1
|
Stindlova M, Peroutka V, Jencova V, Havlickova K, Lencova S. Application of MTT assay for probing metabolic activity in bacterial biofilm-forming cells on nanofibrous materials. J Microbiol Methods 2024; 224:107010. [PMID: 39098403 DOI: 10.1016/j.mimet.2024.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The quantification of cellular metabolic activity via MTT assay has become a widespread practice in eukaryotic cell studies and is progressively extending to bacterial cell investigations. This study pioneers the application of MTT assay to evaluate the metabolic activity of biofilm-forming cells within bacterial biofilms on nanofibrous materials. The biofilm formation of Staphylococcus aureus and Escherichia coli on nanomaterials electrospun from polycaprolactone (PCL), polylactic acid (PLA), and polyamide (PA) was examined. Various parameters of the MTT assay were systematically investigated, including (i) the dissolution time of the formed formazan, (ii) the addition of glucose, and (iii) the optimal wavelength for spectrophotometric determination. Based on interim findings, a refined protocol suitable for application to nanofibrous materials was devised. We recommend 2 h of the dissolution, the application of glucose, and spectrophotometric measurement at 595 nm to obtain reliable data. Comparative analysis with the reference CFU counting protocol revealed similar trends for both tested bacteria and all tested nanomaterials. The proposed MTT protocol emerges as a suitable method for assessing the metabolic activity of bacterial biofilms on PCL, PLA, and PA nanofibrous materials.
Collapse
Affiliation(s)
- Marta Stindlova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Vaclav Peroutka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Kristyna Havlickova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Simona Lencova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
2
|
Cunha M, Silva MG, De Marchi L, Morgado RG, Esteves VI, Meucci V, Battaglia F, Soares AM, Pretti C, Freitas R. Toxic effects of a mixture of pharmaceuticals in Mytilus galloprovincialis: The case of 17α-ethinylestradiol and salicylic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121070. [PMID: 36641066 DOI: 10.1016/j.envpol.2023.121070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The impact of pharmaceuticals on marine invertebrates has been a topic of rising concern, with an increasing number of studies regarding the impacts on bivalves. However, very few investigated the toxicity of mixtures of pharmaceuticals. This knowledge gap was investigated in the present study, where the toxicity of 17α-ethinylestradiol (EE2) and salicylic acid (SA) mixture was evaluated. To this end, Mytilus galloprovincialis mussels were chronically subjected to both pharmaceuticals, acting alone and in combination, and the effects at the cellular level were measured. The Independent Action (IA) model was performed aiming to compare obtained with predicted responses. The integrated biomarker response (IBR) index was used to assess the overall biochemical response given by mussels. The results obtained revealed that the most stressful condition was caused by the combined effect of EE2 and SA, with the highest metabolic capacity, antioxidant (catalase activity) and biotransformation (carboxylesterases activity) activation and cellular damage in organisms exposed to the mixture of both drugs in comparison to responses observed when each drug was acting alone. Predicted responses obtained from the IA model indicate that caution should be paid as frequent deviations to observed responses were found. This study highlights the need for future studies considering the mixture of pollutants, mimicking the actual environmental conditions.
Collapse
Affiliation(s)
- Marta Cunha
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mónica G Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), 57128, Livorno, Italy
| | - Rui G Morgado
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Amadeu Mvm Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
Freitas R, Arrigo F, Coppola F, Meucci V, Battaglia F, Soares AMVM, Pretti C, Faggio C. Combined effects of temperature rise and sodium lauryl sulfate in the Mediterranean mussel. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104132. [PMID: 37088267 DOI: 10.1016/j.etap.2023.104132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Personal care products (PCPs) are those compounds used daily (e.g., soaps, shampoos, deodorants, and toothpaste), explaining their frequent detection in aquatic systems. Still, scarce information is available on their effects on inhabiting wildlife. Among the most commonly used PCPs is the surfactant Sodium Lauryl Sulfate (SLS). The present study investigated the influence of temperature (CTL 17 ºC vs 22 ºC) on the effects of SLS (0 mg/L vs 4 mg/L) in the mussel species Mytilus galloprovincialis. Mussels' general health status was investigated, assessing their metabolic and oxidative stress responses. Higher biochemical alterations were observed in SLS-exposed mussels and warming enhanced the impacts, namely in terms of biotransformation capacity and loss of redox homeostasis, which may result in consequences to population maintenance, especially if under additional environmental stressors. These results confirm M. galloprovincialis as an excellent bioindicator of PCPs pollution, and the need to consider actual and predicted climate changes.
Collapse
Affiliation(s)
- Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Federica Arrigo
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Francesca Coppola
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S. Agata-Messina, Italy
| |
Collapse
|
4
|
Efficient ε-poly-L-lysine production by Streptomyces albulus based on a dynamic pH-regulation strategy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Braissant O, Astasov-Frauenhoffer M, Waltimo T, Bonkat G. A Review of Methods to Determine Viability, Vitality, and Metabolic Rates in Microbiology. Front Microbiol 2020; 11:547458. [PMID: 33281753 PMCID: PMC7705206 DOI: 10.3389/fmicb.2020.547458] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Viability and metabolic assays are commonly used as proxies to assess the overall metabolism of microorganisms. The variety of these assays combined with little information provided by some assay kits or online protocols often leads to mistakes or poor interpretation of the results. In addition, the use of some of these assays is restricted to simple systems (mostly pure cultures), and care must be taken in their application to environmental samples. In this review, the necessary data are compiled to understand the reactions or measurements performed in many of the assays commonly used in various aspects of microbiology. Also, their relationships to each other, as metabolism links many of these assays, resulting in correlations between measured values and parameters, are discussed. Finally, the limitations of these assays are discussed.
