1
|
Rothschild SC, Lai G, Tombes RM, Clements WK. Constitutively active CaMKII Drives B lineage acute lymphoblastic leukemia/lymphoma in tp53 mutant zebrafish. PLoS Genet 2023; 19:e1011102. [PMID: 38117861 PMCID: PMC10766190 DOI: 10.1371/journal.pgen.1011102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/04/2024] [Accepted: 12/07/2023] [Indexed: 12/22/2023] Open
Abstract
Acute lymphoblastic leukemia/lymphoma (ALL) is the most common pediatric cancer and is a malignancy of T or B lineage lymphoblasts. Dysregulation of intracellular Ca2+ levels has been observed in patients with ALL, leading to improper activation of downstream signaling. Here we describe a new zebrafish model of B ALL, generated by expressing human constitutively active CaMKII (CA-CaMKII) in tp53 mutant lymphocytes. In this model, B cell hyperplasia in the kidney marrow and spleen progresses to overt leukemia/lymphoma, with only 29% of zebrafish surviving the first year of life. Leukemic fish have reduced productive genomic VDJ recombination in addition to reduced expression and improper splicing of ikaros1, a gene often deleted or mutated in patients with B ALL. Inhibiting CaMKII in human pre-B ALL cells induced cell death, further supporting a role for CaMKII in leukemogenesis. This research provides novel insight into the role of Ca2+-directed signaling in lymphoid malignancy and will be useful in understanding disease development and progression.
Collapse
Affiliation(s)
- Sarah C. Rothschild
- Life Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Guanhua Lai
- Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Robert M. Tombes
- Life Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Wilson K. Clements
- Experimental Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
2
|
Monaco S, Rusciano MR, Maione AS, Soprano M, Gomathinayagam R, Todd LR, Campiglia P, Salzano S, Pastore L, Leggiero E, Wilkerson DC, Rocco M, Selleri C, Iaccarino G, Sankar U, Illario M. A novel crosstalk between calcium/calmodulin kinases II and IV regulates cell proliferation in myeloid leukemia cells. Cell Signal 2014; 27:204-14. [PMID: 25446257 DOI: 10.1016/j.cellsig.2014.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/24/2014] [Accepted: 11/08/2014] [Indexed: 12/26/2022]
Abstract
CaMKs link transient increases in intracellular Ca(2+) with biological processes. In myeloid leukemia cells, CaMKII, activated by the bcr-abl oncogene, promotes cell proliferation. Inhibition of CaMKII activity restricts cell proliferation, and correlates with growth arrest and differentiation. The mechanism by which the inhibition of CaMKII results in growth arrest and differentiation in myeloid leukemia cells is still unknown. We report that inhibition of CaMKII activity results in an upregulation of CaMKIV mRNA and protein in leukemia cell lines. Conversely, expression of CaMKIV inhibits autophosphorylation and activation of CaMKII, and elicits G0/G1cell cycle arrest,impairing cell proliferation. Furthermore, U937 cells expressing CaMKIV show elevated levels of Cdk inhibitors p27(kip1) and p16(ink4a) and reduced levels of cyclins A, B1 and D1. These findings were also confirmed in the K562 leukemic cell line. The relationship between CaMKII and CaMKIV is also observed in primary acute myeloid leukemia (AML) cells, and it correlates with their immunophenotypic profile. Indeed, immature MO/M1 AML showed increased CaMKIV expression and decreased pCaMKII, whereas highly differentiated M4/M5 AML showed decreased CaMKIV expression and increased pCaMKII levels. Our data reveal a novel cross-talk between CaMKII and CaMKIV and suggest that CaMKII suppresses the expression of CaMKIV to promote leukemia cell proliferation.
Collapse
Affiliation(s)
- Sara Monaco
- Dipartimento di Scienze Mediche Traslazionali, Federico II University, Naples, Italy
| | | | - Angela S Maione
- Dipartimento di Scienze Mediche Traslazionali, Federico II University, Naples, Italy
| | - Maria Soprano
- Dipartimento di Scienze Mediche Traslazionali, Federico II University, Naples, Italy
| | - Rohini Gomathinayagam
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lance R Todd
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pietro Campiglia
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Fisciano, Salerno,Italy
| | - Salvatore Salzano
- Instituto di Endocrinologia ed Oncologia Sperimentale, CNR, Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate, Italy; Dipartimento di Biochimica e Biotecnologie Mediche, Federico II University, Naples, Italy
| | | | - Donald C Wilkerson
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Monia Rocco
- Experimental Pharmacology Unit, Department of Research, National Cancer Institute "Fondazione G. Pascale", Napoli, Italy
| | - Carmine Selleri
- Hematology Unit, Azienda Ospedaliera Universitaria "S. Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Guido Iaccarino
- Department of Medicine, University of Salerno, Italy; IRCCS "Multimedica", Milan, Italy
| | - Uma Sankar
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Maddalena Illario
- Dipartimento di Scienze Mediche Traslazionali, Federico II University, Naples, Italy.
