1
|
Costanza A, Guaragnella N, Bobba A, Manzari C, L'Abbate A, Giudice CL, Picardi E, D'Erchia AM, Pesole G, Giannattasio S. Yeast as a Model to Unravel New BRCA2 Functions in Cell Metabolism. Front Oncol 2022; 12:908442. [PMID: 35734584 PMCID: PMC9207209 DOI: 10.3389/fonc.2022.908442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in BRCA2 gene increase the risk for breast cancer and for other cancer types, including pancreatic and prostate cancer. Since its first identification as an oncosupressor in 1995, the best-characterized function of BRCA2 is in the repair of DNA double-strand breaks (DSBs) by homologous recombination. BRCA2 directly interacts with both RAD51 and single-stranded DNA, mediating loading of RAD51 recombinase to sites of single-stranded DNA. In the absence of an efficient homologous recombination pathway, DSBs accumulate resulting in genome instability, thus supporting tumorigenesis. Yet the precise mechanism by which BRCA2 exerts its tumor suppressor function remains unclear. BRCA2 has also been involved in other biological functions including protection of telomere integrity and stalled replication forks, cell cycle progression, transcriptional control and mitophagy. Recently, we and others have reported a role of BRCA2 in modulating cell death programs through a molecular mechanism conserved in yeast and mammals. Here we hypothesize that BRCA2 is a multifunctional protein which exerts specific functions depending on cell stress response pathway. Based on a differential RNA sequencing analysis carried out on yeast cells either growing or undergoing a regulated cell death process, either in the absence or in the presence of BRCA2, we suggest that BRCA2 causes central carbon metabolism reprogramming in response to death stimuli and encourage further investigation on the role of metabolic reprogramming in BRCA2 oncosuppressive function.
Collapse
Affiliation(s)
- Alessandra Costanza
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Alberto L'Abbate
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Claudio Lo Giudice
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Maria D'Erchia
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
2
|
MnSOD functions as a thermoreceptor activated by low temperature. J Inorg Biochem 2022; 229:111745. [DOI: 10.1016/j.jinorgbio.2022.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
|
3
|
Mejía-Barajas JA, Martínez-Mora JA, Salgado-Garciglia R, Noriega-Cisneros R, Ortiz-Avila O, Cortés-Rojo C, Saavedra-Molina A. Electron transport chain in a thermotolerant yeast. J Bioenerg Biomembr 2017; 49:195-203. [PMID: 28181110 DOI: 10.1007/s10863-017-9696-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨm), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca2+ ions (Ca2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30o, while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.
Collapse
Affiliation(s)
- Jorge A Mejía-Barajas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - José A Martínez-Mora
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Ruth Noriega-Cisneros
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Omar Ortiz-Avila
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
4
|
Mensonides FIC, Brul S, Hellingwerf KJ, Bakker BM, Teixeira de Mattos MJ. A kinetic model of catabolic adaptation and protein reprofiling in Saccharomyces cerevisiae during temperature shifts. FEBS J 2014; 281:825-41. [PMID: 24616920 DOI: 10.1111/febs.12649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this article, we aim to find an explanation for the surprisingly thin line, with regard to temperature, between cell growth, growth arrest and ultimately loss of cell viability. To this end, we used an integrative approach including both experimental and modelling work. We measured the short- and long-term effects of increases in growth temperature from 28 °C to 37, 39, 41, 42 or 43 °C on the central metabolism of Saccharomyces cerevisiae. Based on the experimental data, we developed a kinetic mathematical model that describes the metabolic and energetic changes in growing bakers' yeast when exposed to a specific temperature upshift. The model includes the temperature dependence of core energy-conserving pathways, trehalose synthesis, protein synthesis and proteolysis. Because our model focuses on protein synthesis and degradation, the net result of which is important in determining the cell's capacity to grow, the model includes growth, i.e. glucose is consumed and biomass and adenosine nucleotide cofactors are produced. The model reproduces both the observed initial metabolic response and the subsequent relaxation into a new steady-state, compatible with the new ambient temperature. In addition, it shows that the energy consumption for proteome reprofiling may be a major determinant of heat-induced growth arrest and subsequent recovery or cell death.