Collapse
Affiliation(s)
- Olivier Braissant
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland
| | | | - Tuomas Waltimo
- Department Research, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
6
|
Baños I, Montero MF, Benavides M, Arístegui J. INT Toxicity over Natural Bacterial Assemblages from Surface Oligotrophic Waters: Implications for the Assessment of Respiratory Activity. MICROBIAL ECOLOGY 2020; 80:237-242. [PMID: 31915852 DOI: 10.1007/s00248-019-01479-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Plankton community respiration (R) is a major component of the carbon flux in aquatic ecosystems. However, current methods to measure actual respiration from oxygen consumption at relevant spatial scales are not sensitive enough in oligotrophic environments where respiration rates are very low. To overcome this drawback, more sensitive indirect enzymatic approaches are commonly used as R proxies. The in vivo electron transport system (ETSvivo) assay, which measures the reduction of (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride salt, INT) to INT-formazan in the presence of natural substrate levels, was recently proposed as an indirect reliable estimation of R for natural plankton communities. However, under in vivo conditions, formazan salts could be toxic to the cells. Here, we test the toxicity of 0.2 mM of final INT concentration, widely used for ETSvivo assays, on natural bacterial assemblages collected in coastal and oceanic waters off Gran Canaria (Canary Islands, subtropical North Atlantic), in eight independent experiments. After 0.5 h of incubation, a significant but variable decline in cell viability (14-49%) was observed in all samples inoculated with INT. Moreover, INT also inhibited leucine uptake in less than 90 min of incubation. In the light of these results, we argue that enzymatic respiratory rates obtained with the ETSvivo method need to be interpreted with caution to derive R in oceanic regions where bacteria largely contribute to community respiration. Moreover, the variable toxicity on bacterial assemblages observed in our experiments questions the use of a single R/ETSvivo relationship as a universal proxy for regional studies.
Collapse
Affiliation(s)
- Isabel Baños
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - María F Montero
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mar Benavides
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288, Marseille, France
| | - Javier Arístegui
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
7
|
Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol 2020; 18:241-256. [PMID: 32055027 DOI: 10.1038/s41579-020-0323-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
The function of cells in their native habitat often cannot be reliably predicted from genomic data or from physiology studies of isolates. Traditional experimental approaches to study the function of taxonomically and metabolically diverse microbiomes are limited by their destructive nature, low spatial resolution or low throughput. Recently developed technologies can offer new insights into cellular function in natural and human-made systems and how microorganisms interact with and shape the environments that they inhabit. In this Review, we provide an overview of these next-generation physiology approaches and discuss how the non-destructive analysis of cellular phenotypes, in combination with the separation of the target cells for downstream analyses, provide powerful new, complementary ways to study microbiome function. We anticipate that the widespread application of next-generation physiology approaches will transform the field of microbial ecology and dramatically improve our understanding of how microorganisms function in their native environment.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| | - Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Rachel L Spietz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| |
Collapse
|
8
|
García-Martín EE, Seguro I, Robinson C. INT reduction is a valid proxy for eukaryotic plankton respiration despite the inherent toxicity of INT and differences in cell wall structure. PLoS One 2019; 14:e0225954. [PMID: 31821369 PMCID: PMC6903736 DOI: 10.1371/journal.pone.0225954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/16/2019] [Indexed: 11/23/2022] Open
Abstract
The reduction of 2-para (iodophenyl)-3(nitrophenyl)-5(phenyl) tetrazolium chloride (INT) is increasingly being used as an indirect method to measure plankton respiration. Its greater sensitivity and shorter incubation time compared to the standard method of measuring the decrease in dissolved oxygen concentration, allows the determination of total and size-fractionated plankton respiration with higher precision and temporal resolution. However, there are still concerns as to the method’s applicability due to the toxicity of INT and the potential differential effect of plankton cell wall composition on the diffusion of INT into the cell, and therefore on the rate of INT reduction. Working with cultures of 5 marine plankton (Thalassiosira pseudonana CCMP1080/5, Emiliania huxleyi RCC1217, Pleurochrysis carterae PLY-406, Scrippsiella sp. RCC1720 and Oxyrrhis marina CCMP1133/5) which have different cell wall compositions (silica frustule, presence/absence of calcite and cellulose plates), we demonstrate that INT does not have a toxic effect on oxygen consumption at short incubation times. There was no difference in the oxygen consumption of a culture to which INT had been added and that of a replicate culture without INT, for periods of time ranging from 1 to 7 hours. For four of the cultures (T. pseudonana CCMP1080/5, P. carterae PLY-406, E. huxleyi RCC1217, and O. marina CCMP1133/5) the log of the rates of dissolved oxygen consumption were linearly related to the log of the rates of INT reduction, and there was no significant difference between the regression lines for each culture (ANCOVA test, F = 1.696, df = 3, p = 0.18). Thus, INT reduction is not affected by the structure of the plankton cell wall and a single INT reduction to oxygen consumption conversion equation is appropriate for this range of eukaryotic plankton. These results further support the use of the INT technique as a valid proxy for marine plankton respiration.
Collapse
Affiliation(s)
- E Elena García-Martín
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Isabel Seguro
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Carol Robinson
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
9
|
16S rRNA/rRNA Gene Ratios and Cell Activity Staining Reveal Consistent Patterns of Microbial Activity in Plant-Associated Soil. mSystems 2019; 4:mSystems00003-19. [PMID: 30944883 PMCID: PMC6445865 DOI: 10.1128/msystems.00003-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/06/2019] [Indexed: 11/20/2022] Open
Abstract
Although the majority of microorganisms in natural ecosystems are dormant, relatively little is known about the dynamics of the active and dormant microbial pools through both space and time. The limited knowledge of microbial activity-dormancy dynamics is in part due to uncertainty in the methods currently used to quantify active taxa. Here, we directly compared two of the most common methods (16S ratios and active cell staining) for estimating microbial activity in plant-associated soil and found that they were largely in agreement in the overarching patterns. Our results suggest that 16S ratios and active cell staining provide complementary information for measuring and interpreting microbial activity-dormancy dynamics in soils. They also support the idea that 16S rRNA/rRNA gene ratios have comparative value and offer a high-throughput, sequencing-based option for understanding relative changes in microbiome activity, as long as this method is coupled with quantification of community size. At any given time, only a subset of microbial community members are active in their environment. The others are in a state of dormancy, with strongly reduced metabolic rates. It is of interest to distinguish active and inactive microbial cells and taxa to understand their functional contributions to ecosystem processes and to understand shifts in microbial activity in response to change. Of the methods used to assess microbial activity-dormancy dynamics, 16S rRNA/rRNA gene amplicons (16S ratios) and active cell staining with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) are two of the most common, yet each method has limitations. Given that in situ activity-dormancy dynamics are proxied only by laboratory methods, further study is needed to assess the level of agreement and potential complementarity of these methods. We conducted two experiments investigating microbial activity in plant-associated soils. First, we treated corn field soil with phytohormones to simulate plant soil stress signaling, and second, we used rhizosphere soil from common bean plants exposed to drought or nutrient enrichment. Overall, the 16S ratio and CTC methods exhibited similar patterns of relative activity across treatments when treatment effects were large, and the instances in which they differed could be attributed to changes in community size (e.g., cell death or growth). Therefore, regardless of the method used to assess activity, we recommend quantifying community size to inform ecological interpretation. Our results suggest that the 16S ratio and CTC methods report comparable patterns of activity that can be applied to observe ecological dynamics over time, space, or experimental treatment. IMPORTANCE Although the majority of microorganisms in natural ecosystems are dormant, relatively little is known about the dynamics of the active and dormant microbial pools through both space and time. The limited knowledge of microbial activity-dormancy dynamics is in part due to uncertainty in the methods currently used to quantify active taxa. Here, we directly compared two of the most common methods (16S ratios and active cell staining) for estimating microbial activity in plant-associated soil and found that they were largely in agreement in the overarching patterns. Our results suggest that 16S ratios and active cell staining provide complementary information for measuring and interpreting microbial activity-dormancy dynamics in soils. They also support the idea that 16S rRNA/rRNA gene ratios have comparative value and offer a high-throughput, sequencing-based option for understanding relative changes in microbiome activity, as long as this method is coupled with quantification of community size.