| |
Collapse
|
3
|
Nguyen T, Chen CJ, Shively JE. Phosphorylation of CEACAM1 molecule by calmodulin kinase IID in a three-dimensional model of mammary gland lumen formation. J Biol Chem 2013; 289:2934-45. [PMID: 24302721 DOI: 10.1074/jbc.m113.496992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1), a transmembrane protein, expressed on normal breast epithelial cells is down-regulated in breast cancer. Phosphorylation of Thr-457 on the short cytoplasmic domain isoform (CEACAM1-SF) that is predominant in normal epithelial cells is required for lumen formation in a three-dimensional model that involves apoptosis of the central acinar cells. Calmodulin kinase IID (CaMKIID) was selected as a candidate for the kinase required for Thr-457 phosphorylation from a gene chip analysis comparing genes up-regulated in MCF7 cells expressing wild type CEACAM1-SF compared with the T457A-mutated gene (Chen, C. J., Kirshner, J., Sherman, M. A., Hu, W., Nguyen, T., and Shively, J. E. (2007) J. Biol. Chem. 282, 5749-5760). Up-regulation of CaMKIID during lumen formation was confirmed by analysis of mRNA and protein levels. CaMKIID was able to phosphorylate a synthetic peptide corresponding to the cytoplasmic domain of CEACAM1-SF and was covalently bound to biotinylated and T457C-modified peptide in the presence of a kinase trap previously described by Shokat and co-workers (Maly, D. J., Allen, J. A., and Shokat, K. M. (2004) J. Am. Chem. Soc. 126, 9160-9161). When cell lysates from wild type-transfected MCF7 cells undergoing lumen formation were incubated with the peptide and kinase trap, a cross-linked band corresponding to CaMKIID was observed. When these cells were treated with an RNAi that inhibits CaMKIID expression, lumen formation was blocked by over 90%. We conclude that CaMKIID specifically phosphorylates Thr-457 on CEACAM1-SF, which in turn regulates the process of lumen formation via apoptosis of the central acinar cells.
Collapse
Affiliation(s)
- Tung Nguyen
- From the Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | | | | |
Collapse
|
4
|
Love IM, Grossman SR. It Takes 15 to Tango: Making Sense of the Many Ubiquitin Ligases of p53. Genes Cancer 2012; 3:249-63. [PMID: 23150758 DOI: 10.1177/1947601912455198] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transcription factor p53 regulates numerous cellular processes to guard against tumorigenesis. Cell-cycle inhibition, apoptosis, and autophagy are all regulated by p53 in a cell- and context-specific manner, underscoring the need for p53 activity to be kept low in most circumstances. p53 is kept in check primarily through its regulated ubiquitination and degradation by a number of different factors, whose contributions may reflect complex context-specific needs to restrain p53 activity. Chief among these E3 ubiquitin ligases in p53 homeostasis is the ubiquitously expressed proto-oncogene MDM2, whose loss renders vertebrates unable to limit p53 activity, resulting in early embryonic lethality. MDM2 has been validated as a critical, universal E3 ubiquitin ligase for p53 in numerous tissues and organisms to date, but additional E3 ligases have also been identified for p53 whose contribution to p53 activity is unclear. In this review, we summarize the recent advances in our knowledge regarding how p53 activity is apparently controlled by a multitude of ubiquitin ligases beyond MDM2.
Collapse
Affiliation(s)
- Ian M Love
- Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
5
|
Lee SW, Seong MW, Jeon YJ, Chung CH. Ubiquitin E3 ligases controlling p53 stability. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2012.688769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
6
|
Zhang M, Shan H, Gu Z, Wang D, Wang T, Wang Z, Tao L. Increased expression of calcium/calmodulin-dependent protein kinase type II subunit δ after rat traumatic brain injury. J Mol Neurosci 2011; 46:631-43. [PMID: 22048920 DOI: 10.1007/s12031-011-9651-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
Abstract
Many cellular responses to Ca(2+) signals are mediated by Ca(2+)/calmodulin-dependent enzymes, among which is the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). CaMKII was originally described in rat brain tissue. In rat brain, four different subunits of the kinase have been identified: α, β, γ, and δ. This study aims to investigate changes of CaMKIIδ after traumatic brain injury and its possible role. Rat traumatic brain injury (TBI) model was established by controlled cortical injury system. In the present study, we mainly investigated the expression and cellular localization of CaMKIIδ after traumatic brain injury. Western blot analysis revealed that CaMKIIδ was present in normal rat brain cortex. It gradually increased, reached a peak at the third day after TBI, and then decreased. Importantly, more CaMKIIδ was colocalized with neuron. In addition, Western blot detection showed that the third day postinjury was also the apoptosis peak indicated by the elevated expression of caspase-3.Importantly, immunohistochemistry analysis revealed that injury-induced expression of CaMKIIδ was colabeled by caspase-3 (apoptosis cells marker). Moreover, pretreatment with the CaMKII inhibitor (KN62) reduced the injury-induced activation of caspase-3. Noticeably, the CaMKII inhibitor KN-62 could reduce TBI-induced cell injury assessed with lesion volume and attenuate behavioral outcome evaluated by motor test. These data suggested that CaMKIIδ may be implicated in the apoptosis of neuron and the recovery of neurological outcomes. However, the inherent mechanisms remained unknown. Further studies are needed to confirm the exact role of CaMKIIδ after brain injury.
