furthermore, phosphorylation of the downstream factor p70(S6K) did not occur. In contrast, AG1024 did not prevent MAPK or Src kinase activation by AngII. AG1024 also did not inhibit AngII-dependent cell migration, although this process was blocked by inhibitors of the epidermal growth factor and platelet-derived growth factor receptors. Transactivation of the IGF-I receptor is therefore a critical mediator of PI3-kinase activation by AngII but is not required for stimulation of the MAPK cascade.
Collapse
Affiliation(s)
- Peter Zahradka
- Institute of Cardiovascular Sciences, Molecular Physiology Laboratory, St. Boniface Research Centre, 351 Tache Avenue, Winnipeg, Maniotoba, Canada R2H 2A6.
| | | | | | | |
Collapse
|
23
|
Abstract
Chronic ethanol abuse is associated with liver injury, neurotoxicity, hypertension, cardiomyopathy, modulation of immune responses and increased risk for cancer, whereas moderate alcohol consumption exerts protective effect on coronary heart disease. However, the signal transduction mechanisms underlying these processes are not well understood. Emerging evidences highlight a central role for mitogen activated protein kinase (MAPK) family in several of these effects of ethanol. MAPK signaling cascade plays an essential role in the initiation of cellular processes such as proliferation, differentiation, development, apoptosis, stress and inflammatory responses. Modulation of MAPK signaling pathway by ethanol is distinctive, depending on the cell type; acute or chronic; normal or transformed cell phenotype and on the type of agonist stimulating the MAPK. Acute exposure to ethanol results in modest activation of p42/44 MAPK in hepatocytes, astrocytes, and vascular smooth muscle cells. Acute ethanol exposure also results in potentiation or prolonged activation of p42/44MAPK in an agonist selective manner. Acute ethanol treatment also inhibits serum stimulated p42/44 MAPK activation and DNA synthesis in vascular smooth muscle cells. Chronic ethanol treatment causes decreased activation of p42/44 MAPK and inhibition of growth factor stimulated p42/44 MAPK activation and these effects of ethanol are correlated to suppression of DNA synthesis, impaired synaptic plasticity and neurotoxicity. In contrast, chronic ethanol treatment causes potentiation of endotoxin stimulated p42/44 MAPK and p38 MAPK signaling in Kupffer cells leading to increased synthesis of tumor necrosis factor. Acute exposure to ethanol activates pro-apoptotic JNK pathway and anti-apoptotic p42/44 MAPK pathway. Apoptosis caused by chronic ethanol treatment may be due to ethanol potentiation of TNF induced activation of p38 MAPK. Ethanol induced activation of MAPK signaling is also involved in collagen expression in stellate cells. Ethanol did not potentiate serum stimulated or Gi-protein dependent activation of p42/44 MAPK in normal hepatocytes but did so in embryonic liver cells and transformed hepatocytes leading to enhanced DNA synthesis. Ethanol has a 'triangular effect' on MAPK that involve direct effects of ethanol, its metabolically derived mediators and oxidative stress. Acetaldehyde, phosphatidylethanol, fatty acid ethyl ester and oxidative stress, mediate some of the effects seen after ethanol alone whereas ethanol modulation of agonist stimulated MAPK signaling appears to be mediated by phosphatidylethanol. Nuclear MAPKs are also affected by ethanol. Ethanol modulation of nuclear p42/44 MAPK occurs by both nuclear translocation of p42/44 MAPK and its activation in the nucleus. Of interest is the observation that ethanol caused selective acetylation of Lys 9 of histone 3 in the hepatocyte nucleus. It is plausible that ethanol modulation of cross talk between phosphorylation and acetylations of histone may regulate chromatin remodeling. Taken together, these recent developments place MAPK in a pivotal position in relation to cellular actions of ethanol. Furthermore, they offer promising insights into the specificity of ethanol effects and pharmacological modulation of MAPK signaling. Such molecular signaling approaches have the potential to provide mechanism-based therapy for the management of deleterious effects of ethanol or for exploiting its beneficial effects.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | | |
Collapse
|
24
|
Natarajan K, Yin G, Berk BC. Scaffolds direct Src-specific signaling in response to angiotensin II: new roles for Cas and GIT1. Mol Pharmacol 2004; 65:822-5. [PMID: 15044610 DOI: 10.1124/mol.65.4.822] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kanchana Natarajan
- Department of Medicine and Center for Cardiovascular Research, University of Research School of Medicine and Dentistry, Aab Institute of Biomedical Sciences, Rochester, NY 14642, USA
| | | | | |
Collapse
|
25
|
Yin G, Haendeler J, Yan C, Berk BC. GIT1 functions as a scaffold for MEK1-extracellular signal-regulated kinase 1 and 2 activation by angiotensin II and epidermal growth factor. Mol Cell Biol 2004; 24:875-85. [PMID: 14701758 PMCID: PMC343801 DOI: 10.1128/mcb.24.2.875-885.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of the mitogen-activated protein kinase pathway represented by extracellular signal-regulated kinases (ERK1/2) and activation of the upstream kinase (MEK1) are critical events for growth factor signal transduction. c-Src has been proposed as a common mediator for these signals in response to both G protein-coupled receptors (GPCRs) and tyrosine kinase-coupled receptors (TKRs). Here we show that the GPCR kinase-interacting protein 1 (GIT1) is a substrate for c-Src that associates with MEK1 in vascular smooth-muscle cells and human embryonic kidney 293 cells. GIT1 binding via coiled-coil domains and a Spa2 homology domain is required for sustained activation of MEK1-ERK1/2 after stimulation with angiotensin II and epidermal growth factor. We propose that GIT1 serves as a scaffold protein to facilitate c-Src-dependent activation of MEK1-ERK1/2 in response to both GPCRs and TKRs.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Angiotensin II/pharmacology