Collapse
|
10
|
Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, Finland. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crystalline bedrock has been chosen for deep geologic long-term storage of used nuclear fuel in Finland. The risks generated by the deep subsurface microbial communities in these disposal sites need to be well characterised in advance to ensure safety. Deep subsurface microbial communities in a steady state are unlikely to contribute to known risk factors, such as corrosion or gas production. However, the construction of the geological final-disposal facility, bedrock disturbances, and hydraulic gradients cause changes that affect the microbial steady-state. To study the induced metabolism of deep microbial communities in changing environmental conditions, the activating effect of different electron donors and acceptors were measured with redox sensing fluorescent dyes (5-Cyano-2,3-ditolyl tetrazolium chloride, CTC and RedoxSensor™ Green, RSG). Fluids originating from two different fracture zones of the Finnish disposal site in Olkiluoto were studied. These fracture fluids were very dissimilar both chemically and in terms of bacterial and archaeal diversity. However, the microbial communities of both fracture fluids were activated, especially with acetate, which indicates the important role of acetate as a preferred electron donor for Olkiluoto deep subsurface communities.
Collapse
|
11
|
Lang E, Guyot S, Peltier C, Alvarez-Martin P, Perrier-Cornet JM, Gervais P. Cellular Injuries in Cronobacter sakazakii CIP 103183T and Salmonella enterica Exposed to Drying and Subsequent Heat Treatment in Milk Powder. Front Microbiol 2018; 9:475. [PMID: 29593704 PMCID: PMC5859370 DOI: 10.3389/fmicb.2018.00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/28/2018] [Indexed: 11/30/2022] Open
Abstract
Because of the ability of foodborne pathogens to survive in low-moisture foods, their decontamination is an important issue in food protection. This study aimed to clarify some of the cellular mechanisms involved in inactivation of foodborne pathogens after drying and subsequent heating. Individual strains of Salmonella Typhimurium, Salmonella Senftenberg, and Cronobacter sakazakii were mixed into whole milk powder and dried to different water activity levels (0.25 and 0.58); the number of surviving cells was determined after drying and subsequent thermal treatments in closed vessels at 90 and 100°C, for 30 and 120 s. For each condition, the percentage of unculturable cells was estimated and, in parallel, membrane permeability and respiratory activity were estimated by flow cytometry using fluorescent probes. After drying, it was clearly observable that the percentage of unculturable cells was correlated with the percentage of permeabilized cells (responsible for 20–40% of the total inactivated bacteria after drying), and to a lesser degree with the percentage of cells presenting with loss of respiratory activity. In contrast, the percentages of unculturable cells observed after heat treatment were strongly correlated with the loss of respiratory activity and weakly with membrane permeability (for 70–80% of the total inactivated bacteria after heat treatment). We conclude that cell inactivation during drying is closely linked to membrane permeabilization and that heat treatment of dried cells affects principally their respiratory activity. These results legitimize the use of time–temperature scales and allow better understanding of the cellular mechanisms of bacterial death during drying and subsequent heat treatment. These results may also allow better optimization of the decontamination process to ensure food safety by targeting the most deleterious conditions for bacterial cells without denaturing the food product.
Collapse
Affiliation(s)
- Emilie Lang
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France.,Novolyze, Daix, France
| | - Stéphane Guyot
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | - Caroline Peltier
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | | | - Jean-Marie Perrier-Cornet
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | - Patrick Gervais
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| |
Collapse
|
12
|
Herten M, Bisdas T, Knaack D, Becker K, Osada N, Torsello GB, Idelevich EA. Rapid in Vitro Quantification of S. aureus Biofilms on Vascular Graft Surfaces. Front Microbiol 2017; 8:2333. [PMID: 29259580 PMCID: PMC5723318 DOI: 10.3389/fmicb.2017.02333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
Objectives: Increasing resistance of microorganisms and particularly tolerance of bacterial biofilms against antibiotics require the need for alternative antimicrobial substances. S. aureus is the most frequent pathogen causing vascular graft infections. In order to evaluate the antimicrobial efficacy, quantification of the bacterial biofilms is necessary. Aim of the present study was the validation of an in vitro model for quantification of bacterial biofilm on vascular graft surfaces using three different assays. Methods: Standardized discs of vascular graft material (Dacron or PTFE) or polystyrene (PS) as control surface with 0.25 cm2 surface area were inoculated with 10-3 diluted overnight culture of three biofilm-producing S. aureus isolates (BEB-029, BEB-295, SH1000) in 96-well PS culture plates. After incubation for 4 and 18 h, the biofilm was determined by three different methods: (a) mitochondrial ATP concentration as measure of bacterial viability (ATP), (b) crystal violet staining (Cry), and (c) vital cell count by calculation of colony-forming units (CFU). The experiments were performed three times. Quadruplicates were used for each isolate, time point, and method. In parallel, bacterial biofilms were documented via scanning electron microscopy. Results: All three methods could quantify biofilms on the PS control. Time needed was 0:40, 13:10, and 14:30 h for ATP, Cry, and CFU, respectively. The Cry assay could not be used for vascular graft surfaces due to high unspecific background staining. However, ATP assay and CFU count showed comparable results on vascular graft material and control. The correlations between ATP and CFU assay differed according to the surface and incubation time and were significant only after 4 h on Dacron (BEB-029, p = 0.013) and on PS (BEB-029, p < 0.001). Between ATP and Cry assay on PS, a significant correlation could be detected after 4 h (BEB-295, p = 0.027) and after 18 h (all three strains, p < 0.026). The reproducibility of the ATP-assay presented as inter-assay-variance of 2.1 and as intra-assay variance of 8.1 on polystyrene. Conclusion: The in-vitro model reproducibly quantifies biofilm on standardized vascular graft surfaces with ATP assay as detection system. The ATP assay allows accelerated microbial quantification, however the correlation with the CFU assay may be strain- and surface-dependent.