Collapse
Affiliation(s)
- Mingyang Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Pirh2 (p53-induced RING-H2) is an E3 ubiquitin ligase that can target p53 for degradation and thereby repress a diverse group of biological activities regulated by p53. Notably, Pirh2, rather than MDM2, is the primary degrader of active p53 under conditions of DNA damage. Moreover, Pirh2 is highly expressed in multiple cancer cell lines regardless of p53 status. Recent research has shown that Pirh2 is involved in many signalling pathways related to the genesis and evolution of cancer. This review aims to summarize a comprehensive picture of the role of Pirh2 in cellular processes and its significance to tumorigenesis. Furthermore, this review focuses on its potential role as a cancer therapeutic target.
Collapse
Affiliation(s)
- Zhihao Wang
- School of Medicine, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
8
|
Easley CA, Brown CM, Horwitz AF, Tombes RM. CaMK-II promotes focal adhesion turnover and cell motility by inducing tyrosine dephosphorylation of FAK and paxillin. ACTA ACUST UNITED AC 2008; 65:662-74. [PMID: 18613116 DOI: 10.1002/cm.20294] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transient elevations in Ca2+ have previously been shown to promote focal adhesion disassembly and cell motility through an unknown mechanism. In this study, evidence is provided to show that CaMK-II, a Ca2+/calmodulin dependent protein kinase, influences fibroblast adhesion and motility. TIRF microscopy reveals a dynamic population of CaMK-II at the cell surface in migrating cells. Inhibition of CaMK-II with two mechanistically distinct, membrane permeant inhibitors (KN-93 and myr-AIP) freezes lamellipodial dynamics, accelerates spreading on fibronectin, enlarges paxillin-containing focal adhesions and blocks cell motility. In contrast, constitutively active CaMK-II is not found at the cell surface, reduces cell attachment, eliminates paxillin from focal adhesions and decreases the phospho-tyrosine levels of both FAK and paxillin; all of these events can be reversed with myr-AIP. Thus, both CaMK-II inhibition and constitutive activation block cell motility through over-stabilization or destabilization of focal adhesions, respectively. Coupled with the existence of transient Ca2+ elevations and a dynamic CaMK-II population, these findings provide the first direct evidence that CaMK-II enables cell motility by transiently and locally stimulating tyrosine dephosphorylation of focal adhesion proteins to promote focal adhesion turnover.
Collapse
Affiliation(s)
- Charles A Easley
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | |
Collapse
|
9
|
Seward ME, Easley CA, McLeod JJ, Myers AL, Tombes RM. Flightless-I, a gelsolin family member and transcriptional regulator, preferentially binds directly to activated cytosolic CaMK-II. FEBS Lett 2008; 582:2489-95. [DOI: 10.1016/j.febslet.2008.06.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 05/29/2008] [Accepted: 06/05/2008] [Indexed: 11/28/2022]
|
10
|
Duan S, Yao Z, Hou D, Wu Z, Zhu WG, Wu M. Phosphorylation of Pirh2 by calmodulin-dependent kinase II impairs its ability to ubiquitinate p53. EMBO J 2007; 26:3062-74. [PMID: 17568776 PMCID: PMC1914097 DOI: 10.1038/sj.emboj.7601749] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 05/15/2007] [Indexed: 11/09/2022] Open
Abstract
Although the recently identified Pirh2 protein is known as a p53-induced ubiquitin-protein E3 ligase, which negatively regulates p53, the detailed mechanism underlying the regulation of Pirh2 remains largely unknown. Here, we demonstrate that while Pirh2 is mostly detected in the phosphorylated form in normal tissues, it is predominantly present in the unphosphorylated form in majority of tumor cell lines and tissues examined. Phosphorylated Pirh2 is far more unstable than its unphosphorylated form. We further identified that Calmodulin-dependent kinase II (CaMK II) phosphorylates Pirh2 on residues Thr-154 and Ser-155. Phosphorylation of Pirh2 appears to be regulated through cell cycle-dependent mechanism. CaMK II-mediated Pirh2 phosphorylation abrogates its E3 ligase activity toward p53. Together, our data suggest that phosphorylation of Pirh2 may act as a fine-tuning to maintain the balance of p53-Pirh2 autoregulatory feedback loop, which facilitates the tight regulation of p53 stability and tumor suppression.
