1
|
Koul A, Hui LT, Lubna N, McKenna SA. Distinct domain organization and diversity of 2'-5'-oligoadenylate synthetases. Biochem Cell Biol 2024; 102:305-318. [PMID: 38603810 DOI: 10.1139/bcb-2023-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
The 2'-5'-oligoadenylate synthetases (OAS) are important components of the innate immune system that recognize viral double-stranded RNA (dsRNA). Upon dsRNA binding, OAS generate 2'-5'-linked oligoadenylates (2-5A) that activate ribonuclease L (RNase L), halting viral replication. The OAS/RNase L pathway is thus an important antiviral pathway and viruses have devised strategies to circumvent OAS activation. OAS enzymes are divided into four classes according to size: small (OAS1), medium (OAS2), and large (OAS3) that consist of one, two, and three OAS domains, respectively, and the OAS-like protein (OASL) that consists of one OAS domain and tandem domains similar to ubiquitin. Early investigation of the OAS enzymes hinted at the recognition of dsRNA by OAS, but due to size differences amongst OAS family members combined with the lack of structural information on full-length OAS2 and OAS3, the regulation of OAS catalytic activity by dsRNA was not well understood. However, the recent biophysical studies of OAS have highlighted overall structure and domain organization. In this review, we present a detailed examination of the OAS literature and summarized the investigation on 2'-5'-oligoadenylate synthetases.
Collapse
Affiliation(s)
- Amit Koul
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lok Tin Hui
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Nikhat Lubna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| |
Collapse
|
2
|
Hu J, Wang X, Xing Y, Rong E, Ning M, Smith J, Huang Y. Origin and development of oligoadenylate synthetase immune system. BMC Evol Biol 2018; 18:201. [PMID: 30587119 PMCID: PMC6307210 DOI: 10.1186/s12862-018-1315-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
Background Oligoadenylate synthetases (OASs) are widely distributed in Metazoa including sponges, fish, reptiles, birds and mammals and show large variation, with one to twelve members in any given species. Upon double-stranded RNA (dsRNA) binding, avian and mammalian OASs generate the second messenger 2'-5'-linked oligoadenylate (2-5A), which activates ribonuclease L (RNaseL) and blocks viral replication. However, how Metazoa shape their OAS repertoires to keep evolutionary balance to virus infection is largely unknown. We performed comprehensive phylogenetic and functional analyses of OAS genes from evolutionarily lower to higher Metazoa to demonstrate how the OAS repertoires have developed anti-viral activity and diversified their functions. Results Ancient Metazoa harbor OAS genes, but lack both upstream and downstream genes of the OAS-related pathways, indicating that ancient OASs are not interferon-induced genes involved in the innate immune system. Compared to OASs of ancient Metazoa (i.e. sponge), the corresponding ones of higher Metazoa present an increasing number of basic residues on the OAS/dsRNA interaction interface. Such an increase of basic residues might improve their binding affinity to dsRNA. Moreover, mutations of functional residues in the active pocket might lead to the fact that higher Metazoan OASs lose the ability to produce 3'-5'-linked oligoadenylate (3-5A) and turn into specific 2-5A synthetases. In addition, we found that multiple rounds of gene duplication and domain coupling events occurred in the OAS family and mutations at functionally critical sites were observed in most new OAS members. Conclusions We propose a model for the expansion of OAS members and provide comprehensive evidence of subsequent neo-functionalization and sub-functionalization. Our observations lay the foundation for interrogating the evolutionary transition of ancient OAS genes to host defense genes and provide important information for exploring the unknown function of the OAS gene family. Electronic supplementary material The online version of this article (10.1186/s12862-018-1315-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaxiang Hu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Xiaoxue Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Yanling Xing
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Enguang Rong
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengfei Ning
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
3
|
Elkhateeb E, Tag-El-Din-Hassan HT, Sasaki N, Torigoe D, Morimatsu M, Agui T. The role of mouse 2',5'-oligoadenylate synthetase 1 paralogs. INFECTION GENETICS AND EVOLUTION 2016; 45:393-401. [PMID: 27663720 DOI: 10.1016/j.meegid.2016.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/30/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
Abstract
The interferon-induced oligoadenylate synthetase (OAS) family is one of the most important immune response proteins to the viral infection. The OAS protein binds dsRNA and is activated to produce 2',5'-oligoadenylates, which lead to the activation of latent form of RNase L, resulting in degradation of cellular and viral RNA and inhibition of viral replication. In mice, the Oas gene family locates on chromosome 5. The mouse Oas gene locus undergoes a recent series of duplication event, leading to the presence of eight paralogs of Oas1 genes (Oas1a through Oas1h) that forms Oas gene cluster with the Oas2, Oas3 and two OasL (OasL1 and OasL2) genes. Previous studies demonstrated that the mouse Oas1b gene conferred resistance to the flavivirus infection in mice; however, the antiviral activity of other mouse Oas1 gene family is still unknown. Therefore, in the present study, we have evaluated the mouse Oas1 paralogs regarding the enzymatic activity and antiviral activity against the two neurotropic flaviviruses, West Nile virus and tick-borne encephalitis virus. The mouse Oas1 genes were cloned from C57BL/6J (B6) as well as the Oas1b derived from feral mouse strain, MSM. The obtained results demonstrated that only Oas1a and Oas1g showed enzymatic activity. Although MSM-derived Oas1b showed antiviral activity to both viruses, all B6-derived OAS paralogs did not show antiviral activity. These results suggest that Oas1a and Oas1g play a role in potentiating viral RNA-induced interferon response in the cell, whereas the Oas1b works as a specific anti-flavivirus factor unless it is mutated. However, the role of other paralogs is unknown and should wait for further investigation.