Collapse
Affiliation(s)
- Monika Herten
- Clinic for Vascular and Endovascular Surgery, University Hospital Münster, Münster, Germany
| | - Theodosios Bisdas
- Department of Vascular Surgery, St. Franziskus-Hospital Münster, Münster, Germany
| | - Dennis Knaack
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Nani Osada
- Clinic for Vascular and Endovascular Surgery, University Hospital Münster, Münster, Germany
| | - Giovanni B Torsello
- Clinic for Vascular and Endovascular Surgery, University Hospital Münster, Münster, Germany.,Department of Vascular Surgery, St. Franziskus-Hospital Münster, Münster, Germany
| | - Evgeny A Idelevich
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
13
|
Abstract
The largest known bacteria, Thiomargarita spp., have yet to be isolated in pure culture, but their large size allows for individual cells to be monitored in time course experiments or to be individually sorted for omics-based investigations. Here we investigated the metabolism of individual cells of Thiomargarita spp. by using a novel application of a tetrazolium-based dye that measures oxidoreductase activity. When coupled with microscopy, staining of the cells with a tetrazolium-formazan dye allows metabolic responses in Thiomargarita spp. to be to be tracked in the absence of observable cell division. Additionally, the metabolic activity of Thiomargarita sp. cells can be differentiated from the metabolism of other microbes in specimens that contain adherent bacteria. The results of our redox dye-based assay suggest that Thiomargarita is the most metabolically versatile under anoxic conditions, where it appears to express cellular oxidoreductase activity in response to the electron donors succinate, acetate, citrate, formate, thiosulfate, H2, and H2S. Under hypoxic conditions, formazan staining results suggest the metabolism of succinate and likely acetate, citrate, and H2S. Cells incubated under oxic conditions showed the weakest formazan staining response, and then only to H2S, citrate, and perhaps succinate. These results provide experimental validation of recent genomic studies of Candidatus Thiomargarita nelsonii that suggest metabolic plasticity and mixotrophic metabolism. The cellular oxidoreductase response of bacteria attached to the exterior of Thiomargarita also supports the possibility of trophic interactions between these largest of known bacteria and attached epibionts. The metabolic potential of many microorganisms that cannot be grown in the laboratory is known only from genomic data. Genomes of Thiomargarita spp. suggest that these largest of known bacteria are mixotrophs, combining lithotrophic metabolism with organic carbon degradation. Our use of a redox-sensitive tetrazolium dye to query the metabolism of these bacteria provides an independent line of evidence that corroborates the apparent metabolic plasticity of Thiomargarita observed in recently produced genomes. Finding new cultivation-independent means of testing genomic results is critical to testing genome-derived hypotheses on the metabolic potentials of uncultivated microorganisms.
Collapse
|
14
|
Hice SA, Santoscoy MC, Soupir ML, Cademartiri R. Distinguishing between metabolically active and dormant bacteria on paper. Appl Microbiol Biotechnol 2017; 102:367-375. [DOI: 10.1007/s00253-017-8604-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
|
15
|
Maiti S, Sahoo S, Roy S. Production and Partial Purification of Hyperthermostable Alkaline Amylase in a Newly Isolated Bacillus cereus (sm-sr14) from Hot-spring Water. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jm.2017.187.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Albu MG, Vladkova TG, Ivanova IA, Shalaby ASA, Moskova-Doumanova VS, Staneva AD, Dimitriev YB, Kostadinova AS, Topouzova-Hristova TI. Preparation and Biological Activity of New Collagen Composites, Part I: Collagen/Zinc Titanate Nanocomposites. Appl Biochem Biotechnol 2016; 180:177-93. [PMID: 27138724 DOI: 10.1007/s12010-016-2092-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
The aim of this investigation was to develop new antimicrobial collagen/zinc titanate (ZnTiO3) biomaterials using a sol-gel cryogenic draying technology in keeping the native collagen activity. Broad-spectrum antimicrobial activity was demonstrated against Firmicutes (Staphylococcus epidermidis, Bacillus cereus, and Candida lusitaniae) and Gracilicutes (Escherichia coli, Salmonella enterica, and Pseudomonas putida) microorganisms. The antimicrobial activity as well as the cytotoxicity were specific for the different test microorganisms (Gram-positive and Gram-negative bacteria and fungi) and model eukaryotic cells (osteosarcoma, fibroblast, and keratinocyte cells), respectively, and both were depending on the ZnTiO3 concentration. Three mechanisms of the antimicrobial action were supposed, including (i) mechanical demolition of the cell wall and membrane by the crystal nanoparticles of the ZnTiO3 entrapped in the collagen matrix, (ii) chelation of its metal ions, and (iii) formation of free oxygen radicals due to the interaction between the microbial cells and antimicrobial agent. It was concluded that the optimal balance between antimicrobial activity and cytotoxicity could be achieved by a variation of the ZnTiO3 concentration. The antifungal and broad-spectrum antibacterial activity of the studied collagen/ZnTiO3 nanocomposites, combined with a low cytotoxicity, makes them a promising anti-infection biomaterial.
Collapse
Affiliation(s)
- Madalina G Albu
- Division Leather and Footwear Research Institute (ICPI), INCDTP, 93, "Ion Minulesku" Str, Bucharest, Romania
| | - Todorka G Vladkova
- University of Chemical Technology and Metallurgy, 8 "Kl. Ohridski" Blvd, 1756, Sofia, Bulgaria.