Collapse
Affiliation(s)
- Shanshan Duan
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Zhan Yao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Dezhi Hou
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Zhengsheng Wu
- Department of pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wei-guo Zhu
- Department of Biochemistry and Molecular Biology and the Cancer Research Center, Peking University Health Science Center, Beijing, China
| | - Mian Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, People's Republic of China. Tel.: +86 551 3607324; Fax: +86 551 3606264; E-mail:
| |
Collapse
|
11
|
Rothschild SC, Lister JA, Tombes RM. Differential expression of CaMK-II genes during early zebrafish embryogenesis. Dev Dyn 2007; 236:295-305. [PMID: 17103413 DOI: 10.1002/dvdy.21005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
CaMK-II is a highly conserved Ca(2+)/calmodulin-dependent protein kinase expressed throughout the lifespan of all vertebrates. During early development, CaMK-II regulates cell cycle progression and "non-canonical" Wnt-dependent convergent extension. In the zebrafish, Danio rerio, CaMK-II activity rises within 2 hr after fertilization. At the time of somite formation, zygotic expression from six genes (camk2a1, camk2b1, camk2g1, camk2g2, camk2d1, camk2d2) results in a second phase of increased activity. Zebrafish CaMK-II genes are 92-95% identical to their human counterparts in the non-variable regions. During the first three days of development, alternative splicing yields at least 20 splice variants, many of which are unique. Whole-mount in situ hybridization reveals that camk2g1 comprises the majority of maternal expression. All six genes are expressed strongly in ventral regions at the 18-somite stage. Later, camk2a1 is expressed in anterior somites, heart, and then forebrain. Camk2b1 is expressed in somites, mid- and forebrain, gut, retina, and pectoral fins. Camk2g1 appears strongly along the midline and then in brain, gut, and pectoral fins. Camk2g2 is expressed early in the midbrain and trunk and exhibits the earliest retinal expression. Camk2d1 is elevated early at somite boundaries, then epidermal tissue, while camk2d2 is expressed in discrete anterior locations, steadily increasing along either side of the dorsal midline and then throughout the brain, including the retina. These findings reveal a complex pattern of CaMK-II gene expression consistent with pleiotropic roles during development.
Collapse
Affiliation(s)
- Sarah C Rothschild
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | |
Collapse
|
12
|
Veresov VG, Davidovskii AI. Monte Carlo simulations of tBid association with the mitochondrial outer membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:19-33. [PMID: 17375293 DOI: 10.1007/s00249-007-0149-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 02/02/2007] [Accepted: 02/24/2007] [Indexed: 12/24/2022]
Abstract
Bid, a BH3-only pro-apoptopic member of the BCL-2 protein family, regulates cell death at the level of mitochondrial cytochrome c efflux. Bid consists of 8 alpha-helices (H1-H8, respectively) and is soluble cytosolic protein in its native state. Proteolysis of the N-terminus (encompassing H1 and H2) of Bid by caspase 8 in apoptosis yields activated "tBid" (truncated Bid), which translocates to the mitochondria and induces the efflux of cytochrome c. The release of cytochrome c from mitochondria to the cytosol constitutes a critical control point in apoptosis that is regulated by interaction of tBid protein with mitochondrial membrane. tBid displays structural homology to channel-forming bacterial toxins, such as colicins or transmembrane domain of diphtheria toxin. By analogy, it has been hypothesized that tBid would unfold and insert into the lipid bilayer of the mitochondria outer membrane (MOM) upon membrane association. However, it has been shown recently that unlike colicins and the transmembrane domain of diphtheria toxin, tBid binds to the lipid bilayer maintaining alpha-helical conformation of its helices without adopting a transmembrane orientation by them. Here, the mechanism of the association of tBid with the model membrane mimicking the mitochondrial membrane is studied by Monte Carlo simulations, taking into account the underlying energetics. A novel two-stage hierarchical simulation protocol combining coarse-grained discretization of conformational space with subsequent refinements was applied which was able to generate the protein conformation and its location in the membrane using modest computational resources. The simulations show that starting from NMR-established conformation in the solution, the protein associates with the membrane without adopting the transmembrane orientation. The configuration (conformation and location) of tBid providing the lowest free energy for the system protein/membrane/solvent has been obtained. The simulations reveal that tBid upon association with the membrane undergoes significant conformational changes primarily due to rotations within the loops between helices H4 and H5, H6 and H7, H7 and H8. It is established that in the membrane-bound state of tBid-monomer helices H3 and H5 have the locations exposed to the solution, helices H6 and H8 are partly buried and helices H4 and H7 are buried into the membrane at shallow depth. The average orientation of tBid bound to the membrane in the most stable configuration reported here is in satisfactory agreement with the evaluations obtained by indirect experimental means.
Collapse
Affiliation(s)
- Valery G Veresov
- Department of Cell Biophysics, Institute of Biophysics and Cell Engineering, Academicheskaya St. 27, Minsk 220072, Belarus.
