1
|
Niessen L, Silva JJ, Frisvad JC, Taniwaki MH. The application of omics tools in food mycology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:423-474. [PMID: 40023565 DOI: 10.1016/bs.afnr.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This chapter explores the application of omics technologies in food mycology, emphasizing the significant impact of filamentous fungi on agriculture, medicine, biotechnology and the food industry. The chapter delves into the importance of understanding fungal secondary metabolism due to its implications for human health and industrial use. Several omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, are reviewed for their role in studying the genetic potential and metabolic capabilities of food-related fungi. The potential of CRISPR/Cas9 in fungal research is highlighted, showing its ability to unlock the full genetic potential of these organisms. The chapter also addresses the challenges posed by Big Data research in Omics and the need for advanced data processing methods. Through these discussions, the chapter highlights the future benefits and challenges of omics-based research in food mycology and its potential to revolutionize our understanding and utilization of fungi in various domains.
Collapse
Affiliation(s)
- Ludwig Niessen
- Technical University of Munich, TUM School of Life Sciences, Freising, Germany
| | | | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
2
|
Cavallazzi Sebold B, Li J, Ni G, Fu Q, Li H, Liu X, Wang T. Going Beyond Host Defence Peptides: Horizons of Chemically Engineered Peptides for Multidrug-Resistant Bacteria. BioDrugs 2023; 37:607-623. [PMID: 37300748 PMCID: PMC10432368 DOI: 10.1007/s40259-023-00608-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Multidrug-resistant (MDR) bacteria are considered a health threat worldwide, and this problem is set to increase over the decades. The ESKAPE, a group of six pathogens including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. is the major source of concern due to their high death incidence and nosocomial acquired infection. Host defence peptides (HDPs) are a class of ribosomally synthesised peptides that have shown promising results in combating MDR, including the ESKAPE group, in- and outside bacterial biofilms. However, their poor pharmacokinetics in physiological mediums may impede HDPs from becoming viable clinical candidates. To circumvent this problem, chemical engineering of HDPs has been seen as an emergent approach to not only improve their pharmacokinetics but also their efficacy against pathogens. In this review, we explore several chemical modifications of HDPs that have shown promising results, especially against ESKAPE pathogens, and provide an overview of the current findings with respect to each modification.
Collapse
Affiliation(s)
- Bernardo Cavallazzi Sebold
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Guoying Ni
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Quanlan Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China.
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
3
|
Fell DA. Metabolic Control Analysis. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Yao G, Chen X, Zheng H, Liao D, Yu Z, Wang Z, Chen J. Genomic and Chemical Investigation of Bioactive Secondary Metabolites From a Marine-Derived Fungus Penicillium steckii P2648. Front Microbiol 2021; 12:600991. [PMID: 34149630 PMCID: PMC8211754 DOI: 10.3389/fmicb.2021.600991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/26/2021] [Indexed: 01/11/2023] Open
Abstract
Marine fungi of the genus Penicillium are rich resources of secondary metabolites, showing a variety of biological activities. Our anti-bacterial screening revealed that the crude extract from a coral-derived fungus Penicillium steckii P2648 showed strong activity against some pathogenic bacteria. Genome sequencing and mining uncovered that there are 28 secondary metabolite gene clusters in P2648, potentially involved in the biosynthesis of antibacterial compounds. Chemical isolation and structural determination suggested citrinin is the dominant component of the crude extracts of P2648, and our further tests confirmed that citrinin showed excellent activities against various pathogenic bacteria. Moreover, the gene cluster containing a homolog of the polyketide synthase CitS was identified as the citrinin biosynthesis gene cluster through genetic analysis. Interestingly, three isoquinoline alkaloids were unexpectedly activated and isolated from the Δcits mutant and structural determination by using high-resolution electron spray ionization mass spectroscopy (HRESIMS), 1D, and 2D NMR. Further antibacterial assays displayed that compounds 1 and 2, but not compound 3, showed moderate activities against two antibiotic-resistant pathogenic bacteria with minimum inhibitory concentration (MIC) of 16–32 μg/ml. In conclusion, our results demonstrated that citrinin and isoquinoline alkaloids represent as the major antibacterial agents in the coral-associated fungus P. steckii P2648, and our genomic and chemical analyses present evidence in support of P. steckii P2648 as a potent natural products source for anti-bacterial drug discovery.
Collapse
Affiliation(s)
- Guangshan Yao
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xiaofeng Chen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Huawei Zheng
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Danhua Liao
- Institute of Oceanography, Minjiang University, Fuzhou, China.,Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi Yu
- Institute of Oceanography, Minjiang University, Fuzhou, China.,Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Institute of Oceanography, Minjiang University, Fuzhou, China.,Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
6
|
High-Yielding Lovastatin Producer Aspergillus terreus Shows Increased Resistance to Inhibitors of Polyamine Biosynthesis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biosynthesis of pharmaceutically significant secondary metabolites in filamentous fungi is a multistep process that depends on a wide range of various factors, one of which is the intracellular content of polyamines. We have previously shown that in Aspergillus terreus lovastatin high-yielding strain (HY) exogenous introduction of polyamines during fermentation can lead to an increase in the production of lovastatin by 20–45%. However, the molecular mechanisms of this phenomenon have not been elucidated. In this regard, we carried out an inhibitory analysis at the key stage of polyamine biosynthesis, the conversion of L-ornithine to putrescine by the enzyme ornithine decarboxylase (ODC). A. terreus HY strain showed upregulation of genes for biosynthesis of polyamines, 3–10-fold, and increased resistance compared to the original wild-type strain upon inhibition of ODC on synthetic medium with 5 mM α-difluoromethylornithine (DFMO), by 20–25%, and 5 mM 1-aminooxy-3-aminopropane (APA), by 40–45%. The data obtained indicate changes in the metabolism of polyamines in A. terreus HY strain. The observed phenomenon may have a universal character among fungal producers of secondary metabolites improved by classical methods, since previously the increased resistance to ODC inhibitors was also shown for Acremonium chrysogenum, a high-yielding producer of cephalosporin C.
Collapse
|
7
|
Fatima S, Rasool A, Sajjad N, Bhat EA, Hanafiah MM, Mahboob M. Analysis and evaluation of penicillin production by using soil fungi. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Wei X, Liu C, An F, Lu Y. Induced effect of Ca2+ on curvulamine synthesis by marine-derived fungus Curvularia sp. IFB-Z10 under submerged fermentation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Poyedinok NL, Blume YB. Advances, Problems, and Prospects of Genetic Transformation of Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271802007x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ziemons S, Koutsantas K, Becker K, Dahlmann T, Kück U. Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes. BMC Biotechnol 2017; 17:16. [PMID: 28209150 PMCID: PMC5314624 DOI: 10.1186/s12896-017-0335-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/09/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. RESULTS We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. CONCLUSIONS Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.
Collapse
Affiliation(s)
- Sandra Ziemons
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Katerina Koutsantas
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Tim Dahlmann
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
11
|
Demirçelik AH, Perçin I, Denizli A. Supermacroporous hydrophobic affinity sorbents for penicillin acylase purification. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1261618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Işık Perçin
- Molecular Biology Division, Department of Biology, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
12
|
Németh Z, Molnár ÁP, Fejes B, Novák L, Karaffa L, Keller NP, Fekete E. Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans. Toxins (Basel) 2016; 8:E354. [PMID: 27916804 PMCID: PMC5198170 DOI: 10.3390/toxins8120354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 11/24/2022] Open
Abstract
Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST) produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L-1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis.