Collapse
Affiliation(s)
- Enas Elkhateeb
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hassan T Tag-El-Din-Hassan
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Poultry Production Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Daisuke Torigoe
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masami Morimatsu
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Agui
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| |
Collapse
|
4
|
Lopp A, Reintamm T, Kuusksalu A, de Rosa S, Kelve M. A novel endoribonuclease from the marine sponge Tethya aurantium specific to 2′,5′-phosphodiester bonds. Biochimie 2012; 94:1635-46. [DOI: 10.1016/j.biochi.2012.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/02/2012] [Indexed: 11/26/2022]
|
5
|
Natural occurrence of 2',5'-linked heteronucleotides in marine sponges. Mar Drugs 2010; 8:235-54. [PMID: 20390103 PMCID: PMC2852836 DOI: 10.3390/md8020235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/18/2010] [Accepted: 02/01/2010] [Indexed: 12/02/2022] Open
Abstract
2′,5′-oligoadenylate synthetases (OAS) as a component of mammalian interferon-induced antiviral enzymatic system catalyze the oligomerization of cellular ATP into 2′,5′-linked oligoadenylates (2-5A). Though vertebrate OASs have been characterized as 2′-nucleotidyl transferases under in vitro conditions, the natural occurrence of 2′,5′-oligonucleotides other than 2-5A has never been demonstrated. Here we have demonstrated that OASs from the marine sponges Thenea muricata and Chondrilla nucula are able to catalyze in vivo synthesis of 2-5A as well as the synthesis of a series 2′,5′-linked heteronucleotides which accompanied high levels of 2′,5′-diadenylates. In dephosphorylated perchloric acid extracts of the sponges, these heteronucleotides were identified as A2′p5′G, A2′ p5′U, A2′p5′C, G2′p5′A and G2′ p5′U. The natural occurrence of 2′-adenylated NAD+ was also detected. In vitro assays demonstrated that besides ATP, GTP was a good substrate for the sponge OAS, especially for OAS from C. nucula. Pyrimidine nucleotides UTP and CTP were also used as substrates for oligomerization, giving 2′,5′-linked homo-oligomers. These data refer to the substrate specificity of sponge OASs that is remarkably different from that of vertebrate OASs. Further studies of OASs from sponges may help to elucidate evolutionary and functional aspects of OASs as proteins of the nucleotidyltransferase family.
Collapse
|
6
|
Saby E, Poulsen JB, Justesen J, Kelve M, Uriz MJ. 2'-phosphodiesterase and 2',5'-oligoadenylate synthetase activities in the lowest metazoans, sponge [porifera]. Biochimie 2009; 91:1531-4. [PMID: 19665065 DOI: 10.1016/j.biochi.2009.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 07/30/2009] [Indexed: 11/27/2022]
Abstract
Sponges [porifera], the most ancient metazoans, contain modules related to the vertebrate immune system, including the 2',5'-oligoadenylate synthetase (OAS). The components of the antiviral 2',5'-oligoadenylate (2-5A) system (OAS, 2'-Phosphodiesterase (2'-PDE) and RNAse L) of vertebrates have not all been identified in sponges. Here, we demonstrate for the first time that in addition to the OAS activity, sponges possess a 2'-PDE activity, which highlights the probable existence of a premature 2-5A system. Indeed, Suberites domuncula and Crella elegans exhibited this 2-5A degrading activity. Upon this finding, two out of three elements forming the 2-5A system have been found in sponges, only a endoribonuclease, RNAse L or similar, has to be found. We suspect the existence of a complex immune system in sponges, besides the self/non-self recognition system and the use of phagocytosis and secondary metabolites against pathogens.