| | - Iliana A Ivanova
- Biological Faculty, Sofia University "St Kliment Ohridski", 8 "Dragan Tsankov" Str, 1164, Sofia, Bulgaria
| | - Ahmed S A Shalaby
- University of Chemical Technology and Metallurgy, 8 "Kl. Ohridski" Blvd, 1756, Sofia, Bulgaria
| | | | - Anna D Staneva
- University of Chemical Technology and Metallurgy, 8 "Kl. Ohridski" Blvd, 1756, Sofia, Bulgaria
| | - Yanko B Dimitriev
- University of Chemical Technology and Metallurgy, 8 "Kl. Ohridski" Blvd, 1756, Sofia, Bulgaria
| | - Anelya S Kostadinova
- Institute of Biophysics and Biomedical Investigations, BAS, "Acd. G. Bonchev" Str. Bl.21, 113, Sofia, Bulgaria
| | - Tanya I Topouzova-Hristova
- Biological Faculty, Sofia University "St Kliment Ohridski", 8 "Dragan Tsankov" Str, 1164, Sofia, Bulgaria
| |
Collapse
|
17
|
Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system. Appl Microbiol Biotechnol 2016; 100:4135-45. [PMID: 26923144 PMCID: PMC4824840 DOI: 10.1007/s00253-016-7396-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 01/28/2023]
Abstract
Various methods have been reported to quantify total biofilm or different components of biofilm; however, these methods are often confusedly used, leading to discrepancies and misleading results. In this study, different methods for quantification of biofilm, including those for total biomass, total amount of bacterial cells, viable cell number, and amount of extracellular polymeric substances, were systematically compared in microtiter plates. To evaluate which method is suitable for assessment of biofilm removal and for bacterial killing, biofilm samples were treated with various cleaners possessing removing and/or killing capacities. It was found that most of the methods tested in this study in general exhibited high reproducibility and repeatability. Crystal Violet staining was a simple but reliable method for total biomass quantification. Total bacteria cell numbers could be reliably quantified by the fluorescent DNA-binding dye Acridine Orange. Viable cells could be quantified by either an ATP-based assay or a proliferation assay. Both of these viability methods showed a broad detection range and led to precise measurement. For quantification of proteins in the biofilm, staining with fluorescein isothiocyanate was most suitable. Furthermore, it was revealed that a combination of different methods is required to determine if a cleaner kills or removes biofilm.
Collapse
|
18
|
Zeng X, Chen XS, Gao Y, Ren XD, Wang L, Mao ZG. Continuously high reactive oxygen species generation decreased the specific ϵ-poly- l -lysine formation rate in fed-batch fermentation using glucose and glycerol as a mixed carbon source. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Villegas-Mendoza J, Cajal-Medrano R, Maske H. INT (2-(4-Iodophenyl)-3-(4-Nitrophenyl)-5-(Phenyl) Tetrazolium Chloride) Is Toxic to Prokaryote Cells Precluding Its Use with Whole Cells as a Proxy for In Vivo Respiration. MICROBIAL ECOLOGY 2015; 70:1004-1011. [PMID: 25991603 DOI: 10.1007/s00248-015-0626-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
Prokaryote respiration is expected to be responsible for more than half of the community respiration in the ocean, but the lack of a practical method to measure the rate of prokaryote respiration in the open ocean resulted in very few published data leaving the role of organotrophic prokaryotes open to debate. Oxygen consumption rates of oceanic prokaryotes measured with current methods may be biased due to pre-incubation size filtration and long incubation times both of which can change the physiological and taxonomic profile of the sample during the incubation period. In vivo INT reduction has been used in terrestrial samples to estimate respiration rates, and recently, the method was introduced and applied in aquatic ecology. We measured oxygen consumption rates and in vivo INT reduction to formazan in cultures of marine bacterioplankton communities, Vibrio harveyi and the eukaryote Isochrysis galbana. For prokaryotes, we observed a decrease in oxygen consumption rates with increasing INT concentrations between 0.05 and 1 mM. Time series after 0.5 mM INT addition to prokaryote samples showed a burst of in vivo INT reduction to formazan and a rapid decline of oxygen consumption rates to zero within less than an hour. Our data for non-axenic eukaryote cultures suggest poisoning of the eukaryote. Prokaryotes are clearly poisoned by INT on time scales of less than 1 h, invalidating the interpretation of in vivo INT reduction to formazan as a proxy for oxygen consumption rates.
Collapse
Affiliation(s)
- Josué Villegas-Mendoza
- Facultad de Ciencias Marinas, UABC, Carretera Tijuana-Ensenada km 106, Ensenada, Baja California, México, CP 22860.
| | - Ramón Cajal-Medrano
- UABC, Carretera Tijuana-Ensenada km 106, Ensenada, Baja California, México, CP 22860
| | - Helmut Maske
- CICESE, Carretera Tijuana-Ensenada No. 3918, Ensenada, Baja California, México, CP 22860
| |
Collapse
|
20
|
Tashyreva D, Elster J, Billi D. A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria) employing fluorescent dyes. PLoS One 2013; 8:e55283. [PMID: 23437052 PMCID: PMC3577823 DOI: 10.1371/journal.pone.0055283] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 12/21/2012] [Indexed: 12/04/2022] Open
Abstract
Bacterial populations display high heterogeneity in viability and physiological activity at the single-cell level, especially under stressful conditions. We demonstrate a novel staining protocol for multiparameter assessment of individual cells in physiologically heterogeneous populations of cyanobacteria. The protocol employs fluorescent probes, i.e., redox dye 5-cyano-2,3-ditolyl tetrazolium chloride, ‘dead cell’ nucleic acid stain SYTOX Green, and DNA-specific fluorochrome 4′,6-diamidino-2-phenylindole, combined with microscopy image analysis. Our method allows simultaneous estimates of cellular respiration activity, membrane and nucleoid integrity, and allows the detection of photosynthetic pigments fluorescence along with morphological observations. The staining protocol has been adjusted for, both, laboratory and natural populations of the genus Phormidium (Oscillatoriales), and tested on 4 field-collected samples and 12 laboratory strains of cyanobacteria. Based on the mentioned cellular functions we suggest classification of cells in cyanobacterial populations into four categories: (i) active and intact; (ii) injured but active; (iii) metabolically inactive but intact; (iv) inactive and injured, or dead.
Collapse
Affiliation(s)
- Daria Tashyreva
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | | | | |
Collapse
|
21
|
Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 2011; 55:1053-62. [PMID: 21199923 DOI: 10.1128/aac.01002-10] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.
Collapse
|
22
|
Wadhawan T, McEvoy J, Prüβ BM, Khan E. Assessing tetrazolium and ATP assays for rapid in situ viability quantification of bacterial cells entrapped in hydrogel beads. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Pérez LM, Alvarez BL, Codony F, Fittipaldi M, Adrados B, Peñuela G, Morató J. A new microtitre plate screening method for evaluating the viability of aerobic respiring bacteria in high surface biofilms. Lett Appl Microbiol 2010; 51:331-7. [PMID: 20681967 DOI: 10.1111/j.1472-765x.2010.02902.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS It is difficult to determine the effects of bactericidal compounds against bacteria in a biofilm because classical procedures for determining cell viability require several working days, multiple complicated steps and are frequently only applicable to cells in suspension. We attempt to develop a compact, inexpensive and versatile system to measure directly the extent of biofilm formation from water systems and to determine the viability of respiring bacteria in high surface biofilms. METHODS AND RESULTS It has been reported that the reduction of tetrazolium sodium salts, such as XTT (sodium 3,3'-[1-[(phenylamino)carbonyl]-3,4-tetrazolium]Bis(4-methoxy)-6-nitro)benzene sulfonic acid hydrate), during active bacterial metabolism can be incorporated into a colorimetric method for quantifying cell viability. XTT is reduced to a soluble formazan compound during bacterial aerobic metabolism such that the amount of formazan generated is proportional to the bacterial biomass. CONCLUSIONS We show here, for the first time, that this colorimetric approach can be used to determine the metabolic activity of adherent aerobic bacteria in a biofilm as a measure of cell viability. This technique has been used to estimate viability and proliferation of bacteria in suspension, but this is the first application to microbial communities in a real undisturbed biofilm. SIGNIFICANCE AND IMPACT OF THE STUDY This simple new system can be used to evaluate the complex biofilm community without separating the bacteria from their support. Thus, the results obtained by this practice may be more representative of the circumstances in a natural system, opening the possibility to multiple potential applications.