Collapse
Affiliation(s)
- Zoltán Németh
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
| | - Ákos P Molnár
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
| | - Balázs Fejes
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
| | - Levente Novák
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA.
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
| |
Collapse
|
13
|
Ruppen C, Lupo A, Decosterd L, Sendi P. Is Penicillin Plus Gentamicin Synergistic against Clinical Group B Streptococcus isolates?: An In vitro Study. Front Microbiol 2016; 7:1680. [PMID: 27818657 PMCID: PMC5073528 DOI: 10.3389/fmicb.2016.01680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/07/2016] [Indexed: 11/23/2022] Open
Abstract
Group B Streptococcus (GBS) is increasingly causing invasive infections in non-pregnant adults. Elderly patients and those with comorbidities are at increased risk. On the basis of previous studies focusing on neonatal infections, penicillin plus gentamicin is recommended for infective endocarditis (IE) and periprosthetic joint infections (PJI) in adults. The purpose of this study was to investigate whether a synergism with penicillin and gentamicin is present in GBS isolates that caused IE and PJI. We used 5 GBS isolates, two clinical strains and three control strains, including one displaying high-level gentamicin resistance (HLGR). The results from the checkerboard and time-kill assays (TKAs) were compared. For TKAs, antibiotic concentrations for penicillin were 0.048 and 0.2 mg/L, and for gentamicin 4 mg/L or 12.5 mg/L. In the checkerboard assay, the median fractional inhibitory concentration indices (FICIs) of all isolates indicated indifference. TKAs for all isolates failed to demonstrate synergism with penicillin 0.048 or 0.2 mg/L, irrespective of gentamicin concentrations used. Rapid killing was seen with penicillin 0.048 mg/L plus either 4 mg/L or 12.5 mg/L gentamicin, from 2 h up to 8 h hours after antibiotic exposure. TKAs with penicillin 0.2 mg/L decreased the starting inoculum below the limit of quantification within 4–6 h, irrespective of the addition of gentamicin. Fast killing was seen with penicillin 0.2 mg/L plus 12.5 mg/L gentamicin within the first 2 h. Our in vitro results indicate that the addition of gentamicin to penicillin contributes to faster killing at low penicillin concentrations, but only within the first few hours. Twenty-four hours after antibiotic exposure, PEN alone was bactericidal and synergism was not seen.
Collapse
Affiliation(s)
- Corinne Ruppen
- Institute for Infectious Diseases, University of BernBern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of BernBern, Switzerland
| | - Agnese Lupo
- Institute for Infectious Diseases, University of Bern Bern, Switzerland
| | - Laurent Decosterd
- Division and Laboratory of Clinical Pharmacology, Service of Biomedicine, Department of Laboratories, Centre Hospitalier Universitaire Vaudois (CHUV) Lausanne, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases, University of BernBern, Switzerland; Department of Infectious Diseases, Bern University Hospital, University of BernBern, Switzerland
| |
Collapse
|
14
|
Becker K, Ziemons S, Lentz K, Freitag M, Kück U. Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis of the Penicillium chrysogenum Velvet Protein PcVelA Identifies Methyltransferase PcLlmA as a Novel Downstream Regulator of Fungal Development. mSphere 2016; 1:e00149-16. [PMID: 27570838 PMCID: PMC4999599 DOI: 10.1128/msphere.00149-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/14/2016] [Indexed: 11/20/2022] Open
Abstract
Penicillium chrysogenum is the sole industrial producer of the β-lactam antibiotic penicillin, which is the most commonly used drug for treating bacterial infections. In P. chrysogenum and other filamentous fungi, secondary metabolism and morphogenesis are controlled by the highly conserved multisubunit velvet complex. Here we present the first chromatin immunoprecipitation next-generation sequencing (ChIP-seq) analysis of a fungal velvet protein, providing experimental evidence that a velvet homologue in P. chrysogenum (PcVelA) acts as a direct transcriptional regulator at the DNA level in addition to functioning as a regulator at the protein level in P. chrysogenum, which was previously described. We identified many target genes that are related to processes known to be dependent on PcVelA, e.g., secondary metabolism as well as asexual and sexual development. We also identified seven PcVelA target genes that encode putative methyltransferases. Yeast two-hybrid and bimolecular fluorescence complementation analyses showed that one of the putative methyltransferases, PcLlmA, directly interacts with PcVelA. Furthermore, functional characterization of PcLlmA demonstrated that this protein is involved in the regulation of conidiosporogenesis, pellet formation, and hyphal morphology, all traits with major biotechnological relevance. IMPORTANCE Filamentous fungi are of major interest for biotechnological and pharmaceutical applications. This is due mainly to their ability to produce a wide variety of secondary metabolites, many of which are relevant as antibiotics. One of the most prominent examples is penicillin, a β-lactam antibiotic that is produced on the industrial scale by fermentation of P. chrysogenum. In recent years, the multisubunit protein complex velvet has been identified as one of the key regulators of fungal secondary metabolism and development. However, until recently, only a little has been known about how velvet mediates regulation at the molecular level. To address this issue, we performed ChIP-seq (chromatin immunoprecipitation in combination with next-generation sequencing) on and follow-up analysis of PcVelA, the core component of the velvet complex in P. chrysogenum. We demonstrate direct involvement of velvet in transcriptional control and present the putative methyltransferase PcLlmA as a new downstream factor and interaction partner of PcVelA.
Collapse
Affiliation(s)
- Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Ziemons
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Katharina Lentz
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
15
|
Comprehensive Profiling of Proteome Changes Provide Insights of Industrial Penicillium chrysogenum During Pilot and Industrial Penicillin G Fermentation. Appl Biochem Biotechnol 2016; 179:788-804. [DOI: 10.1007/s12010-016-2031-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
|
16
|
Prauße MTE, Schäuble S, Guthke R, Schuster S. Computing the various pathways of penicillin synthesis and their molar yields. Biotechnol Bioeng 2015; 113:173-81. [PMID: 26134880 DOI: 10.1002/bit.25694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/05/2015] [Accepted: 06/22/2015] [Indexed: 11/09/2022]
Abstract
More than 80 years after its discovery, penicillin is still a widely used and commercially highly important antibiotic. Here, we analyse the metabolic network of penicillin synthesis in Penicillium chrysogenum based on the concept of elementary flux modes. In particular, we consider the synthesis of the invariant molecular core of the various subtypes of penicillin and the two major ways of incorporating sulfur: transsulfuration and direct sulfhydrylation. 66 elementary modes producing this invariant core are obtained. These show four different yields with respect to glucose, notably ½, 2/5, 1/3, and 2/7, with the highest yield of ½ occurring only when direct sulfhydrylation is used and α-aminoadipate is completely recycled. In the case of no recycling of this intermediate, we find the maximum yield to be 2/7. We compare these values with earlier literature values. Our analysis provides a systematic overview of the redundancy in penicillin synthesis and a detailed insight into the corresponding routes. Moreover, we derive suggestions for potential knockouts that could increase the average yield.