Collapse
Affiliation(s)
- Emilie Saby
- Department of Benthic Ecology and Biodiversity, Centre d'Estudis Avançats de Blanes, CSIC, Spain.
| | | | | | | | | |
Collapse
|
7
|
Sponge OAS has a distinct genomic structure within the 2-5A synthetase family. Mol Genet Genomics 2008; 280:453-66. [PMID: 18797928 DOI: 10.1007/s00438-008-0379-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 08/31/2008] [Indexed: 11/27/2022]
Abstract
2',5'-Oligoadenylate synthetases (2-5A synthetases, OAS) are enzymes that play an important role in the interferon-induced antiviral defense mechanisms in mammals. Sponges, the evolutionarily lowest multicellular animals, also possess OAS; however, their function is presently unclear. Low homology between primary structures of 2-5A synthetases from vertebrates and sponges renders their evolutionary relationship obscure. The genomic structure of vertebrate OASs has been thoroughly examined, making it possible to elucidate molecular evolution and expansion of this gene family. Until now, no OAS gene structure was available from sponges to compare it with the corresponding genes from higher organisms. In the present work, we determined the exon/intron structure of the OAS gene from the marine sponge Geodia cydonium and found it to be completely different from the strictly conserved exon/intron pattern of the OAS genes from vertebrates. This finding was corroborated by the analysis of OAS genes from another sponge, Amphimedon queenslandica, whose genome was recently sequenced. Our data suggest that vertebrate and sponge OAS genes have no direct common intron-containing ancestor and two (sub)types of OAS may be discriminated. This study opens new perspectives for understanding the phylogenesis and evolution of 2-5A synthetases as well as functional aspects of this multigene family.
Collapse
|
8
|
Päri M, Kuusksalu A, Lopp A, Reintamm T, Justesen J, Kelve M. Expression and characterization of recombinant 2′,5′-oligoadenylate synthetase from the marine sponge Geodia cydonium. FEBS J 2007; 274:3462-74. [PMID: 17561961 DOI: 10.1111/j.1742-4658.2007.05878.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2',5'-oligoadenylate (2-5A) synthetases are known as components of the interferon-induced cellular defence mechanism in mammals. The existence of 2-5A synthetases in the evolutionarily lowest multicellular animals, the marine sponges, has been demonstrated and the respective candidate genes from Geodia cydonium and Suberites domuncula have been identified. In the present study, the putative 2-5A synthetase cDNA from G. cydonium was expressed in an Escherichia coli expression system to characterize the enzymatic activity of the recombinant polypeptide. Our studies reveal that, unlike the porcine recombinant 2-5A synthetase, the sponge recombinant protein associates strongly with RNA from E. coli, forming a heterogeneous set of complexes. No complete dissociation of the complex occurs during purification of the recombinant protein and the RNA constituent is partially protected from RNase degradation. We demonstrate that the sponge recombinant 2-5A synthetase in complex with E. coli RNA catalyzes the synthesis of 2',5'-phosphodiester-linked 5'-triphosphorylated oligoadenylates from ATP, although with a low specific activity. Poly(I).poly(C), an efficient artificial activator of the mammalian 2-5A synthetases, has only a minimal effect (an approximate two-fold increase) on the sponge recombinant 2-5A synthetase/bacterial RNA complex activity.
Collapse
Affiliation(s)
- Mailis Päri
- Department of Gene Technology, Tallinn University of Technology, Estonia
| | | | | | | | | | | |
Collapse
|
9
|
Hovanessian AG, Justesen J. The human 2'-5'oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2'-5' instead of 3'-5' phosphodiester bond formation. Biochimie 2007; 89:779-88. [PMID: 17408844 DOI: 10.1016/j.biochi.2007.02.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 02/06/2007] [Indexed: 01/13/2023]
Abstract
The demonstration by Kerr and colleagues that double-stranded (ds) RNA inhibits drastically protein synthesis in cell-free systems prepared from interferon-treated cells, suggested the existence of an interferon-induced enzyme, which is dependent on dsRNA. Consequently, two distinct dsRNA-dependent enzymes were discovered: a serine/threonine protein kinase that nowadays is referred to as PKR and a 2'-5'oligoadenylate synthetase (2'-5'OAS) that polymerizes ATP to 2'-5'-linked oligomers of adenosine with the general formula pppA(2'p5'A)(n), n>or=1. The product is pppG2'p5'G when GTP is used as a substrate. Three distinct forms of 2'-5'OAS exist in human cells, small, medium, and large, which contain one, two, and three OAS units, respectively, and are encoded by distinct genes clustered on the 2'-5'OAS locus on human chromosome 12. OASL is an OAS like IFN-induced protein encoded by a gene located about 8 Mb telomeric from the 2'-5'OAS locus. OASL is composed of one OAS unit fused at its C-terminus with two ubiquitin-like repeats. The human OASL is devoid of the typical 2'-5'OAS catalytic activity. In addition to these structural differences between the various OAS proteins, the three forms of 2'-5'OAS are characterized by different subcellular locations and enzymatic parameters. These findings illustrate the apparent structural and functional complexity of the human 2'-5'OAS family, and suggest that these proteins may have distinct roles in the cell.