| | | |
Collapse
|
13
|
Easley CA, Faison MO, Kirsch TL, Lee JA, Seward ME, Tombes RM. Laminin activates CaMK-II to stabilize nascent embryonic axons. Brain Res 2006; 1092:59-68. [PMID: 16690036 DOI: 10.1016/j.brainres.2006.03.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 03/21/2006] [Accepted: 03/23/2006] [Indexed: 11/25/2022]
Abstract
In neurons, the interaction of laminin with its receptor, beta1 integrin, is accompanied by an increase in cytosolic Ca2+. Neuronal behavior is influenced by CaMK-II, the type II Ca2+/calmodulin-dependent protein kinase, which is enriched in axons of mouse embryonic neurons. In this study, we sought to determine whether CaMK-II is activated by laminin, and if so, how CaMK-II influences axonal growth and stability. Axons grew up to 200 microm within 1 day of plating P19 embryoid bodies on laminin-1 (EHS laminin). Activated CaMK-II was found enriched along the axon and in the growth cone as detected using a phospho-Thr(287) specific CaMK-II antibody. beta1 integrin was found in a similar pattern along the axon and in the growth cone. Direct inhibition of CaMK-II in 1-day-old neurons immediately froze growth cone dynamics, disorganized F-actin and ultimately led to axon retraction. Collapsed axonal remnants exhibited diminished phospho-CaMK-II levels. Treatment of 1-day neurons with a beta1 integrin-blocking antibody (CD29) also reduced axon length and phospho-CaMK-II levels and, like CaMK-II inhibitors, decreased CaMK-II activation. Among several CaMK-II variants detected in these cultures, the 52-kDa delta variant preferentially associated with actin and beta 3 tubulin as determined by reciprocal immunoprecipitation. Our findings indicate that persistent activation of delta CaMK-II by laminin stabilizes nascent embryonic axons through its influence on the actin cytoskeleton.
Collapse
Affiliation(s)
- Charles A Easley
- Department of Biology and Biochemistry, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | | | | | | | | | | |
Collapse
|
14
|
Mujica AO, Brauksiepe B, Saaler-Reinhardt S, Reuss S, Schmidt ER. Differential expression pattern of the novel serine/threonine kinase, STK33, in mice and men. FEBS J 2005; 272:4884-98. [PMID: 16176263 DOI: 10.1111/j.1742-4658.2005.04900.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Serine/threonine kinase 33 (STK33/Stk33) is a recently discovered gene whose inferred amino acid sequence translation displays characters typical for a calcium/calmodulin dependent kinase (CAMK). In this study we analysed the STK33/Stk33 RNA and protein distribution and the localization of the protein. The STK33/Stk33 expression pattern resembles those of some related members of the CAMK group. STK33/Stk33 displays a nonubiquitous and, in most tissues, low level of expression. It is highly expressed in testis, particularly in cells from the spermatogenic epithelia. Moreover, significant expression is detected in lung epithelia, alveolar macrophages, horizontal cells in the retina and in embryonic organs such as heart, brain and spinal cord. A possible role of STK33/Stk33 in spermatogenesis and organ ontogenesis is discussed.
Collapse
Affiliation(s)
- Alejandro O Mujica
- Institute of Molecular Genetics, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | |
Collapse
|
15
|
Lantsman K, Tombes RM. CaMK-II oligomerization potential determined using CFP/YFP FRET. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:45-54. [PMID: 16185778 DOI: 10.1016/j.bbamcr.2005.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 11/25/2022]
Abstract
Members of the Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) family are encoded throughout the animal kingdom by up to four genes (alpha, beta, gamma, and delta). Over three dozen known CaMK-II splice variants assemble into approximately 12-subunit oligomers with catalytic domains facing out from a central core. In this study, the catalytic domain of alpha, beta, and delta CaMK-IIs was replaced with cyan (CFP) or yellow fluorescent protein (YFP) for fluorescence resonance energy transfer (FRET) studies. FRET, when normalized to total CFP and YFP, reproducibly yielded values which reflected oligomerization preference, inter-subunit spacing, and localization. FRET occurred when individual CFP and YFP-linked CaMK-IIs were co-expressed, but not when they were expressed separately and then mixed. All hetero-oligomers exhibited FRET values that were averages of their homo-oligomeric parents, indicating no oligomeric preference or restriction. FRET for CaMK-II homo-oligomers was inversely proportional to the variable region length. FPs were monomerized (Leu221 to Lys221) for this study, thus eliminating any potential artifact caused by FP-CaMK-II aggregates. Our results indicate that alpha, beta, and delta CaMK-IIs can freely hetero-oligomerize and that increased variable region lengths place amino termini further apart, potentially influencing the rate of inter-subunit autophosphorylation.
Collapse
Affiliation(s)
- Konstantin Lantsman
- Department of Biology and Biochemistry, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | | |
Collapse
|
16
|
Johansson FK, Göransson H, Westermark B. Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. Oncogene 2005; 24:3896-905. [PMID: 15750623 DOI: 10.1038/sj.onc.1208553] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retroviral tagging previously identified putative cancer-causing genes in a mouse brain tumor model where a recombinant Moloney murine leukemia virus encoding the platelet-derived growth factor B-chain (MMLV/PDGFB) was intracerebrally injected in newborn mice. In the present study, expression analysis using cDNA arrays revealed several similarities of virus-induced mouse gliomas with human brain tumors. Brain tumors with short latency contained on average 8.0 retroviral insertions and resembled human glioblastoma multiforme (GBM) whereas long-latency gliomas were of lower grade, similar to human oligodendroglioma (OD) and had 2.3 insertions per tumor. Several known and novel genes of tumor progression or cell markers were differentially expressed between OD- and GBM-like tumors. Array and quantitative real-time PCR analysis demonstrated elevated expression similar to Pdgfralpha of retrovirally tagged genes Abhd2, Ddr1, Fos, Ng2, Ppfibp1, Rad51b and Sulf2 in both glioma types compared to neonatal and adult normal brain. The retrovirally tagged genes Plekhb1, Prex1, Prkg2, Sox10 and 1200004M23Rik were upregulated in the tumors but had a different expression profile than Pdgfralpha whereas Rap1gap, Gli1, Neurl and Camk2b were downregulated in the tumors. The present study accentuates the proposed role of the retrovirally tagged genes in PDGF-driven gliomagenesis and indicates that insertional mutagenesis can promote glioma progression.