Collapse
Affiliation(s)
- Maria T E Prauße
- Department of Bioinformatics, University of Jena, Ernst-Abbe-Pl. 2, 07743 Jena, Germany.,Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Sascha Schäuble
- Jena University Language & Information Engineering Lab, Jena, Germany
| | - Reinhard Guthke
- Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, University of Jena, Ernst-Abbe-Pl. 2, 07743 Jena, Germany.
| |
Collapse
|
17
|
Deng S, Su E, Ma X, Yang S, Wei D. Efficient enzymatic synthesis of ampicillin by mutant Alcaligenes faecalis penicillin G acylase. J Biotechnol 2015; 199:62-8. [DOI: 10.1016/j.jbiotec.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
18
|
Novel biotransformation processes of artemisinic acid to their hydroxylated derivatives 3β-hydroxyartemisinic acid and 3β, 15-dihydroxyartemisinic by fungus Trichothecium roseum CIMAPN1and their biological evaluation. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Helmel M, Marchetti-Deschmann M, Allmaier G. Improved sample preparation for intact cell mass spectrometry (biotyping) of mycelium samples taken from a batch fermentation process of Penicillium chrysogenum. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:957-964. [PMID: 24623701 DOI: 10.1002/rcm.6849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Penicillium chrysogenum is an important species in biotechnology and an improved production rate for penicillin drug variants is of utmost interest. Intact cell mass spectrometry (ICMS) or biotyping can be a novel and time-saving tool to monitor a fermentation process of Penicillium strains for fast intervention during penicillin production. METHODS Fermentation broth was collected directly from a fermenter at specific time points known to show significantly different penicillin production rates. The mycelium was purified by washing multiple times with water and recovered by centrifugation. The mycelium was further mixed with matrix-assisted laser desorption/ionization (MALDI) MS matrix and immediately spotted on different types of targets. ICMS spectra were obtained by MALDI time-of-flight (TOF) MS in the positive ion linear mode in the m/z range 3000 to 16 000. RESULTS An ICMS method for culture broth samples of P. chrysogenum was developed. It was shown that ferulic acid mixed with sinapinic acid (2.5 mg and 22.5 mg/mL) is the most appropriate matrix combination. The matrices were dissolved in acetonitrile/0.1% trifluoroacetic acid (70/30, v/v) and spotted together with the sample on various target types. Sample preparation was thoroughly studied for homogeneity and reproducibility. CONCLUSIONS Culture broth directly collected from a bioreactor could be analyzed applying the optimized approach. The ideal choice of matrix, the adequate preparation technique and the type of target were the focus of this work showing that samples collected at different times during fermentation exhibit a characteristic pattern using the developed method.
Collapse
Affiliation(s)
- Michaela Helmel
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, A-1060, Vienna, Austria
| | | | | |
Collapse
|
20
|
Nandi A, Pan S, Potumarthi R, Danquah MK, Sarethy IP. A Proposal for Six Sigma Integration for Large-Scale Production of Penicillin G and Subsequent Conversion to 6-APA. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:413616. [PMID: 25057428 PMCID: PMC4099176 DOI: 10.1155/2014/413616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Six Sigma methodology has been successfully applied to daily operations by several leading global private firms including GE and Motorola, to leverage their net profits. Comparatively, limited studies have been conducted to find out whether this highly successful methodology can be applied to research and development (R&D). In the current study, we have reviewed and proposed a process for a probable integration of Six Sigma methodology to large-scale production of Penicillin G and its subsequent conversion to 6-aminopenicillanic acid (6-APA). It is anticipated that the important aspects of quality control and quality assurance will highly benefit from the integration of Six Sigma methodology in mass production of Penicillin G and/or its conversion to 6-APA.
Collapse
Affiliation(s)
- Anirban Nandi
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh 201307, India
| | - Sharadwata Pan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ravichandra Potumarthi
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Michael K. Danquah
- Department of Chemical and Petroleum Engineering, Curtin University of Technology, 98009 Miri, Sarawak, Malaysia
| | - Indira P. Sarethy
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh 201307, India
| |
Collapse
|
21
|
Biotechnological advances on penicillin G acylase: pharmaceutical implications, unique expression mechanism and production strategies. Biotechnol Adv 2013; 31:1319-32. [PMID: 23721991 DOI: 10.1016/j.biotechadv.2013.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/06/2013] [Accepted: 05/19/2013] [Indexed: 01/20/2023]
Abstract
In light of unrestricted use of first-generation penicillins, these antibiotics are now superseded by their semisynthetic counterparts for augmented antibiosis. Traditional penicillin chemistry involves the use of hazardous chemicals and harsh reaction conditions for the production of semisynthetic derivatives and, therefore, is being displaced by the biosynthetic platform using enzymatic transformations. Penicillin G acylase (PGA) is one of the most relevant and widely used biocatalysts for the industrial production of β-lactam semisynthetic antibiotics. Accordingly, considerable genetic and biochemical engineering strategies have been devoted towards PGA applications. This article provides a state-of-the-art review in recent biotechnological advances associated with PGA, particularly in the production technologies with an emphasis on using the Escherichia coli expression platform.
Collapse
|
22
|
The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum. Fungal Genet Biol 2012; 49:915-21. [DOI: 10.1016/j.fgb.2012.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 11/23/2022]
|
23
|
Chandra S. Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 2012; 95:47-59. [DOI: 10.1007/s00253-012-4128-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/30/2022]
|
24
|
Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. J Biomed Biotechnol 2012; 2012:105109. [PMID: 22318718 PMCID: PMC3270403 DOI: 10.1155/2012/105109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/30/2011] [Accepted: 10/14/2011] [Indexed: 12/14/2022] Open
Abstract
Fungi comprise a vast group of microorganisms including the Ascomycota (majority of all described fungi), the Basidiomycota (mushrooms or higher fungi), and the Zygomycota and Chytridiomycota (basal or lower fungi) that produce industrially interesting secondary metabolites, such as β-lactam antibiotics. These compounds are one of the most commonly prescribed drugs world-wide. Since Fleming's initial discovery of Penicillium notatum 80 years ago, the role of Penicillium as an antimicrobial source became patent. After the isolation of Penicillium chrysogenum NRRL 1951 six decades ago, classical mutagenesis and screening programs led to the development of industrial strains with increased productivity (at least three orders of magnitude). The new “omics” era has provided the key to understand the underlying mechanisms of the industrial strain improvement process. The review of different proteomics methods applied to P. chrysogenum has revealed that industrial modification of this microorganism was a consequence of a careful rebalancing of several metabolic pathways. In addition, the secretome analysis of P. chrysogenum has opened the door to new industrial applications for this versatile filamentous fungus.