Collapse
|
5
|
Stanley D, Chambers PJ, Stanley GA, Borneman A, Fraser S. Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 88:231-9. [PMID: 20661734 DOI: 10.1007/s00253-010-2760-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/01/2010] [Accepted: 06/26/2010] [Indexed: 10/19/2022]
Abstract
Saccharomyces spp. are widely used for ethanol production; however, fermentation productivity is negatively affected by the impact of ethanol accumulation on yeast metabolic rate and viability. This study used microarray and statistical two-way ANOVA analysis to compare and evaluate gene expression profiles of two previously generated ethanol-tolerant mutants, CM1 and SM1, with their parent, Saccharomyces cerevisiae W303-1A, in the presence and absence of ethanol stress. Although sharing the same parentage, the mutants were created differently: SM1 by adaptive evolution involving long-term exposure to ethanol stress and CM1 using chemical mutagenesis followed by adaptive evolution-based screening. Compared to the parent, differences in the expression levels of genes associated with a number of gene ontology categories in the mutants suggest that their improved ethanol stress response is a consequence of increased mitochondrial and NADH oxidation activities, stimulating glycolysis and other energy-yielding pathways. This leads to increased activity of energy-demanding processes associated with the production of proteins and plasma membrane components, which are necessary for acclimation to ethanol stress. It is suggested that a key function of the ethanol stress response is restoration of the NAD(+)/NADH redox balance, which increases glyceraldehyde-3-phosphate dehydrogenase activity, and higher glycolytic flux in the ethanol-stressed cell. Both mutants achieved this by a constitutive increase in carbon flux in the glycerol pathway as a means of increasing NADH oxidation.
Collapse
Affiliation(s)
- Dragana Stanley
- School of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
6
|
De Melo H, Bonini B, Thevelein J, Simões D, Morais M. Physiological and molecular analysis of the stress response of
Saccharomyces cerevisiae
imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol 2010; 109:116-27. [PMID: 20002866 DOI: 10.1111/j.1365-2672.2009.04633.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- H.F. De Melo
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - B.M. Bonini
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Molecular Microbiology, VIB, Leuven‐Heverlee, Flanders, Belgium
| | - J. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Molecular Microbiology, VIB, Leuven‐Heverlee, Flanders, Belgium
| | - D.A. Simões
- Department of Biochemistry, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - M.A. Morais
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Moraitis C, Curran BPG. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions. Yeast 2009; 27:103-14. [PMID: 20014153 DOI: 10.1002/yea.1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously demonstrated that in aerobically-grown cells of the yeast Saccharomyces cerevisiae, hydrogen peroxide (H(2)O(2)) increases and ascorbic acid decreases cellular thermosensitivity, as determined by the inducibility of a heat shock (HS)-reporter gene. In this work, we reveal that the aerobic thermosensitivity of anaerobically-grown yeast cells also increases in the presence of H(2)O(2), albeit differentially between cells with two different lipid profiles. In comparison to aerobically-grown fermenting cells treated with the same H(2)O(2) concentration, both these types of anaerobically-grown cells were found to be considerably less sensitive to aerobic heat shock and considerably more thermotolerant. Paradoxically, and in contrast to ascorbate-pretreated aerobically-grown yeast cells, when anaerobically-grown cells were heat-shocked aerobically in the presence of the same ascorbic acid concentration, they exhibited increased thermosensitivity and decreased intrinsic thermotolerance with respect to their untreated counterparts. These findings are discussed with respect to what is currently known about the redox and physiological status of yeast cells grown aerobically and cells reoxygenated following anoxic growth.
Collapse
Affiliation(s)
- Christos Moraitis
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | | |
Collapse
|
8
|
Ngo JK, Davies KJA. Mitochondrial Lon protease is a human stress protein. Free Radic Biol Med 2009; 46:1042-8. [PMID: 19439239 PMCID: PMC3093304 DOI: 10.1016/j.freeradbiomed.2008.12.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 12/12/2008] [Accepted: 12/31/2008] [Indexed: 12/17/2022]
Abstract
The targeted removal of damaged proteins by proteolysis is crucial for cell survival. We have shown previously that the Lon protease selectively degrades oxidized mitochondrial proteins, thus preventing their aggregation and cross-linking. We now show that the Lon protease is a stress-responsive protein that is induced by multiple stressors, including heat shock, serum starvation, and oxidative stress. Lon induction, by pretreatment with low-level stress, protects against oxidative protein damage, diminished mitochondrial function, and loss of cell proliferation induced by toxic levels of hydrogen peroxide. Blocking Lon induction with Lon siRNA also blocks this induced protection. We propose that Lon is a generalized stress-protective enzyme whose decline may contribute to the increased levels of protein damage and mitochondrial dysfunction observed in aging and age-related diseases.