Collapse
Affiliation(s)
- Ara G Hovanessian
- UPR 2228 CNRS, UFR Biomédicale, Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France.
| | | |
Collapse
|
10
|
Loker ES, Adema CM, Zhang SM, Kepler TB. Invertebrate immune systems - not homogeneous, not simple, not well understood. Immunol Rev 2004; 198:10-24. [PMID: 15199951 PMCID: PMC5426807 DOI: 10.1111/j.0105-2896.2004.0117.x] [Citation(s) in RCA: 482] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The approximate 30 extant invertebrate phyla have diversified along separate evolutionary trajectories for hundreds of millions of years. Although recent work understandably has emphasized the commonalities of innate defenses, there is also ample evidence, as from completed genome studies, to suggest that even members of the same invertebrate order have taken significantly different approaches to internal defense. These data suggest that novel immune capabilities will be found among the different phyla. Many invertebrates have intimate associations with symbionts that may play more of a role in internal defense than generally appreciated. Some invertebrates that are either long lived or have colonial body plans may diversify components of their defense systems via somatic mutation. Somatic diversification following pathogen exposure, as seen in plants, has been investigated little in invertebrates. Recent molecular studies of sponges, cnidarians, shrimp, mollusks, sea urchins, tunicates, and lancelets have found surprisingly diversified immune molecules, and a model is presented that supports the adaptive value of diversified non-self recognition molecules in invertebrates. Interactions between invertebrates and viruses also remain poorly understood. As we are in the midst of alarming losses of coral reefs, increased pathogen challenge to invertebrate aquaculture, and rampant invertebrate-transmitted parasites of humans and domestic animals, we need a better understanding of invertebrate immunology.
Collapse
Affiliation(s)
- Eric S Loker
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
11
|
Reintamm T, Lopp A, Kuusksalu A, Pehk T, Kelve M. ATP N-glycosidase - a novel ATP-converting activity from a marine sponge Axinella polypoides. ACTA ACUST UNITED AC 2003; 270:4122-32. [PMID: 14519124 DOI: 10.1046/j.1432-1033.2003.03805.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel nucleosidase enzymatic activity was discovered in the marine sponge Axinella polypoides. This enzyme, designated as ATP N-glycosidase, converts adenosine-5'-triphosphate into adenine and ribose-5-triphosphate. The crude extract of A. polypoides was capable of hydrolysing 25 micro mol ATP.min-1 per g wet weight of sponge. The catalytic activity of a sponge crude extract per mg total protein is comparable with specific activities of purified plant adenosine and bacterial AMP nucleosidases. The preferred substrate for the novel enzyme is ATP but any compound containing adenosine-5'-diphosphoryl fragment is also cleaved. The biochemical properties (Km, Kip, environmental requirements) of ATP N-glycosidase show similarities with previously described adenine-specific nucleosidases; however, the pattern of its biochemical characteristics does not match with that of any of those enzymes.