Collapse
Affiliation(s)
- L M Pérez
- Laboratori de Microbiologia Sanitaria i Mediambiental (MSM-Lab) & Aquasost - UNESCO Chair in Sustainability, Universitat Politècnica de Catalunya (UPC), Terrassa, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Fujii Y, Hiraishi A. Combined Use of Cyanoditolyl Tetrazolium Staining and Flow Cytometry for Detection of Metabolically Active Bacteria in a Fed-batch Composting Process. Microbes Environ 2009; 24:57-63. [DOI: 10.1264/jsme2.me08553] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yasuyuki Fujii
- Department of Ecological Engineering, Toyohashi University of Technology
| | - Akira Hiraishi
- Department of Ecological Engineering, Toyohashi University of Technology
| |
Collapse
|
25
|
Cao‐Hoang L, Marechal P, Lê‐Thanh M, Gervais P, Waché Y. Fluorescent probes to evaluate the physiological state and activity of microbial biocatalysts: A guide for prokaryotic and eukaryotic investigation. Biotechnol J 2008; 3:890-903. [DOI: 10.1002/biot.200700206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Ros M, Goberna M, Pascual JA, Klammer S, Insam H. 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J Microbiol Methods 2008; 72:221-6. [DOI: 10.1016/j.mimet.2008.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 11/27/2022]
|
27
|
Warkentin M, Freese HM, Karsten U, Schumann R. New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots. Appl Environ Microbiol 2007; 73:6722-9. [PMID: 17766446 PMCID: PMC2074954 DOI: 10.1128/aem.00405-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new method of respiration rate measurement based on oxygen luminescence quenching in sensor spots was evaluated for the first time for aquatic bacterial communities. The commonly used Winkler and Clark electrode methods to quantify oxygen concentration both require long incubation times, and the latter additionally causes signal drift due to oxygen consumption at the cathode. The sensor spots proved to be advantageous over those methods in terms of precise and quick oxygen measurements in natural bacterial communities, guaranteeing a respiration rate estimate during a time interval short enough to neglect variations in organism composition, abundance, and activity. Furthermore, no signal drift occurs during measurements, and respiration rate measurements are reliable even at low temperatures and low oxygen consumption rates. Both a natural bacterioplankton sample and a bacterial isolate from a eutrophic river were evaluated in order to optimize the new method for aquatic microorganisms. A minimum abundance of 2.2 x 10(6) respiring cells ml(-1) of a bacterial isolate was sufficient to obtain a distinct oxygen depletion signal within 20 min at 20 degrees C with the new oxygen sensor spot method. Thus, a culture of a bacterial isolate from a eutrophic river (OW 144; 20 x 10(6) respiring bacteria ml(-1)) decreased the oxygen saturation about 8% within 20 min. The natural bacterioplankton sample respired 2.8% from initially 94% oxygen-saturated water in 30 min. During the growth season in 2005, the planktonic community of a eutrophic river consumed between 0.7 and 15.6 micromol O(2) liter(-1) h(-1). The contribution of bacterial respiration to the total plankton community oxygen consumption varied seasonally between 11 and 100%.
Collapse
Affiliation(s)
- Mareike Warkentin
- Institute of Biological Sciences, Applied Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany.
| | | | | | | |
Collapse
|
28
|
Daims H, Wagner M. Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis. Appl Microbiol Biotechnol 2007; 75:237-48. [PMID: 17333172 DOI: 10.1007/s00253-007-0886-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 12/22/2006] [Accepted: 02/09/2007] [Indexed: 11/28/2022]
Abstract
Traditional cultivation-based methods to quantify microbial abundance are not suitable for analyses of microbial communities in environmental or medical samples, which consist mainly of uncultured microorganisms. Recently, different cultivation-independent quantification approaches have been developed to overcome this problem. Some of these techniques use specific fluorescence markers, for example ribosomal ribonucleic acid targeted oligonucleotide probes, to label the respective target organisms. Subsequently, the detected cells are visualized by fluorescence microscopy and are quantified by direct visual cell counting or by digital image analysis. This article provides an overview of these methods and some of their applications with emphasis on (semi-)automated image analysis solutions.
Collapse
Affiliation(s)
- Holger Daims
- Department für Mikrobielle Okologie, Universität Wien, Althanstrasse 14, 1090, Vienna, Austria.
| | | |
Collapse
|
29
|
Rulianti AD, Hasegawa M, Ikunaga Y, Sato Y, Ohta H. Isolation of Octylphenol Polyethoxylate-Degrading Soil Bacteria: a Long-Term Soil Column Study. Microbes Environ 2007. [DOI: 10.1264/jsme2.22.391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anne D. Rulianti
- Ibaraki University College of Agriculture
- Bogor City Local Government
| | | | | | | | | |
Collapse
|
30
|
Al-Bakri AG, Afifi FU. Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. J Microbiol Methods 2007; 68:19-25. [PMID: 16831479 DOI: 10.1016/j.mimet.2006.05.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 05/23/2006] [Accepted: 05/31/2006] [Indexed: 11/24/2022]
Abstract
The aim of this study was to screen and evaluate the antimicrobial activity of indigenous Jordanian plant extracts, dissolved in dimethylsulfoxide, using the rapid XTT assay and viable count methods. XTT rapid assay was used for the initial screening of antimicrobial activity for the plant extracts. Antimicrobial activity of potentially active plant extracts was further assessed using the "viable plate count" method. Four degrees of antimicrobial activity (high, moderate, weak and inactive) against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively, were recorded. The plant extracts of Hypericum triquetrifolium, Ballota undulata, Ruta chalepensis, Ononis natrix, Paronychia argentea and Marrubium vulgare had shown promising antimicrobial activity. This study showed that while both XTT and viable count methods are comparable when estimating the overall antimicrobial activity of experimental substances, there is no strong linear correlation between the two methods.