Collapse
|
25
|
Degeneration of penicillin production in ethanol-limited chemostat cultivations of Penicillium chrysogenum: A systems biology approach. BMC SYSTEMS BIOLOGY 2011; 5:132. [PMID: 21854586 PMCID: PMC3224390 DOI: 10.1186/1752-0509-5-132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/19/2011] [Indexed: 11/10/2022]
Abstract
Background In microbial production of non-catabolic products such as antibiotics a loss of production capacity upon long-term cultivation (for example chemostat), a phenomenon called strain degeneration, is often observed. In this study a systems biology approach, monitoring changes from gene to produced flux, was used to study degeneration of penicillin production in a high producing Penicillium chrysogenum strain during prolonged ethanol-limited chemostat cultivations. Results During these cultivations, the biomass specific penicillin production rate decreased more than 10-fold in less than 22 generations. No evidence was obtained for a decrease of the copy number of the penicillin gene cluster, nor a significant down regulation of the expression of the penicillin biosynthesis genes. However, a strong down regulation of the biosynthesis pathway of cysteine, one of the precursors of penicillin, was observed. Furthermore the protein levels of the penicillin pathway enzymes L-α-(δ-aminoadipyl)-L-α-cystenyl-D-α-valine synthetase (ACVS) and isopenicillin-N synthase (IPNS), decreased significantly. Re-cultivation of fully degenerated cells in unlimited batch culture and subsequent C-limited chemostats did only result in a slight recovery of penicillin production. Conclusions Our findings indicate that the observed degeneration is attributed to a significant decrease of the levels of the first two enzymes of the penicillin biosynthesis pathway, ACVS and IPNS. This decrease is not caused by genetic instability of the penicillin amplicon, neither by down regulation of the penicillin biosynthesis pathway. Furthermore no indications were obtained for degradation of these enzymes as a result of autophagy. Possible causes for the decreased enzyme levels could be a decrease of the translation efficiency of ACVS and IPNS during degeneration, or the presence of a culture variant impaired in the biosynthesis of functional proteins of these enzymes, which outcompeted the high producing part of the population.
Collapse
|
26
|
Abstract
The novel or designer metabolites produced by fungal endophytes are increasingly recognized by natural chemists due to their diverse structures and as candidates for drug discovery and development. Many of the metabolites belong to different classes i.e. alkaloids, benzopyranones, coumarins, chromones, cytochalasines, enniatines, isocoumarin derivatives, quinones, peptides, phenols, phenolic acids, semiquinones, steroids, terpenoids, xanthones and lactones. One of the most widely studied endophytic genera is Pestalotiopsis, from which more than 140 metabolites are reported with antimicrobial, antioxidant and antitumor activities. Besides reviewing the advances made in identifying bioactive metabolites with drug development potential from endophytic fungi, this chapter discusses possibilities and bottlenecks involved in employment of endophytic fungi and their products by the pharmaceutical industry. Furthermore, issues involved in anti-infective discovery and timeline of drug development are discussed in the view of developing new drug compounds from endophytic products.
Collapse
Affiliation(s)
- Anna Maria Pirttilä
- , Department of Biology, University of Oulu, Linnanmaa Biologintie A6, Oulu, 90570 Finland
| | - A. Carolin Frank
- , School of Natural Sciences, University of California, Merced, North Lake Road 5200, Merced, 95343 California USA
| |
Collapse
|
27
|
Cloning and characterization of a novel CoA-ligase gene from Penicillium chrysogenum. Folia Microbiol (Praha) 2011; 56:246-52. [PMID: 21625874 DOI: 10.1007/s12223-011-0044-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
A novel phenylacetic acid (PAA)-induced CoA-ligase-encoding gene, designated as phlC, has been cloned from penicillin-producing fungus Penicillium chrysogenum. The open reading frame of phlC cDNA was 1671 bp and encoded a 556 amino acid residues protein with the consensus AMP binding site and a peroxisomal targeting signal 1 on its C terminus. The deduced amino acid sequence showed 37% and 38% identity with characterized P. chrysogenum Phl and PhlB protein, respectively. Functional recombinant PhlC protein was overexpressed in Escherichia coli. The purified recombinant enzyme was capable to convert PAA into its corresponding CoA ester with a specific activity of 129.5 ± 3.026 pmol/min per mg protein. Similar to Phl and PhlB, PhlC displayed broad substrate spectrum and showed higher activities to medium- and long-chain fatty acids. The catalytic properties of PhlC have been determined and compared to those of Phl and PhlB.
Collapse
|
28
|
Murphy AC. Metabolic engineering is key to a sustainable chemical industry. Nat Prod Rep 2011; 28:1406-25. [DOI: 10.1039/c1np00029b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Pimenta EF, Vita-Marques AM, Tininis A, Seleghim MHR, Sette LD, Veloso K, Ferreira AG, Williams DE, Patrick BO, Dalisay DS, Andersen RJ, Berlinck RGS. Use of experimental design for the optimization of the production of new secondary metabolites by two Penicillium species. JOURNAL OF NATURAL PRODUCTS 2010; 73:1821-1832. [PMID: 21053938 DOI: 10.1021/np100470h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A fractional factorial design approach has been used to enhance secondary metabolite production by two Penicillium strains. The method was initially used to improve the production of bioactive extracts as a whole and subsequently to optimize the production of particular bioactive metabolites. Enhancements of over 500% in secondary metabolite production were observed for both P. oxalicum and P. citrinum. Two new alkaloids, citrinalins A (5) and B (6), were isolated and identified from P. citrinum cultures optimized for production of minor metabolites.
Collapse
Affiliation(s)
- Eli F Pimenta
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nonlinear biosynthetic gene cluster dose effect on penicillin production by Penicillium chrysogenum. Appl Environ Microbiol 2010; 76:7109-15. [PMID: 20851974 DOI: 10.1128/aem.01702-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Industrial penicillin production levels by the filamentous fungus Penicillium chrysogenum increased dramatically by classical strain improvement. High-yielding strains contain multiple copies of the penicillin biosynthetic gene cluster that encodes three key enzymes of the β-lactam biosynthetic pathway. We have analyzed the gene cluster dose effect on penicillin production using the high-yielding P. chrysogenum strain DS17690 that was cured from its native clusters. The amount of penicillin V produced increased with the penicillin biosynthetic gene cluster number but was saturated at high copy numbers. Likewise, transcript levels of the biosynthetic genes pcbAB [δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase], pcbC (isopenicillin N synthase), and penDE (acyltransferase) correlated with the cluster copy number. Remarkably, the protein level of acyltransferase, which localizes to peroxisomes, was saturated already at low cluster copy numbers. At higher copy numbers, intracellular levels of isopenicillin N increased, suggesting that the acyltransferase reaction presents a limiting step at a high gene dose. Since the number and appearance of the peroxisomes did not change significantly with the gene cluster copy number, we conclude that the acyltransferase activity is limiting for penicillin biosynthesis at high biosynthetic gene cluster copy numbers. These results suggest that at a high penicillin production level, productivity is limited by the peroxisomal acyltransferase import activity and/or the availability of coenzyme A (CoA)-activated side chains.