Collapse
Affiliation(s)
- Jenny K Ngo
- Division of Molecular and Computational Biology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | |
Collapse
|
9
|
Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae. Appl Environ Microbiol 2009; 75:2320-5. [PMID: 19251894 DOI: 10.1128/aem.00009-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Industrial production of lactic acid with the current pyruvate decarboxylase-negative Saccharomyces cerevisiae strains requires aeration to allow for respiratory generation of ATP to facilitate growth and, even under nongrowing conditions, cellular maintenance. In the current study, we observed an inhibition of aerobic growth in the presence of lactic acid. Unexpectedly, the cyb2Delta reference strain, used to avoid aerobic consumption of lactic acid, had a specific growth rate of 0.25 h(-1) in anaerobic batch cultures containing lactic acid but only 0.16 h(-1) in identical aerobic cultures. Measurements of aerobic cultures of S. cerevisiae showed that the addition of lactic acid to the growth medium resulted in elevated levels of reactive oxygen species (ROS). To reduce the accumulation of lactic acid-induced ROS, cytosolic catalase (CTT1) was overexpressed by replacing the native promoter with the strong constitutive TPI1 promoter. Increased activity of catalase was confirmed and later correlated with decreased levels of ROS and increased specific growth rates in the presence of high lactic acid concentrations. The increased fitness of this genetically modified strain demonstrates the successful attenuation of additional stress that is derived from aerobic metabolism and may provide the basis for enhanced (micro)aerobic production of organic acids in S. cerevisiae.
Collapse
|
10
|
Pham TH, Mauvais G, Vergoignan C, De Coninck J, Dumont F, Lherminier J, Cachon R, Feron G. Gaseous environments modify physiology in the brewing yeastSaccharomyces cerevisiaeduring batch alcoholic fermentation. J Appl Microbiol 2008; 105:858-74. [DOI: 10.1111/j.1365-2672.2008.03821.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
López-Mirabal HR, Winther JR, Thorsen M, Kielland-Brandt MC. Mutations in the RAM network confer resistance to the thiol oxidant 4,4'-dipyridyl disulfide. Mol Genet Genomics 2008; 279:629-42. [PMID: 18357467 DOI: 10.1007/s00438-008-0339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/04/2008] [Indexed: 11/29/2022]
Abstract
Thiol oxidants are expected to have multiple effects in living cells. Hence, mutations giving resistance to such agents are likely to reveal important targets and/or mechanisms influencing the cellular capacity to withstand thiol oxidation. A screen for mutants resistant to the thiol-specific oxidant dipyridyl disulfide (DPS) yielded tao3-516, which is impaired in the function of the RAM signaling network protein Tao3/Pag1p. We suggest that the DPS-resistance of the tao3-516 mutant might be due to deficient cell-cycle-regulated production of the chitinase Cts1p, which functions in post-mitotic cell separation and depends on Tao3p and the RAM network for regulated expression. Consistent with this, deletion of other RAM genes or CTS1 also resulted in increased resistance to DPS. Exposure to DPS caused extensive depolarization of the actin cytoskeleton. We found that tao3-516 is resistant to latrunculin, a specific inhibitor of actin polymerization, and that ram, Deltaace2, and Deltacts1 mutants are resistant to benomyl, a microtubule-destabilizing drug. Since septum build-up depends on the organization of cytoskeletal proteins, the resistance to cytoskeletal stress of Cts1p-deficient mutants might relate to bypass for abnormal septum-associated protein sorting. The broad resistance toward oxidants (DPS, diamide and H(2)O(2)) of the Deltacts1 strain links cell wall function to the resistance to oxidative stress and suggests the existence of targets that are common for these oxidants.
Collapse
|
12
|
Ding G, Zhang A, Huang S, Pan X, Zhen G, Chen R, Yang T. ANG II induces c-Jun NH2-terminal kinase activation and proliferation of human mesangial cells via redox-sensitive transactivation of the EGFR. Am J Physiol Renal Physiol 2007; 293:F1889-97. [PMID: 17881465 DOI: 10.1152/ajprenal.00112.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that ANG II induces mesangial cell (MC) proliferation via the JNK-activator protein-1 pathway. The present study attempted to determine the upstream mediators of JNK activation, with emphasis on reactive oxygen species (ROS) and the epidermal growth factor (EGF) receptor (EGFR). In cultured human MCs (HMCs), as early as 3 min, ANG II time dependently increased intracellular ROS production, which was sensitive to 10 microM diphenyleneiodonium sulfate and 500 microM apocynin, two structurally distinct NADPH oxidase inhibitors. In contrast, inhibitors of other oxidant-producing enzymes, including the mitochondrial complex I inhibitor rotenone, the xanthine oxidase inhibitor allopurinol, the cyclooxygenase inhibitor indomethacin, the lipoxygenase inhibitor nordihydroguiaretic acid, the cytochrome P-450 oxygenase inhibitor ketoconazole, and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester, were without effect. ANG II-induced ROS generation was inhibited by the angiotensin type 1 receptor antagonist losartan (10 muM) but not the angiotensin type 2 receptor antagonist PD-123319 (10 microM). ANG II induced translocation of p47(phox) and p67(phox) from the cytosol to the membrane. The antioxidants almost abolished the ANG II mitogenic response, as assessed by [(3)H]thymidine incorporation and cell number, associated with a remarkable blockade of the activation of EGFR (90% inhibition) and JNK (83% inhibition). The EGFR inhibitor AG-1478 was able to mimic the effect of antioxidants, in that it inhibited the mitogenic response and the JNK activation following ANG II treatment. Together, these data suggest that the ROS-EGFR-JNK pathway is involved in transducing the proliferative effect of ANG II in cultured HMCs.