Collapse
Affiliation(s)
- Amal G Al-Bakri
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Jordan, Amman-11942, Jordan.
| | | |
Collapse
|
31
|
Tizzard AC, Bergsma JH, Lloyd-Jones G. A resazurin-based biosensor for organic pollutants. Biosens Bioelectron 2006; 22:759-63. [PMID: 16487702 DOI: 10.1016/j.bios.2006.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 12/20/2005] [Accepted: 01/09/2006] [Indexed: 12/01/2022]
Abstract
A new rapid biosensor method employing the dye resazurin as an indicator of bacterial respiration has been developed to provide a rapid, facile and specific biosensor for environmental contaminants that does not rely on genetic modification techniques, is suitable for a high-throughput multiwell format, and is ideally suited to resource-constrained environmental monitoring situations. This whole-cell biosensor has been applied to the test analyte toluene using natural toluene-degrading bacteria as the biological component and is competitive with more complex recombinant approaches. The redox-driven biosensor is dependent on the catabolism of a specific compound, concomitantly reducing the redox indicator resazurin to provide the analytical signal in a whole-cell biosensor assay.
Collapse
Affiliation(s)
- Aynsley C Tizzard
- Lincoln Ventures, Lincoln University, PO Box 133, Lincoln 8152, New Zealand
| | | | | |
Collapse
|
32
|
Matsuda K, Tsuji H, Asahara T, Kado Y, Nomoto K. Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol 2006; 73:32-9. [PMID: 17071791 PMCID: PMC1797142 DOI: 10.1128/aem.01224-06] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A sensitive rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) method was developed for exact and sensitive enumeration of subdominant bacterial populations. Using group- or species-specific primers for 16S or 23S rRNA, analytical curves were constructed for Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Clostridium perfringens, and Pseudomonas aeruginosa, and the threshold cycle value was found to be linear up to an RNA amount of 10(-3) cell per RT-PCR. The number of bacteria in culture was determined by RT-qPCR, and the results correlated well with the CFU count over the range from 10(0) to 10(5) CFU. The bacterial counts obtained by RT-qPCR were the same as the CFU counts irrespective of the growth phase in vitro, except for C. perfringens during starvation periods; the viable cell counts obtained by using a combination of 4',6-diamidino-2-phenylindole (DAPI) staining and SYTO9-propidium iodide double staining were in good agreement with the RT-qPCR counts rather than with the CFU counts. The RT-qPCR method could detect endogenous Enterobacteriaceae and P. aeruginosa in feces of hospitalized patients (n = 38) at a level of 10(3) cells per g of feces, and for enumeration of S. aureus or P. aeruginosa spiked into human peripheral blood, the lower detection limit for RT-qPCR quantification of the bacteria was 2 cells per ml of blood, suggesting that this method was equivalent to the conventional culture method. As only 5 h was needed for RT-qPCR quantification, we suggest that rRNA-targeted RT-qPCR assays provide a sensitive and convenient system for quantification of commensal bacteria and for examining their possible invasion of a host.
Collapse
Affiliation(s)
- Kazunori Matsuda
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan.
| | | | | | | | | |
Collapse
|
33
|
Koldobskii GI. Strategies and prospects in functionalization of tetrazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2006. [DOI: 10.1134/s1070428006040014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Yoshida N, Fujii Y, Hiraishi A. A Modified Cyanoditolyl Tetrazolium Reduction Method for Differential Detection of Metabolically Active Gram-positive and Gram-negative Bacteria. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Naoko Yoshida
- Department of Ecological Engineering, Toyohashi University of Technology
| | - Yasuyuki Fujii
- Department of Ecological Engineering, Toyohashi University of Technology
| | - Akira Hiraishi
- Department of Ecological Engineering, Toyohashi University of Technology
| |
Collapse
|
35
|
McCluskey C, Quinn JP, McGrath JW. An evaluation of three new-generation tetrazolium salts for the measurement of respiratory activity in activated sludge microorganisms. MICROBIAL ECOLOGY 2005; 49:379-87. [PMID: 16003480 DOI: 10.1007/s00248-004-0012-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Accepted: 04/05/2004] [Indexed: 05/03/2023]
Abstract
XTT (3'-[1-[(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate), MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt), and WST-1 (4-(3-4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio)-1,3-benzenedisulfonate) are tetrazolium salts that have become commercially available only in relatively recent years; they differ from earlier such compounds in that their reduction gives rise to a formazan product that is water soluble. We have established the sites in the prokaryotic respiratory chain at which each of the dyes is reduced to its corresponding formazan and have evaluated the suitability of each for the colorimetric estimation of electron transport system activity in populations of activated sludge microorganisms. Reduction of all three tetrazolium salts was shown to be proportional to cell biomass and oxygen uptake and to be susceptible to low levels of the reference toxicant 3,5-dichlorophenol. XTT, which was not inhibitory at concentrations of up to 2 mM and was reduced by 91% of isolates from a sample of culturable activated sludge bacteria, was chosen for further assay development. XTT-formazan production was found to be stimulated by the availability of an exogenous carbon and energy source, and by the presence of the electron-coupling agent phenazine methosulfate. Less than 3% of XTT reduction by an activated sludge sample was abiotic. An assay based on this compound could be a valuable and simple tool for the routine monitoring of the performance of wastewater treatment systems.
Collapse
Affiliation(s)
- C McCluskey
- School of Biology and Biochemistry and QUESTOR Centre, The Queen's University of Belfast, Northern Ireland
| | | | | |
Collapse
|
36
|
Ziprin RL, Harvey RB. Inability of cecal microflora to promote reversion of viable nonculturable Campylobacter jejuni. Avian Dis 2005; 48:647-50. [PMID: 15529989 DOI: 10.1637/7153-010504r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Campylobacter jejuni cells are able to enter a viable but nonculturable (VBNC) state when they are suspended in water. In the present experiments we inoculated day-of-hatch leghorn and broiler chicks with normal gut microflora and subsequently challenged these with high doses of VBNC C. jejuni. The objective was to determine if the pre-establishment of a normal gut flora would enable VBNC Campylobacter to recover, revert to the vibrionic form, and colonize the cecum. Day-of-hatch leghorn and broiler chicks were gavaged through the esophagus with 0.75 ml of a continuous-flow culture of normal cecal organisms. Two days after gavage, the same chicks were gavaged with 0.75 ml (greater than 10(9) colony-forming units) of a VBNC suspension of C. jejuni. Seven days later, cecal contents were collected, serially diluted, and examined for the presence of viable culturable C. jejuni. Our results demonstrated that the VBNC C. jejuni cells were unable to revert to a vibrionic culturable form capable of colonizing the cecum.