Collapse
|
31
|
Roa Engel CA, Straathof AJJ, van Gulik WM, van de Sandt EJAX, van der Does T, van der Wielen LAM. Conceptual Process Design of Integrated Fermentation, Deacylation, and Crystallization in the Production of β-Lactam Antibiotics. Ind Eng Chem Res 2009. [DOI: 10.1021/ie801335r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carol A. Roa Engel
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| | - Adrie J. J. Straathof
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| | - Walter M. van Gulik
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| | - Emile J. A. X. van de Sandt
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| | - Thom van der Does
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| | - Luuk A. M. van der Wielen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| |
Collapse
|
32
|
Harris DM, van der Krogt ZA, Klaassen P, Raamsdonk LM, Hage S, van den Berg MA, Bovenberg RAL, Pronk JT, Daran JM. Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production. BMC Genomics 2009; 10:75. [PMID: 19203396 PMCID: PMC2657799 DOI: 10.1186/1471-2164-10-75] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 02/10/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Since the discovery of the antibacterial activity of penicillin by Fleming 80 years ago, improvements of penicillin titer were essentially achieved by classical strain improvement through mutagenesis and screening. The recent sequencing of Penicillium chrysogenum strain Wisconsin1255-54 and the availability of genomics tools such as DNA-microarray offer new perspective. RESULTS In studies on beta-lactam production by P. chrysogenum, addition and omission of a side-chain precursor is commonly used to generate producing and non-producing scenarios. To dissect effects of penicillinG production and of its side-chain precursor phenylacetic acid (PAA), a derivative of a penicillinG high-producing strain without a functional penicillin-biosynthesis gene cluster was constructed. In glucose-limited chemostat cultures of the high-producing and cluster-free strains, PAA addition caused a small reduction of the biomass yield, consistent with PAA acting as a weak-organic-acid uncoupler. Microarray-based analysis on chemostat cultures of the high-producing and cluster-free strains, grown in the presence and absence of PAA, showed that: (i) Absence of a penicillin gene cluster resulted in transcriptional upregulation of a gene cluster putatively involved in production of the secondary metabolite aristolochene and its derivatives, (ii) The homogentisate pathway for PAA catabolism is strongly transcriptionally upregulated in PAA-supplemented cultures (iii) Several genes involved in nitrogen and sulfur metabolism were transcriptionally upregulated under penicillinG producing conditions only, suggesting a drain of amino-acid precursor pools. Furthermore, the number of candidate genes for penicillin transporters was strongly reduced, thus enabling a focusing of functional analysis studies. CONCLUSION This study demonstrates the usefulness of combinatorial transcriptome analysis in chemostat cultures to dissect effects of biological and process parameters on gene expression regulation. This study provides for the first time clear-cut target genes for metabolic engineering, beyond the three genes of the beta-lactam pathway.
Collapse
Affiliation(s)
- Diana M Harris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Zita A van der Krogt
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Paul Klaassen
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Leonie M Raamsdonk
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Susanne Hage
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Marco A van den Berg
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Roel AL Bovenberg
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
33
|
David H, Ozçelik IS, Hofmann G, Nielsen J. Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics 2008; 9:163. [PMID: 18405346 PMCID: PMC2386489 DOI: 10.1186/1471-2164-9-163] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 04/11/2008] [Indexed: 11/30/2022] Open
Abstract
Background Aspergillus nidulans is a member of a diverse group of filamentous fungi, sharing many of the properties of its close relatives with significance in the fields of medicine, agriculture and industry. Furthermore, A. nidulans has been a classical model organism for studies of development biology and gene regulation, and thus it has become one of the best-characterized filamentous fungi. It was the first Aspergillus species to have its genome sequenced, and automated gene prediction tools predicted 9,451 open reading frames (ORFs) in the genome, of which less than 10% were assigned a function. Results In this work, we have manually assigned functions to 472 orphan genes in the metabolism of A. nidulans, by using a pathway-driven approach and by employing comparative genomics tools based on sequence similarity. The central metabolism of A. nidulans, as well as biosynthetic pathways of relevant secondary metabolites, was reconstructed based on detailed metabolic reconstructions available for A. niger and Saccharomyces cerevisiae, and information on the genetics, biochemistry and physiology of A. nidulans. Thereby, it was possible to identify metabolic functions without a gene associated, and to look for candidate ORFs in the genome of A. nidulans by comparing its sequence to sequences of well-characterized genes in other species encoding the function of interest. A classification system, based on defined criteria, was developed for evaluating and selecting the ORFs among the candidates, in an objective and systematic manner. The functional assignments served as a basis to develop a mathematical model, linking 666 genes (both previously and newly annotated) to metabolic roles. The model was used to simulate metabolic behavior and additionally to integrate, analyze and interpret large-scale gene expression data concerning a study on glucose repression, thereby providing a means of upgrading the information content of experimental data and getting further insight into this phenomenon in A. nidulans. Conclusion We demonstrate how pathway modeling of A. nidulans can be used as an approach to improve the functional annotation of the genome of this organism. Furthermore we show how the metabolic model establishes functional links between genes, enabling the upgrade of the information content of transcriptome data.
Collapse
Affiliation(s)
- Helga David
- Fluxome Sciences A/S, Diplomvej 378, Kgs. 2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
34
|
Wang FQ, Liu J, Dai M, Ren ZH, Su CY, He JG. Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum. Biochem Biophys Res Commun 2007; 360:453-8. [PMID: 17612506 DOI: 10.1016/j.bbrc.2007.06.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 11/23/2022]
Abstract
A novel phenylacetyl-CoA ligase gene, designated phlB, was cloned and identified from the penicillin producing strain Penicillium chrysogenum based on subtractive suppression hybridization approach. The phlB gene contains a 1686-bp open-reading frame and encodes a protein of approximately 62.6 kDa. The deduced amino acid sequence shows about 35% identity to the characterized P. chrysogenum phenylacetyl-CoA ligase Phl and has a peroxisomal targeting signal on its C-terminal. Recombinant PhlB protein was overexpressed in Escherichia coli and purified by nickel affinity chromatography. Enzymatic assay confirmed that recombinant PhlB can catalyze the reaction of phenylacetic acid (PAA) with CoA to yield phenylacetyl-CoA. The expression level of phlB in the penicillin producing medium supplemented with PAA, the side chain precursor of penicillin G, was about 2.5-fold higher than that in medium without PAA. The study suggested that PhlB might participate in the activation of PAA during penicillin biosynthesis in P. chrysogenum.
Collapse
Affiliation(s)
- Fu-Qiang Wang
- New Drug R&D Center, North China Pharmaceutical Corporation, 050015 Shijiazhuang, China.
| | | | | | | | | | | |
Collapse
|
35
|
Dreyer J, Eichhorn H, Friedlin E, Kürnsteiner H, Kück U. A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol 2007; 73:3412-22. [PMID: 17400783 PMCID: PMC1907097 DOI: 10.1128/aem.00129-07] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Aspergillus nidulans velvet (veA) gene encodes a global regulator of gene expression controlling sexual development as well as secondary metabolism. We have identified the veA homologue AcveA from Acremonium chrysogenum, the major producer of the beta-lactam antibiotic cephalosporin C. Two different disruption strains as well as the corresponding complements were generated as a prelude to detailed functional analysis. Northern hybridization and quantitative real-time PCR clearly indicate that the nucleus-localized AcVEA polypeptide controls the transcriptional expression of six cephalosporin C biosynthesis genes. The most drastic reduction in expression is seen for cefEF, encoding the deacetoxycephalosporine/deacetylcephalosporine synthetase. After 120 h of growth, the cefEF transcript level is below 15% in both disruption strains compared to the wild type. These transcriptional expression data are consistent with results from a comparative and time-dependent high-performance liquid chromatography analysis of cephalosporin C production. Compared to the recipient, both disruption strains have a cephalosporin C titer that is reduced by 80%. In addition to its role in cephalosporin C biosynthesis, AcveA is involved in the developmentally dependent hyphal fragmentation. In both disruption strains, hyphal fragmentation is already observed after 48 h of growth, whereas in the recipient strain, arthrospores are not even detected before 96 h of growth. Finally, the two mutant strains show hyperbranching of hyphal tips on osmotically nonstabilized media. Our findings will be significant for biotechnical processes that require a defined stage of cellular differentiation for optimal production of secondary metabolites.