Collapse
Affiliation(s)
- Fredrik K Johansson
- The Rudbeck Laboratory, Department of Genetics and Pathology, University Hospital, SE-751 85 Uppsala, Sweden
| | | | | |
Collapse
|
17
|
Cavazzin C, Bonvicini C, Nocera A, Racchi M, Kasahara J, Tardito D, Gennarelli M, Govoni S, Racagni G, Popoli M. Expression and phosphorylation of delta-CaM kinase II in cultured Alzheimer fibroblasts. Neurobiol Aging 2004; 25:1187-96. [PMID: 15312964 DOI: 10.1016/j.neurobiolaging.2003.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 11/25/2003] [Accepted: 12/17/2003] [Indexed: 11/20/2022]
Abstract
Dysregulation of calcium homeostasis is among the major cellular alterations in Alzheimer's disease (AD). We studied Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II), one of the major effectors regulating neuronal responses to changes in calcium fluxes, in cultured skin fibroblasts from subjects with sporadic AD. We found, by using PCR and Western analysis, that human fibroblasts express the delta-isoform of this kinase, and that CaM kinase II is the major Ca(2+)/calmodulin-dependent kinase in these cells. Protein expression level of the kinase was not significantly different in AD fibroblasts. However, the total activity of the kinase (stimulated by Ca(2+)/calmodulin) was significantly reduced in AD cell lines, whereas Ca(2+)-independent activity was significantly enhanced. The percent autonomy of the kinase (%Ca(2+)-independent/Ca(2+)-dependent activity) in AD cell lines was 62.8%, three-fold the corresponding percentage in control fibroblasts. The abnormal calcium-independent activity was not due to enhanced basal autophosphorylation of Thr(287). The observed abnormalities, if present in brain tissue, may be implicated either in dysfunction of neuroplasticity and cognitive functions or in dysregulation of cell cycle.
Collapse
Affiliation(s)
- Chiara Cavazzin
- Center of Neuropharmacology, Department of Pharmacological Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Harvey BP, Banga SS, Ozer HL. Regulation of the Multifunctional Ca2+/Calmodulin-dependent Protein Kinase II by the PP2C Phosphatase PPM1F in Fibroblasts. J Biol Chem 2004; 279:24889-98. [PMID: 15140879 DOI: 10.1074/jbc.m400656200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of the multifunctional calcium/calmodulin dependent protein kinase II (CaMKII) by serine/threonine protein phosphatases has been extensively studied in neuronal cells; however, this regulation has not been investigated previously in fibroblasts. We cloned a cDNA from SV40-transformed human fibroblasts that shares 80% homology to a rat calcium/calmodulin-dependent protein kinase phosphatase that encodes a PPM1F protein. By using extracts from transfected cells, PPM1F, but not a mutant (R326A) in the conserved catalytic domain, was found to dephosphorylate in vitro a peptide corresponding to the auto-inhibitory region of CaMKII. Further analyses demonstrated that PPM1F specifically dephosphorylates the phospho-Thr-286 in autophosphorylated CaMKII substrate and thus deactivates the CaMKII in vitro. Coimmunoprecipitation of CaMKII with PPM1F indicates that the two proteins can interact intracellularly. Binding of PPM1F to CaMKII involves multiple regions and is not dependent on intact phosphatase activity. Furthermore, overexpression of PPM1F in fibroblasts caused a reduction in the CaMKII-specific phosphorylation of the known substrate vimentin(Ser-82) following induction of the endogenous CaM kinase. These results identify PPM1F as a CaM kinase phosphatase within fibroblasts, although it may have additional functions intracellularly since it has been presented elsewhere as POPX2 and hFEM-2. We conclude that PPM1F, possibly together with the other previously described protein phosphatases PP1 and PP2A, can regulate the activity of CaMKII. Moreover, because PPM1F dephosphorylates the critical autophosphorylation site of CaMKII, we propose that this phosphatase plays a key role in the regulation of the kinase intracellularly.