Collapse
Affiliation(s)
- Richard L Ziprin
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, TX 77845, USA
| | | |
Collapse
|
37
|
Simões M, Pereira MO, Vieira MJ. Validation of respirometry as a short-term method to assess the efficacy of biocides. BIOFOULING 2005; 21:9-17. [PMID: 16019387 DOI: 10.1080/08927010500066982] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study shows that a short-term respirometric measurement based on the rate of oxygen uptake needed to oxidize glucose is a reliable and fast method to assess biocide efficacy against P. fluorescens cells. Respiratory activity using oxygen consumption rate, the determination of viable and nonviable cells using Live/Dead BacLight kit and colony formation units (CFU), were compared as indicators of the biocidal efficacy of ortho-phthalaldehyde (OPA). The results showed that determining the effect of OPA against P. fluorescens using the different methods leads to different conclusions. The minimum bactericidal concentration (MBC) was 80 mgl(-1), 100 mgl(-1) and 65 mgl(-1) respectively, using respiratory activity, viability using BacLight counts and culturability. The plate count method was shown to underestimate the biocidal action of OPA, whilst data from respirometry and viability using Live/Dead BacLight kit correlated strongly and were not statistically different when yellow cells were considered nonviable. Respirometry therefore represents an expeditious, non-destructive and accurate method to determine the antimicrobial action of biocides against aerobic heterotrophic bacteria.
Collapse
Affiliation(s)
- M Simões
- Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
| | | | | |
Collapse
|
38
|
Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. BIOTECHNOLOGY ANNUAL REVIEW 2005; 11:127-52. [PMID: 16216776 DOI: 10.1016/s1387-2656(05)11004-7] [Citation(s) in RCA: 1385] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tetrazolium salts have become some of the most widely used tools in cell biology for measuring the metabolic activity of cells ranging from mammalian to microbial origin. With mammalian cells, fractionation studies indicate that the reduced pyridine nucleotide cofactor, NADH, is responsible for most MTT reduction and this is supported by studies with whole cells. MTT reduction is associated not only with mitochondria, but also with the cytoplasm and with non-mitochondrial membranes including the endosome/lysosome compartment and the plasma membrane. The net positive charge on tetrazolium salts like MTT and NBT appears to be the predominant factor involved in their cellular uptake via the plasma membrane potential. However, second generation tetrazolium dyes that form water-soluble formazans and require an intermediate electron acceptor for reduction (XTT, WST-1 and to some extent, MTS), are characterised by a net negative charge and are therefore largely cell-impermeable. Considerable evidence indicates that their reduction occurs at the cell surface, or at the level of the plasma membrane via trans-plasma membrane electron transport. The implications of these new findings are discussed in terms of the use of tetrazolium dyes as indicators of cell metabolism and their applications in cell biology.
Collapse
Affiliation(s)
- Michael V Berridge
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand.
| | | | | |
Collapse
|
39
|
Ueki M, Matsui K, Choi K, Kawabata Z. The enhancement of conjugal plasmid pBHR1 transfer between bacteria in the presence of extracellular metabolic products produced by Microcystis aeruginosa. FEMS Microbiol Ecol 2004; 51:1-8. [PMID: 16329851 DOI: 10.1016/j.femsec.2004.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 06/24/2004] [Accepted: 07/08/2004] [Indexed: 10/26/2022] Open
Abstract
Conjugal plasmid transfer from Escherichia coli S17-1 (pBHR1) to Pseudomonas stutzeri was investigated in the presence of a cyanophyta Microcystis aeruginosa. The plasmid transfer frequency increased with higher densities of M. aeruginosa. The extracellular metabolic products (EMPs) from M. aeruginosa were found to enhance the plasmid transfer between bacteria. Furthermore, the plasmid transfer frequency in medium containing EMPs was significantly higher than that in culture medium with or without glucose. These results suggest that M. aeruginosa enhances conjugal plasmid transfer between bacteria through its EMPs, and that identity of the carbon source is an important factor affecting conjugal plasmid transfer in aquatic environments.
Collapse
Affiliation(s)
- Masaya Ueki
- Center for Ecological Research, Kyoto University, Kamitanakami, Otsu, Shiga 520-2113, Japan.
| | | | | | | |
Collapse
|
40
|
Backman A, Maraha N, Jansson JK. Impact of temperature on the physiological status of a potential bioremediation inoculant, Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 2004; 70:2952-8. [PMID: 15128556 PMCID: PMC404409 DOI: 10.1128/aem.70.5.2952-2958.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arthrobacter chlorophenolicus A6 (A6) can degrade large amounts of 4-chlorophenol in soil at 5 and 28 degrees C. In this study, we investigated the effects of temperature on the physiological status of this bacterium in pure culture and in soil. A derivative of A6 tagged with the gfp gene (encoding green fluorescent protein [GFP]) was used to specifically quantify A6 cells in soil. In addition, cyano-ditolyl-tetrazoliumchloride was used to stain GFP-fluorescent cells with an active electron transfer system ("viable cells") whereas propidium iodide (PI) was used to stain cells with damaged membranes ("dead cells"). Another derivative of the strain (tagged with the firefly luciferase gene [luc]) was used to monitor the metabolic activity of the cell population, since the bioluminescence phenotype is dependent on cellular energy reserves. When the cells were incubated in soil at 28 degrees C, the majority were stained with PI, indicating that they had lost their cell integrity. In addition, there was a corresponding decline in metabolic activity and in the ability to be grown in cultures on agar plates after incubation in soil at 28 degrees C, indicating that the cells were dying under those conditions. When the cells were incubated in soil at 5 degrees C, by contrast, the majority of the cells remained intact and a large fraction of the population remained metabolically active. A similar trend towards better cell survival at lower temperatures was found in pure-culture experiments. These results make A. chlorophenolicus A6 a good candidate for the treatment of chlorophenol-contaminated soil in cold climates.
Collapse
Affiliation(s)
- Agneta Backman
- Section for Natural Sciences, Södertörn University College, Huddinge, Sweden
| | | | | |
Collapse
|
41
|
Yoshida N, Hiraishi A. An Improved Redox Dye-Staining Method Using 5-Cyano-2,3-Ditoryl Tetrazolium Chloride for Detection of Metabolically Active Bacteria in Activated Sludge. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.61] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Naoko Yoshida
- Department of Ecological Engineering, Toyohashi University of Technology
| | - Akira Hiraishi
- Department of Ecological Engineering, Toyohashi University of Technology
| |
Collapse
|