Collapse
MESH Headings
- Acremonium/cytology
- Acremonium/genetics
- Acremonium/physiology
- Aspergillus nidulans/genetics
- Blotting, Northern
- Cephalosporins/biosynthesis
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Gene Deletion
- Gene Expression
- Gene Expression Regulation, Fungal
- Genes, Regulator
- Genetic Complementation Test
- Hyphae/physiology
- Molecular Sequence Data
- Morphogenesis
- Oxygenases/biosynthesis
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Spores, Fungal
Collapse
Affiliation(s)
- Jacqueline Dreyer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Universitätsstr. 150, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
36
|
Spröte P, Brakhage AA. The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis. Arch Microbiol 2007; 188:69-79. [PMID: 17375284 DOI: 10.1007/s00203-007-0224-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/19/2007] [Accepted: 02/05/2007] [Indexed: 02/05/2023]
Abstract
The biosynthesis of the beta-lactam antibiotic penicillin in Aspergillus nidulans is catalysed by three enzymes that are encoded by the genes acvA, ipnA and aatA. Several studies have indicated that these genes are controlled by a complex regulatory network, including a variety of cis-acting DNA elements and regulatory factors. Until now, however, relatively little information is available on external signals and their transmission influencing the expression of the structural genes. Here, we show that the light-dependent regulator velvet A (VeA) acts as a repressor on the penicillin biosynthesis, mainly via repression of the acvA gene. Expression of a regulatable alcAp-veA gene fusion in an A. nidulans strain carrying, in addition, acvAp-uidA and ipnAp-lacZ gene fusions indicated that under alcAp-inducing conditions, penicillin titres and expression of acvAp-uidA were drastically reduced compared with untransformed wild-type strains. The same level of repression was found irrespective of whether the alcAp-veA gene fusion was expressed in a veA1 or DeltaveA background, with or without light. The expression of the ipnAp-lacZ gene fusion was only moderately affected indicating a less prominent effect. These findings were confirmed by the analysis of a regulatable niiAp-veA gene fusion. Under niiAp-inducing conditions, penicillin titres and acvAp-uidA expression were much lower than in untransformed wild-type strains.
Collapse
Affiliation(s)
- Petra Spröte
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | | |
Collapse
|
37
|
Rodríguez-Sáiz M, Díez B, Barredo JL. Why did the Fleming strain fail in penicillin industry? Fungal Genet Biol 2005; 42:464-70. [PMID: 15809010 DOI: 10.1016/j.fgb.2005.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 01/24/2005] [Accepted: 01/25/2005] [Indexed: 11/24/2022]
Abstract
Penicillin, discovered 75 years ago by Sir Alexander Fleming in Penicillium notatum, laid the foundations of modern antibiotic chemotherapy. Early work was carried out on the original Fleming strain, but it was later replaced by overproducing strains of Penicillium chrysogenum, which became the industrial penicillin producers. We show how a C(1357)-->T (A394V) change in the gene encoding PahA in P. chrysogenum may help to explain the drawback of P. notatum. PahA is a cytochrome P450 enzyme involved in the catabolism of phenylacetic acid (PA; a precursor of penicillin G). We expressed the pahA gene from P. notatum in P. chrysogenum obtaining transformants able to metabolize PA (P. chrysogenum does not), and observing penicillin production levels about fivefold lower than that of the parental strain. Our data thus show that a loss of function in P. chrysogenum PahA is directly related to penicillin overproduction, and support the historic choice of P. chrysogenum as the industrial producer of penicillin.
Collapse
Affiliation(s)
- Marta Rodríguez-Sáiz
- R&D Biology, Antibióticos S. A., Avenida de Antibióticos 59-61, E-24009 León, Spain
| | | | | |
Collapse
|
38
|
Shimizu K, Hicks JK, Huang TP, Keller NP. Pka, Ras and RGS protein interactions regulate activity of AflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans. Genetics 2004; 165:1095-104. [PMID: 14668367 PMCID: PMC1462812 DOI: 10.1093/genetics/165.3.1095] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sterigmatocystin (ST) is a carcinogenic polyketide produced by several filamentous fungi including Aspergillus nidulans. Expression of ST biosynthetic genes (stc genes) requires activity of a Zn(II)2Cys6 transcription factor, AflR. aflR is transcriptionally and post-transcriptionally regulated by a G-protein/cAMP/protein kinase A (PkaA) signaling pathway involving FlbA, an RGS (regulator of G-protein signaling) protein. Prior genetic data showed that FlbA transcriptional regulation of aflR was PkaA dependent. Here we show that mutation of three PkaA phosphorylation sites in AflR allows resumption of stc expression in an overexpression pkaA background but does not remediate stc expression in a deltaflbA background. This demonstrates negative regulation of AflR activity by phosphorylation and shows that FlbA post-transcriptional regulation of aflR is PkaA independent. AflR nucleocytoplasmic location further supports PkaA-independent regulation of AflR by FlbA. GFP-tagged AflR is localized to the cytoplasm when pkaA is overexpressed but nuclearly located in a deltaflbA background. aflR is also transcriptionally and post-transcriptionally regulated by RasA. RasA transcriptional control of aflR is PkaA independent but RasA post-transcriptional control of AflR is partially mediated by PkaA.
Collapse
Affiliation(s)
- Kiminori Shimizu
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
39
|
Schmitt EK, Bunse A, Janus D, Hoff B, Friedlin E, Kürnsteiner H, Kück U. Winged helix transcription factor CPCR1 is involved in regulation of beta-lactam biosynthesis in the fungus Acremonium chrysogenum. EUKARYOTIC CELL 2004; 3:121-34. [PMID: 14871943 PMCID: PMC329499 DOI: 10.1128/ec.3.1.121-134.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 10/20/2003] [Indexed: 11/20/2022]
Abstract
Winged helix transcription factors, including members of the forkhead and the RFX subclasses, are characteristic for the eukaryotic domains in animals and fungi but seem to be missing in plants. In this study, in vitro and in vivo approaches were used to determine the functional role of the RFX transcription factor CPCR1 from the filamentous fungus Acremonium chrysogenum in cephalosporin C biosynthesis. Gel retardation analyses were applied to identify new binding sites of the transcription factor in an intergenic promoter region of cephalosporin C biosynthesis genes. Here, we illustrate that CPCR1 recognizes and binds at least two sequences in the intergenic region between the pcbAB and pcbC genes. The in vivo relevance of the two sequences for gene activation was demonstrated by using pcbC promoter-lacZ fusions in A. chrysogenum. The deletion of both CPCR1 binding sites resulted in an extensive reduction of reporter gene activity in transgenic strains (to 12% of the activity level of the control). Furthermore, Acremonium transformants with multiple copies of the cpcR1 gene and knockout strains support the idea of CPCR1 being a regulator of cephalosporin C biosynthesis gene expression. Significant differences in pcbC gene transcript levels were obtained with the knockout transformants. More-than-twofold increases in the pcbC transcript level at 24 and 36 h of cultivation were followed by a reduction to approximately 80% from 48 to 96 h in the knockout strain. The overall levels of the production of cephalosporin C were identical in transformed and nontransformed strains; however, the knockout strains showed a striking reduction in the level of the biosynthesis of intermediate penicillin N to less than 20% of that of the recipient strain. We were able to show that the complementation of the cpcR1 gene in the knockout strains reverses pcbC transcript and penicillin N amounts to levels comparable to those in the control. These results clearly indicate the involvement of CPCR1 in the regulation of cephalosporin C biosynthesis. However, the complexity of the data points to a well-controlled or even functional redundant network of transcription factors, with CPCR1 being only one player within this process.