- Animals
- Base Sequence
- Binding Sites
- Cell Cycle Proteins
- Cell Line
- Cells, Cultured
- DNA, Complementary/genetics
- Enzyme Activation/drug effects
- Epidermal Growth Factor/pharmacology
- GTPase-Activating Proteins/chemistry
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- HeLa Cells
- Humans
- In Vitro Techniques
- MAP Kinase Kinase 1
- MAP Kinase Signaling System
- Mice
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutagenesis
- Phosphoproteins
- Phosphorylation
- Protein Structure, Tertiary
- RNA Interference
- Rats
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Guoyong Yin
- Center for Cardiovascular Research and Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Angiotensin II (AngII) plays a critical role in control of cardiovascular and renal homeostasis. In addition to its physiological action as a vasoconstrictor, growing evidence supports the notion that AngII contributes to cardiovascular diseases such as hypertension, atherosclerosis, and heart failure. The physiological and pathological actions of AngII in adults are mediated largely via the AngII type 1 receptor (AT1R), a heterotrimeric G-protein-coupled receptor (GPCR). Besides coupling with heterotrimeric G proteins to activate phospholipase C-beta (PLC-beta), AT1R also activates receptor tyrosine kinases (PDGF-R, EGF-R and IGF-R) and non-receptor tyrosine kinases (Src, Fyn, Yes, proline-rich tyrosine kinase 2 (Pyk2), focal adhesion kinase (FAK) and JAK2). These tyrosine kinases play critical roles in AngII-stimulated cell signal events.
Collapse
Affiliation(s)
- Guoyong Yin
- Cardiovascular Research Center, University of Rochester, 601 Elmwood Avenue, P.O. Box 679, Rochester, NY 14642, USA
| | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Transmission of external signals from the cell surface to the internal cellular environment occurs via tightly controlled complex transduction pathways. Alterations in these highly regulated signalling cascades in vascular smooth cells may play a fundamental role in the structural, mechanical and functional abnormalities that underlie vascular pathological processes in hypertension. The present review focuses on recent developments relating to two novel signalling pathways: angiotensin II signalling through tyrosine kinases; and oxidative stress and redox-dependent signal transduction. These pathways are emerging as critical mediators of hypertensive vascular disease because they influence multiple cellular responses that are involved in structural remodelling, vascular inflammation and altered tone. RECENT FINDINGS A recent advance in the field of angiotensin II signalling was the demonstration that, in addition to its vasoconstrictor properties, angiotensin II has potent mitogenic-like and proinflammatory-like characteristics. These actions are mediated through phosphorylation of both nonreceptor tyrosine kinases and receptor tyrosine kinases. It is also becoming increasingly apparent that many signalling events that underlie abnormal vascular function in hypertension are influenced by changes in intracellular redox status. In particular, increased bioavailability of reactive oxygen species (oxidative stress) stimulates growth-signalling pathways, induces expression of proinflammatory genes, alters contraction-excitation coupling and impairs endothelial function. SUMMARY A better understanding of the molecular pathways that regulate vascular smooth muscle cell function will provide further insights into the pathophysiological mechanisms that contribute to vascular changes and end-organ damage associated with high blood pressure, and could permit identification of potential novel therapeutic targets in the prevention and management of hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- Canadian Institute of Health Research Multidisciplinary Research Group on Hypertension, Quebec, Canada.
| |
Collapse
|
28
|
Weng YI, Shukla SD. Effects of chronic ethanol treatment on the angiotensin II-mediated p42/p44 mitogen-activated protein kinase and phosphorylase a activation in rat hepatocytes. Alcohol 2003; 29:83-90. [PMID: 12782249 DOI: 10.1016/s0741-8329(02)00325-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have demonstrated previously that 24 h of ethanol treatment potentiates angiotensin II (ANG II)-stimulated p42/p44 mitogen-activated protein kinase (MAPK) activity in hepatocytes. This potentiation of p42/p44 MAPK by ethanol exhibited agonist selectivity. To compare the effects of acute (24 h) versus chronic (6 weeks) ethanol treatment, ANG II-induced intracellular signaling was examined in (1) rat hepatocytes treated with ethanol for 24 h and (2) hepatocytes obtained from rats fed ethanol for 6 weeks. In hepatocytes obtained from rats fed ethanol for 6 weeks, ANG II-stimulated phosphorylase a was reduced, and this activity was calcium dependent and p42/p44 MAPK independent. Surprisingly, ANG II-stimulated p42/p44 MAPK activation was not affected in hepatocytes obtained from rats fed ethanol chronically (6 weeks). However, chronic (6 weeks) ethanol treatment decreased ethanol potentiation of p42/p44 MAPK by about 56.3% +/- 3.6% for p42 MAPK and 61.3% +/- 11.7% for p44 MAPK. Furthermore, ethanol had no effect on the expression of angiotensinogen and c-myc mRNA in hepatocytes. A decrease in ANG II-activated phosphorylase a, but not in p42/p44 MAPK activation, after chronic (6 weeks) ethanol treatment leads to the conclusion that they may not be dependent on each other.
Collapse
Affiliation(s)
- Yu I Weng
- Department of Pharmacology, School of Medicine, University of Missouri-Columbia, One Hospital Drive, Columbia, MO 65212, USA
| | | |
Collapse
|