Collapse
Affiliation(s)
- Bohdan P Harvey
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School and UMDNJ-Graduate School of Biomedical Sciences, Newark, New Jersey 07101, USA
| | | | | |
Collapse
|
19
|
Tombes RM, Faison MO, Turbeville JM. Organization and evolution of multifunctional Ca2+/CaM-dependent protein kinase genes. Gene 2003; 322:17-31. [PMID: 14644494 DOI: 10.1016/j.gene.2003.08.023] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The "multi-functional" Ca(2+) and calmodulin-dependent protein kinase, type II (CaMK-II) is an evolutionarily conserved protein. It has been found as a single gene in the horseshoe crab, marine sponge, sea urchin, nematode, and fruit fly, whereas most vertebrates possess four genes (alpha, beta, gamma, and delta). Species from fruit flies to humans encode alternative splice variants which are differentially targeted to phosphorylate diverse downstream targets of Ca(2+) signaling. By comparing known CaMK-II protein and nucleotide sequences, we have now provided evidence for the evolutionary relatedness of CaMK-IIs. Parsimony analyses unambiguously indicate that the four vertebrate CaMK-II genes arose via repeated duplications. Nucleotide phylogenies show consistent but moderate support for the placement of the vertebrate delta CaMK-II as the earliest diverging vertebrate gene. delta CaMK-II is the only gene with both central and C-terminal variable domains and has three to four times more intronic sequence than the other three genes. beta and gamma CaMK-II genes show strong sequence similarity and have comparable exon and intron organization and utilization. alpha CaMK-II is absent from amphibians (Xenopus laevis) and has the most restricted tissue specificity in mammals, whereas beta, gamma, and delta CaMK-IIs are expressed in most tissues. All 38 known mammalian CaMK-II splice variants were compiled with their tissue specificity and exon usage. Some of these variants use alternative 5' and 3' donors within a single exon as well as alternative promoters. These findings serve as an important benchmark for future phylogenetic, developmental, or biochemical studies on this important, conserved, and highly regulated gene family.
Collapse
Affiliation(s)
- Robert M Tombes
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, USA.
| | | | | |
Collapse
|
20
|
Kutcher LW, Beauman SR, Gruenstein EI, Kaetzel MA, Dedman JR. Nuclear CaMKII inhibits neuronal differentiation of PC12 cells without affecting MAPK or CREB activation. Am J Physiol Cell Physiol 2003; 284:C1334-45. [PMID: 12570987 DOI: 10.1152/ajpcell.00510.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+)/calmodulin-regulated protein kinase II (CaMKII) mediates many cellular events. The four CaMKII isoforms have numerous splice variants, three of which contain nuclear localization signals. Little is known about the role of nuclear localized CaMKII in neuronal development. To study this process, PC12 cells were transfected to produce CaMKII targeted to either the cytoplasm or the nucleus and then treated with nerve growth factor (NGF). NGF triggers a signaling cascade (MAPK) that results in the differentiation of PC12 cells into a neuronal phenotype, marked by neurite outgrowth. The present study found that cells expressing nuclear targeted CaMKII failed to grow neurites, whereas cells expressing cytoplasmic CaMKII readily produced neurites. Inhibition of neuronal differentiation by nuclear CaMKII was independent of MAPK signaling, as sustained Erk phosphorylation was not affected. Phosphorylation of CREB was also unaffected. Thus nuclear CaMKII modifies neuronal differentiation by a mechanism independent of MAPK and CREB activation.
Collapse
Affiliation(s)
- Louis W Kutcher
- Department of Molecular Physiology, University of Cincinnati Medical School, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
21
|
Faison MO, Perozzi EF, Caran N, Stewart JK, Tombes RM. Axonal localization of delta Ca2+/calmodulin-dependent protein kinase II in developing P19 neurons. Int J Dev Neurosci 2002; 20:585-92. [PMID: 12526889 DOI: 10.1016/s0736-5748(02)00107-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase, type II (CaMK-II) is an enzyme encoded by four genes (alpha, beta, gamma and delta) and traditionally associated with synaptic function in the adult central nervous system, but also believed to play a role during neuronal development. P19 mouse embryonic cells are a model system for neurogenesis and primarily express isozymes of delta CaMK-II. It is not yet known whether or where delta CaMK-II is expressed in P19 neurons. Using an antibody specific for the delta CaMK-II C-terminal tail, we detected a 20-fold increase in levels of delta CaMK-II along axons after 8 days of development. This coincides with increased mRNA and protein levels of delta(C) CaMK-II, which contains the alternative tail. This follows the initial stages of neurite outgrowth and beta(3) tubulin expression, which occur after 4 days. delta CaMK-II co-localizes with the axonal protein GAP-43, but not the dendritic microtubule-associated protein MAP-2, a known substrate of alpha CaMK-II. Like delta CaMK-II, GAP-43 shows increased expression after 8 days. These findings demonstrate developmental regulation of the alternative C-terminal delta CaMK-II exon and implicate endogenous delta CaMK-II in axonal development in embryonic cells.