Collapse
Affiliation(s)
- Esther K Schmitt
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Rajendhran J, Gunasekaran P. Recent biotechnological interventions for developing improved penicillin G acylases. J Biosci Bioeng 2004; 97:1-13. [PMID: 16233581 DOI: 10.1016/s1389-1723(04)70157-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 10/02/2003] [Indexed: 10/26/2022]
Abstract
Penicillin G acylase (PAC; EC 3.5.1.11) is the key enzyme used in the industrial production of beta-lactam antibiotics. This enzyme hydrolyzes the side chain of penicillin G and related beta-lactam antibiotics releasing 6-amino penicillanic acid (6-APA), which is the building block in the manufacture of semisynthetic penicillins. PAC from Escherichia coli strain ATCC 11105, Bacillus megaterium strain ATCC 14945 and mutants of these two strains is currently used in industry. Genes encoding for PAC from various bacterial sources have been cloned and overexpressed with significant improvements in transcription, translation and post-translational processing. Recent developments in enzyme engineering have shown that PAC can be modified to gain conformational stability and desired functionality. This review provides an overview of recent advances in the production, stabilization and application of PAC, highlighting the recent biotechnological approaches for the improved catalysis of PAC.
Collapse
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Microbial Technology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, India
| | | |
Collapse
|
41
|
Peñalva MA, Arst HN. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 2002; 66:426-46, table of contents. [PMID: 12208998 PMCID: PMC120796 DOI: 10.1128/mmbr.66.3.426-446.2002] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Life, as we know it, is water based. Exposure to hydroxonium and hydroxide ions is constant and ubiquitous, and the evolutionary pressure to respond appropriately to these ions is likely to be intense. Fungi respond to their environments by tailoring their output of activities destined for the cell surface or beyond to the ambient pH. We are beginning to glimpse how they sense ambient pH and transmit this information to the transcription factor, whose roles ensure that a suitable collection of gene products will be made. Although relatively little is known about pH signal transduction itself, its consequences for the cognate transcription factor are much clearer. Intriguingly, homologues of components of this system mediating the regulation of fungal gene expression by ambient pH are to be found in the animal kingdom. The potential applied importance of this regulatory system lies in its key role in fungal pathogenicity of animals and plants and in its control of fungal production of toxins, antibiotics, and secreted enzymes.
Collapse
|
42
|
Helbig F, Steighardt J, Roos W. Uric acid is a genuine metabolite of Penicillium cyclopium and stimulates the expression of alkaloid biosynthesis in this fungus. Appl Environ Microbiol 2002; 68:1524-33. [PMID: 11916664 PMCID: PMC123850 DOI: 10.1128/aem.68.4.1524-1533.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On searching for endogenous, low-molecular-weight effectors of benzodiazepine alkaloid biosynthesis in Penicillium cyclopium uric acid was isolated from ethanolic or autoclaved mycelial extracts of this fungus. The isolation was based on a three-step high-pressure liquid chromatography procedure guided by a microplate bioassay, and uric acid was identified by mass spectrometry and the uricase reaction. Conidiospore suspensions that were treated with this compound during the early phase of outgrowth developed emerged cultures with an enhanced rate of alkaloid production. Uric acid treatment did not increase the in vitro measurable activity of the rate-limiting biosynthetic enzyme, cyclopeptine synthetase. However, these cultures displayed a reduced rate of uptake of the alkaloid precursor L-phenylalanine into the vacuoles of the hyphal cells as assayed in situ. It is suggested that the depressed capacity of vacuolar uptake caused by the contact of outgrowing spores with uric acid liberated from hyphal cells results in an enhanced availability of the precursor L-phenylalanine in the cytoplasm and thus accounts at least in part for the increase in alkaloid production.
Collapse
Affiliation(s)
- Florian Helbig
- Department of Cellular Physiology, Institute of Pharmaceutical Biology, University of Halle, Halle, Germany
| | | | | |
Collapse
|
43
|
Theilgaard H, van Den Berg M, Mulder C, Bovenberg R, Nielsen J. Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng 2001; 72:379-88. [PMID: 11180058 DOI: 10.1002/1097-0290(20000220)72:4<379::aid-bit1000>3.0.co;2-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The low penicillin-producing, single gene copy strain Wis54-1255 was used to study the effect of overexpressing the penicillin biosynthetic genes in Penicillium chrysogenum. Transformants of Wis54-1255 were obtained with the amdS expression-cassette using the four combinations: pcbAB, pcbC, pcbC-penDE, and pcbAB-pcbC-penDE of the three penicillin biosynthetic genes. Transformants showing an increased penicillin production were investigated during steady-state continuous cultivations with glucose as the growth-limiting substrate. The transformants were characterized with respect to specific penicillin productivity, the activity of the two pathway enzymes delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) and isopenicillin N synthetase (IPNS) and the intracellular concentration of the metabolites: delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), bis-delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (bisACV), isopenicillin N (IPN), glutathione (GSH), and glutathione disulphide (GSSG). Transformants with the whole gene cluster amplified showed the largest increase in specific penicillin productivity (r(p))-124% and 176%, respectively, whereas transformation with the pcbC-penDE gene fragment resulted in a decrease in r(p) of 9% relative to Wis54-1255. A marked increase in r(p) is clearly correlated with a balanced amplification of both the ACVS and IPNS activity or a large amplification of either enzyme activity. The increased capacity of a single enzyme occurs surprisingly only in the transformants where all the three biosynthetic genes are overexpressed but is not found within the group of pcbAB or pcbC transformants. The indication of the pcbAB and pcbC genes being closely regulated in fungi might explain why high-yielding strains of P. chrysogenum have been found to contain amplifications of a large region including the whole penicillin gene cluster and not single gene amplifications. Measurements of the total ACV concentration showed a large span of variability, which reflected the individual status of enzyme overexpression and activity found in each strain. The ratio ACV:bisACV remained constant, also at high ACV concentrations, indicating no limitation in the capacity of the thioredoxin-thioredoxin reductase (TR) system, which is assumed to keep the pathway intermediate LLD-ACV in its reduced state. The total GSH pool was at a constant level of approx. 5.7 mM in all cultivations.