Collapse
MESH Headings
- Acridines
- Angiotensin II/biosynthesis
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Blotting, Western
- Cell Count
- Cell Proliferation/drug effects
- Cells, Cultured
- DNA/biosynthesis
- DNA/genetics
- Enzyme Activation/drug effects
- ErbB Receptors/biosynthesis
- ErbB Receptors/genetics
- Glomerular Mesangium/cytology
- Glomerular Mesangium/drug effects
- Glomerular Mesangium/enzymology
- Humans
- JNK Mitogen-Activated Protein Kinases/metabolism
- Luminescence
- NADPH Oxidases/metabolism
- Oxidation-Reduction
- Reactive Oxygen Species
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/genetics
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
- Guixia Ding
- Center of Pediatric Nephrology, Nanjing Childern's Hospital, Nanjing Medical Univ., Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Smirnova GV, Muzyka NG, Oktyabrsky ON. Enhanced resistance to peroxide stress in Escherichia coli grown outside their niche temperatures. J Therm Biol 2007. [DOI: 10.1016/j.jtherbio.2007.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Moraitis C, Curran BPG. Can the different heat shock response thresholds found in fermenting and respiring yeast cells be attributed to their differential redox states? Yeast 2007; 24:653-66. [PMID: 17533621 DOI: 10.1002/yea.1498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this study we used a heat-shock (HS) reporter gene to demonstrate that respiring cells are intrinsically less sensitive (by 5 degrees C) than their fermenting counterparts to a sublethal heat shock. We also used an oxidant-sensitive fluorescent probe to demonstrate that this correlates with lower levels of sublethal reactive oxygen species (ROS) accumulation in heat-stressed respiring cells. Moreover, this relationship between HS induction of the reporter gene and ROS accumulation extends to respiring cells that have had their ROS levels modified by treatment with the anti-oxidant ascorbic acid and the pro-oxidant H(2)O(2). Thus, by demonstrating that the ROS/HSR correlation previously demonstrated in fermenting cells also holds for respiring cells (despite their greater HS insensitivity and higher level of intrinsic thermotolerance), we provide evidence that the intracellular redox state may influence both the sensitivity of the heat-shock response (HSR) and stress tolerance in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Christos Moraitis
- School of Biological and Chemical Sciences, Queen Mary College, University of London, Mile End Road, London E1 4NS, U.K
| | | |
Collapse
|
15
|
Vilaprinyo E, Alves R, Sorribas A. Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock. BMC Bioinformatics 2006; 7:184. [PMID: 16584550 PMCID: PMC1524994 DOI: 10.1186/1471-2105-7-184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 04/03/2006] [Indexed: 01/26/2023] Open
Abstract
Background Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress.
Collapse
Affiliation(s)
- Ester Vilaprinyo
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Rui Alves
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Albert Sorribas
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| |
Collapse
|
16
|
|
17
|
Devantier R, Scheithauer B, Villas-Bôas SG, Pedersen S, Olsson L. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnol Bioeng 2005; 90:703-14. [PMID: 15812801 DOI: 10.1002/bit.20457] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A laboratory strain and an industrial strain of Saccharomyces cerevisiae were grown at high substrate concentration, so-called very high gravity (VHG) fermentation. Simultaneous saccharification and fermentation (SSF) was applied in a batch process using 280 g/L maltodextrin as carbon source. It was shown that known ethanol and osmotic stress responses such as decreased growth rate, lower viability, higher energy consumption, and intracellular trehalose accumulation occur in VHG SSF for both strains when compared with standard laboratory medium (20 g/L glucose). The laboratory strain was the most affected. GC-MS metabolite profiling was applied for assessing the yeast stress response influence on cellular metabolism. It was found that metabolite profiles originating from different strains and/or fermentation conditions were unique and could be distinguished with the help of multivariate data analysis. Several differences in the metabolic responses to stressing conditions were revealed, particularly the increased energy consumption of stressed cells was also reflected in increased intracellular concentrations of pyruvate and related metabolites.