Collapse
Affiliation(s)
- M Omar Faison
- Department of Biology, Virginia Commonwealth University, 1000 West Cary Street, Richmond, VA 23284-2012, USA
| | | | | | | | | |
Collapse
|
22
|
Caran N, Johnson LD, Jenkins KJ, Tombes RM. Cytosolic targeting domains of gamma and delta calmodulin-dependent protein kinase II. J Biol Chem 2001; 276:42514-9. [PMID: 11535587 DOI: 10.1074/jbc.m103013200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) isozyme variability is the result of alternative usage of variable domain sequences. Isozyme expression is cell type-specific to transduce the appropriate Ca(2+) signals. We have determined the subcellular targeting domain of delta(E) CaMK-II, an isozyme that induces neurite outgrowth, and of a structurally similar isozyme, gamma(C) CaMK-II, which does not induce neurite outgrowth. delta(E) CaMK-II co-localizes with filamentous actin in the perinuclear region and in cellular extensions. In contrast, gamma(C) CaMK-II is uniformly cytosolic. Constitutively active delta(E) CaMK-II induces F-actin-rich extensions, thereby supporting a functional role for its localization. C-terminal constructs, which lack central variable domain sequences, can oligomerize and localize like full-length delta(E) and gamma(C) CaMK-II. Central variable domains themselves are monomeric and have no targeting capability. The C-terminal 95 residues of delta CaMK-II also has no targeting capability but can efficiently oligomerize. These findings define a targeting domain for gamma and delta CaMK-IIs that is in between the central variable and association domains. This domain is responsible for the subcellular targeting differences between gamma and delta CaMK-IIs.
Collapse
Affiliation(s)
- N Caran
- Department of Biology, Virginia Commonwealth University, Richmond Virginia 23284-2012, USA
| | | | | | | |
Collapse
|
23
|
Hsu LS, Chen GD, Lee LS, Chi CW, Cheng JF, Chen JY. Human Ca2+/calmodulin-dependent protein kinase kinase beta gene encodes multiple isoforms that display distinct kinase activity. J Biol Chem 2001; 276:31113-23. [PMID: 11395482 DOI: 10.1074/jbc.m011720200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(+2)/calmodulin-dependent protein kinases (CaMKs) are activated upon binding of Ca(+2)/calmodulin. To gain maximal activity, CaMK I and CaMK IV can be further phosphorylated by an upstream kinase, CaMK kinase (CaMKK). We previously isolated cDNA clones encoding human CaMKK beta isoforms that are heterogeneous in their 3'-sequences (Hsu, L.-S., Tsou, A.-P., Chi, C.-W., Lee, C.-H., and Chen, J.-Y. (1998) J. Biomed. Sci. 5, 141-149). In the present study, we examined the genomic organization and transcription of the human CaMKK beta gene. The human CaMKK beta locus spans more than 40 kilobase pairs and maps to chromosome 12q24.2. It is organized into 18 exons and 17 introns that are flanked by typical splice donor and acceptor sequences. Two major species of transcripts, namely the beta1 (5.6 kilobase pairs) and beta2 (2.9 kilobase pairs), are generated through differential usage of polyadenylation sites located in the last and penultimate exons. Additional forms of CaMKK beta transcripts were also identified that resulted from alternative splicing of the internal exons 14 and/or 16. These isoforms display differential expression patterns in human tissues and tumor-derived cell lines. They also exhibit a distinct ability to undergo autophosphorylation and to phosphorylate the downstream kinases CaMK I and CaMK IV. The differential expression of CaMKK beta isoforms with distinct activity further suggests the complexity of the regulation of the CaMKK/CaMK cascade and an important role for CaMKK in the action of Ca(+2)-mediated cellular responses.
Collapse
Affiliation(s)
- L S Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Institute of Biomedical Sciences, Academia Sinica, Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Johnson LD, Willoughby CA, Burke SH, Paik DS, Jenkins KJ, Tombes RM. delta Ca(2+)/Calmodulin-dependent protein kinase II isozyme-specific induction of neurite outgrowth in P19 embryonal carcinoma cells. J Neurochem 2000; 75:2380-91. [PMID: 11080189 DOI: 10.1046/j.1471-4159.2000.0752380.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) has been linked to the induction of differentiation in preneuronal cells. In these cells, delta isozymes represent the majority of CaMK-IIs expressed and are activated by differentiation stimuli. To determine whether delta CaMK-IIs are causative or coincident with in vitro differentiation, we overexpressed wild-type, constitutively active, and C-terminal domains of delta and gamma CaMK-II isozymes in mouse P19 and NIH/3T3 cells using high-efficiency transfections. At 1-2 days after transfection, only constitutively active delta CaMK-II isozymes induced branched cellular extensions in both cell types. In P19 cells, retinoic acid induced neurite extensions after 3-4 days; these extensions were coincident with a fourfold increase in endogenous CaMK-II activity. Extensions induced by both retinoic acid and delta CaMK-IIs contained class III beta-tubulin in a discontinuous or beaded pattern. C-terminal CaMK-II constructs disrupted the ability of endogenous CaMK-II to autophosphorylate and blocked retinoic acid-induced differentiation. delta CaMK-II was found along extensions, whereas gamma CaMK-II exhibited a more diffuse, cytosolic localization. These data not only support an extranuclear role for CaMK-II in promoting neurite outgrowth, but also demonstrate CaMK-II isozyme specificity in these early steps of neuronal differentiation.
Collapse
Affiliation(s)
- L D Johnson
- Department of Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23284-2012, USA
| | | | | | | | | | | |
Collapse
|