Collapse
Affiliation(s)
- H Theilgaard
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
44
|
Theilgaard HA, van den Berg MA, Mulder CA, Bovenberg RA, Nielsen J. Quantitative analysis ofPenicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng 2001. [DOI: 10.1002/1097-0290(20000220)72:4%3c379::aid-bit1000%3e3.0.co;2-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Molecular transformation, gene cloning, and gene expression systems for filamentous fungi. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Zadra I, Abt B, Parson W, Haas H. xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Appl Environ Microbiol 2000; 66:4810-6. [PMID: 11055928 PMCID: PMC92384 DOI: 10.1128/aem.66.11.4810-4816.2000] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A highly inducible fungal promoter derived from the Penicillium chrysogenum endoxylanase (xylP) gene is described. Northern analysis and the use of a beta-glucuronidase (uidA) reporter gene strategy showed that xylP expression is transcriptionally regulated. Xylan and xylose are efficient inducers, whereas glucose strongly represses the promoter activity. Comparison of the same expression construct as a single copy at the niaD locus in P. chrysogenum and at the argB locus in Aspergillus nidulans demonstrated that the xylP promoter is regulated similarly in these two species but that the level of expression is about 80 times higher in the Aspergillus species. The xylP promoter was found to be 65-fold more efficient than the isopenicillin-N-synthetase (pcbC) promoter in Penicillium and 23-fold more efficient than the nitrate reductase (niaD) promoter in Aspergillus under induced conditions. Furthermore, the xylP promoter was used for controllable antisense RNA synthesis of the nre-encoded putative major nitrogen regulator of P. chrysogenum. This approach led to inducible downregulation of the steady-state mRNA level of nre and consequently to transcriptional repression of the genes responsible for nitrate assimilation. In addition, transcription of nreB, which encodes a negative-acting nitrogen regulatory GATA factor of Penicillium, was found to be subject to regulation by NRE. Our data are the first direct evidence that nre indeed encodes an activator in the nitrogen regulatory circuit in Penicillium and indicate that cross regulation of the controlling factors occurs.
Collapse
Affiliation(s)
- I Zadra
- Department of Microbiology, Medical School of the University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
47
|
Schmitt EK, Kück U. The fungal CPCR1 protein, which binds specifically to beta-lactam biosynthesis genes, is related to human regulatory factor X transcription factors. J Biol Chem 2000; 275:9348-57. [PMID: 10734077 DOI: 10.1074/jbc.275.13.9348] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report the isolation and characterization of a novel transcription factor from the cephalosporin C-producing fungus Acremonium chrysogenum. We have identified a protein binding site in the promoter of the beta-lactam biosynthesis gene pcbC, located 418 nucleotides upstream of the translational start. Using the yeast one-hybrid system, we succeeded in isolating a cDNA clone encoding a polypeptide, which binds specifically to the pcbC promoter. The polypeptid shows significant sequence homology to human transcription factors of the regulatory factor X (RFX) family and was designated CPCR1. A high degree of CPCR1 binding specificity was observed in in vivo and in vitro experiments using mutated versions of the DNA binding site. The A. chrysogenum RFX protein CPCR1 recognizes an imperfect palindrome, which resembles binding sites of human RFX transcription factors. One- and two-hybrid experiments with truncated versions of CPCR1 showed that the protein forms a DNA binding homodimer. Nondenaturing electrophoresis revealed that the CPCR1 protein exists in vitro solely in a multimeric, probably dimeric, state. Finally, we isolated a homologue of the cpcR1 gene from the penicillin-producing fungus Penicillium chrysogenum and determined about 60% identical amino acid residues in the DNA binding domain of both fungal RFX proteins, which show an overall amino acid sequence identity of 29%.
Collapse
Affiliation(s)
- E K Schmitt
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
48
|
Kosalková K, Marcos AT, Fierro F, Hernando-Rico V, Gutiérrez S, Martín JF. A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 2000; 275:2423-30. [PMID: 10644695 DOI: 10.1074/jbc.275.4.2423] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first two genes pcbAB and pcbC of the penicillin biosynthesis pathway are expressed from a 1.01-kilobase bidirectional promoter region. A series of sequential deletions were made in the pcbAB promoter region, and the constructions with the modified promoters coupled to the lacZ reporter gene were introduced as single copies at the pyrG locus in Penicillium chrysogenum npe10. Three regions, boxes A, B, and C, produced a significant decrease in expression of the reporter gene when deleted. Protein-DNA complexes were observed by using the electrophoretic mobility shift assay with boxes A and B (complexes AG1, BG1, BG2, and BL1) but not with box C. Uracil interference assay showed that a protein in P. chrysogenum cell extracts interacts with the thymines in a palindromic heptanucleotide TTAGTAA. Point mutations and deletion of the entire TTAGTAA sequence supported the involvement of this sequence in the binding of a transcriptional activator named penicillin transcriptional activator 1 (PTA1). In vivo studies using constructions carrying point mutations in the TTAGTAA sequence (or a deletion of the complete heptanucleotide) confirmed that this intact sequence is required for high level expression of the pcbAB gene. The TTAGTAA sequence resembles the target sequence of BAS2 (PHO2), a factor required for expression of several genes in yeasts.
Collapse
Affiliation(s)
- K Kosalková
- University of León, Faculty of Biology, Area of Microbiology, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Van Den Brulle J, Steidl S, Brakhage AA. Cloning and characterization of an Aspergillus nidulans gene involved in the regulation of penicillin biosynthesis. Appl Environ Microbiol 1999; 65:5222-8. [PMID: 10583968 PMCID: PMC91708 DOI: 10.1128/aem.65.12.5222-5228.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify regulators of penicillin biosynthesis, a previously isolated mutant of Aspergillus nidulans (Prg-1) which carried the trans-acting prgA1 mutation was used. This mutant also contained fusions of the penicillin biosynthesis genes acvA and ipnA with reporter genes (acvA-uidA and ipnA-lacZ) integrated in a double-copy arrangement at the chromosomal argB gene. The prgA1 mutant strain exhibited only 20 to 50% of the ipnA-lacZ and acvA-uidA expression exhibited by the wild-type strain and had only 20 to 30% of the penicillin produced by the wild-type strain. Here, using complementation with a genomic cosmid library, we isolated a gene (suAprgA1) which complemented the prgA1 phenotype to the wild-type phenotype; i.e., the levels of expression of both gene fusions and penicillin production were nearly wild-type levels. Analysis of the suAprgA1 gene in the prgA1 mutant did not reveal any mutation in the suAprgA1 gene or unusual transcription of the gene. This suggested that the suAprgA1 gene is a suppressor of the prgA1 mutation. The suAprgA1 gene is 1,245 bp long. Its five exons encode a deduced protein that is 303 amino acids long. The putative SUAPRGA1 protein was similar to both the human p32 protein and Mam33p of Saccharomyces cerevisiae. Analysis of the ordered gene library of A. nidulans indicated that suAprgA1 is located on chromosome VI. Deletion of the suAprgA1 gene resulted in an approximately 50% reduction in ipnA-lacZ expression and in a slight reduction in acvA-uidA expression. The DeltasuAprgA1 strain produced about 60% of the amount of penicillin produced by the wild-type strain.
Collapse
Affiliation(s)
- J Van Den Brulle
- Lehrstuhl für Mikrobiologie, Universität München, Munich, Germany
| | | | | |
Collapse
|