Collapse
Affiliation(s)
- Tõnu Reintamm
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | | | | | | |
Collapse
|
12
|
Hartmann R, Justesen J, Sarkar SN, Sen GC, Yee VC. Crystal Structure of the 2′-Specific and Double-Stranded RNA-Activated Interferon-Induced Antiviral Protein 2′-5′-Oligoadenylate Synthetase. Mol Cell 2003; 12:1173-85. [PMID: 14636576 DOI: 10.1016/s1097-2765(03)00433-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
2'-5'-oligoadenylate synthetases are interferon-induced, double-stranded RNA-activated antiviral enzymes which are the only proteins known to catalyze 2'-specific nucleotidyl transfer. This crystal structure of a 2'-5'-oligoadenylate synthetase reveals a structural conservation with the 3'-specific poly(A) polymerase that, coupled with structure-guided mutagenesis, supports a conserved catalytic mechanism for the 2'- and 3'-specific nucleotidyl transferases. Comparison with structures of other superfamily members indicates that the donor substrates are bound by conserved active site features while the acceptor substrates are oriented by nonconserved regions. The 2'-5'-oligoadenylate synthetases are activated by viral double-stranded RNA in infected cells and initiate a cellular response by synthesizing 2'-5'-oligoadenylates, which in turn activate RNase L. This crystal structure suggests that activation involves a domain-domain shift and identifies a putative dsRNA activation site that is probed by mutagenesis, thus providing structural insight into cellular recognition of viral double-stranded RNA.
Collapse
Affiliation(s)
- Rune Hartmann
- Department of Molecular Cardiology and Center for Structural Biology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
13
|
Reintamm T, Lopp A, Kuusksalu A, Subbi J, Kelve M. Qualitative and quantitative aspects of 2-5A synthesizing capacity of different marine sponges. BIOMOLECULAR ENGINEERING 2003; 20:389-99. [PMID: 12919824 DOI: 10.1016/s1389-0344(03)00059-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
2-5A synthetase is an important component of the mammalian antiviral 2-5A system. At present, the existence of 2-5A synthetase in the lowest animals, the marine sponges, has been demonstrated, although this enzyme has not been found in bacteria, yeast or plants. Here, we studied the 2-5A synthesizing capacity and the product profile of a variety of marine sponges belonging to Demospongia subclasses Tetractinomorpha and Ceractinomorpha. The 2-5A synthetase activity varied largely, in the range of four orders of magnitude, depending on the sponge species. Compared with the enzymes of the mammalian 2-5A synthetase family, the most active sponge species exhibited a surprisingly high 2-5A synthetase specific activity. Unlike the mammalian 2-5A synthetases that produce 2-5A oligomers in the presence of a double-stranded RNA activator, the 2-5A synthetase(s) from sponges were active without the addition of dsRNA. The sponge species differed in their product profiles. A novel product pool formed by Chondrosia reniformis was identified as a series of long 2-5A oligomers (up to 17-mers) with the prevalence of heptamers and octamers. The large variability of qualitative and quantitative characteristics of sponge 2-5A synthetases may refer to the occurrence of a variety of 2-5A synthetase isozymes in sponges.
Collapse
Affiliation(s)
- Tõnu Reintamm
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | | | | | | | | |
Collapse
|
14
|
Müller WEG, Wiens M, Müller IM, Schröder HC. The Chemokine Networks in Sponges: Potential Roles in Morphogenesis, Immunity and Stem Cell Formation. INVERTEBRATE CYTOKINES AND THE PHYLOGENY OF IMMUNITY 2003; 34:103-43. [PMID: 14979666 DOI: 10.1007/978-3-642-18670-7_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Porifera (sponges) are now well accepted as the phylum which branched off first from the common ancestor of all metazoans, the Urmetazoa. The transition to the Metazoa became possible because during this phase, cell-cell as well as cell-matrix adhesion molecules evolved which allowed the formation of a colonial stage of animals. The next prerequisite for the evolution to the Urmetazoa was the establishment of an effective immune system which, flanked by apoptosis, allowed the formation of a first level of individuation. In sponges (with the model Suberites domuncula and Geodia cydonium), the main mediators of the immune responses are the chemokines. Since sponges lack a vascular system and consequently blood cells (in the narrow sense), we have used the term chemokines (in a broad sense) to highlight that the complex network of intercellular mediators initiates besides differentiation processes also cell movement. In the present review, the cDNAs encoding the following chemokines were described and the roles of their deduced proteins during self-self and nonself recognition outlined: the allograft inflammatory factor, the glutathione peroxidase, the endothelial-monocyte-activating polypeptide, the pre-B-cell colony-enhancing factor and the myotrophin as well as an enzyme, the (2-5)A synthetase, which is involved in cytokine response in vertebrates. A further step required to reach the evolutionary step of the integrated stage of the Urmetazoa was the acquisition of a stem cell system. In this review, first markers for stem cells (mesenchymal stem cell-like protein) as well as for chemokines involved in the maintenance of stem cells (noggin and glia maturation factor) are described at the molecular level, and a first functional analysis is approached. Taken together, it is outlined that the chemokine network was essential for the establishment of metazoans, which evolved approximately 600 to 800 million years ago.
Collapse
Affiliation(s)
- W E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | | | | | |
Collapse
|