Collapse
Affiliation(s)
- Rasmus Devantier
- Starch, Applied Discovery, Research & Development, Novozymes A/S, Laurentsvej 51-53, DK-2880 Bagsvaerd, Denmark
| | | | | | | | | |
Collapse
|
18
|
Fredriksson A, Ballesteros M, Dukan S, Nyström T. Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol 2005; 187:4207-13. [PMID: 15937182 PMCID: PMC1151714 DOI: 10.1128/jb.187.12.4207-4213.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein carbonylation is an irreversible oxidative modification that increases during organism aging and bacterial growth arrest. We analyzed whether the heat shock regulon has a role in defending Escherichia coli cells against this deleterious modification upon entry into stationary phase. Providing the cell with ectopically elevated levels of the heat shock transcription factor, sigma32, effectively reduced stasis-induced carbonylation. Separate overproduction of the major chaperone systems, DnaK/DnaJ and GroEL/GroES, established that the former of these is more important in counteracting protein carbonylation. Deletion of the heat shock proteases Lon and HslVU enhanced carbonylation whereas a clpP deletion alone had no effect. However, ClpP appears to have a role in reducing protein carbonyls in cells lacking Lon and HslVU. Proteomic immunodetection of carbonylated proteins in the wild-type, lon, and hslVU strains demonstrated that the same spectrum of proteins displayed a higher load of carbonyl groups in the lon and hslVU mutants. These proteins included the beta-subunit of RNA polymerase, elongation factors Tu and G, the E1 subunit of the pyruvate dehydrogenase complex, isocitrate dehydrogenase, 6-phosphogluconate dehydrogenase, and serine hydroxymethyltranferase.
Collapse
Affiliation(s)
- Asa Fredriksson
- Department of Cell and Molecular Biology, Microbiology, Medicinaregatan 9C, 413 90 Göteborg, Sweden
| | | | | | | |
Collapse
|
19
|
Martínez J, Rodríguez-Caabeiro F. Relationship between heat shock protein levels and infectivity in Trichinella spiralis larvae exposed to different stressors. Parasitol Res 2005; 97:213-8. [PMID: 15997408 DOI: 10.1007/s00436-005-1420-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 05/03/2005] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to investigate the relationship between infectivity and the levels of two major heat shock proteins (Hsp70 and Hsp60) in Trichinella spiralis larvae. Parasites were exposed to either sublethal thermal stress (43 and 45 degrees C) or to warm or cold temperature oxidative stress. The stressed larvae were then inoculated into female CD1 mice to determine their infectivity. Hsps were detected and quantified by Western blotting using monoclonal antibodies. Infectivity was expressed as larvae per gram of muscle. Warm temperature oxidative stress (20 mM H2O2 at 37 degrees C) caused a significant increase in Hsp levels and total loss of infectivity. Cold oxidative stress (20 mM H2O2 at 4 degrees C) caused no alterations in either Hsp levels or infectivity. However, high oxidative stress and cold (200 mM H2O2 at 4 degrees C) caused a slight increase in Hsp60 levels and a drastic reduction in infectivity. Exposure of the larvae to 43 or 45 degrees C did not significantly alter Hsp levels or infectivity. These results show that (i) cold reduces the deleterious effects of oxidative stress; (ii) heat induces neither increased Hsp60/Hsp70 levels nor reduces infectivity; (iii) increased Hsp levels induced by oxidative stress may cause lower infectivity.
Collapse
Affiliation(s)
- J Martínez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | | |
Collapse
|
20
|
Devantier R, Pedersen S, Olsson L. Transcription analysis of S. cerevisiae in VHG fermentation: The genome-wide transcriptional response of Saccharomyces cerevisiae during very high gravity ethanol fermentations is highly affected by the stationary phase. Ind Biotechnol (New Rochelle N Y) 2005. [DOI: 10.1089/ind.2005.1.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rasmus Devantier
- Starch, Applied Discovery, Research & Development Novozymes A/S, Laurentsvej 51-53, DK-2880 Bagsvaerd, Denmark
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223 Technical University of Denmark, DK-2800 Lyngby
| | - Sven Pedersen
- Starch, Applied Discovery, Research & Development Novozymes A/S, Laurentsvej 51-53, DK-2880 Bagsvaerd, Denmark
| | - Lisbeth Olsson
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223 Technical University of Denmark, DK-2800 Lyngby
- Corresponding author. Phone: +45 4525 2677, Fax: +45 4588 4148 E-mail:
| |
Collapse
|