1
|
Santucci L, Bernardi S, Vivarelli R, Santorelli FM, Marchese M. Glucose metabolism impairment as a hallmark of progressive myoclonus epilepsies: a focus on neuronal ceroid lipofuscinoses. Front Cell Neurosci 2024; 18:1445003. [PMID: 39364042 PMCID: PMC11447523 DOI: 10.3389/fncel.2024.1445003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024] Open
Abstract
Glucose is the brain's main fuel source, used in both energy and molecular production. Impaired glucose metabolism is associated with adult and pediatric neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), GLUT1 deficiency syndrome, and progressive myoclonus epilepsies (PMEs). PMEs, a group of neurological disorders typical of childhood and adolescence, account for 1% of all epileptic diseases in this population worldwide. Diffuse glucose hypometabolism is observed in the brains of patients affected by PMEs such as Lafora disease (LD), dentatorubral-pallidoluysian (DRPLA) atrophy, Unverricht-Lundborg disease (ULD), and myoclonus epilepsy with ragged red fibers (MERRFs). PMEs also include neuronal ceroid lipofuscinoses (NCLs), a subgroup in which lysosomal and autophagy dysfunction leads to progressive loss of vision, brain atrophy, and cognitive decline. We examine the role of impaired glucose metabolism in neurodegenerative diseases, particularly in the NCLs. Our literature review, which includes findings from case reports and animal studies, reveals that glucose hypometabolism is still poorly characterized both in vitro and in vivo in the different NCLs. Better identification of the glucose metabolism pathway impaired in the NCLs may open new avenues for evaluating the therapeutic potential of anti-diabetic agents in this population and thus raise the prospect of a therapeutic approach able to delay or even halt disease progression.
Collapse
Affiliation(s)
- Lorenzo Santucci
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | - Sara Bernardi
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Rachele Vivarelli
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | | | - Maria Marchese
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| |
Collapse
|
2
|
Gavrilova SI, Alvarez A. Cerebrolysin in the therapy of mild cognitive impairment and dementia due to Alzheimer's disease: 30 years of clinical use. Med Res Rev 2020; 41:2775-2803. [PMID: 32808294 DOI: 10.1002/med.21722] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most common neurocognitive disorder and a global health problem. The prevalence of AD is growing dramatically, especially in low- and middle-income countries, and will reach 131.5 million cases worldwide by 2050. Therefore, developing a disease-modifying therapy capable of delaying or even preventing the onset and progression of AD has become a world priority, and is an unmet need. The pathogenesis of AD, considered as the result of an imbalance between resilience and risk factors, begins many years before the typical clinical picture develops and involves multiple pathophysiological mechanisms. Since the pathophysiology of AD is multifactorial, it is not surprising that all attempts done to modify the disease course with drugs directed towards a single therapeutic target have been unsuccessful. Thus, combined modality therapy, using multiple drugs with a single mechanism of action or multi-target drugs, appears as the most promising strategy for both effective AD therapy and prevention. Cerebrolysin, acting as a multitarget peptidergic drug with a neurotrophic mode of action, exerts long-lasting therapeutic effects on AD that could reflect its potential utility for disease modification. Clinical trials demonstrated that Cerebrolysin is safe and efficacious in the treatment of AD, and may enhance and prolong the efficacy of cholinergic drugs, particularly in moderate to advanced AD patients. In this review, we summarize advances of therapeutic relevance in the pathogenesis and the biomarkers of AD, paying special attention to neurotrophic factors, and present results of preclinical and clinical investigations with Cerebrolysin in AD.
Collapse
Affiliation(s)
- Svetlana I Gavrilova
- Department of Geriatric Psychiatry, Cognitive Disorders and Alzheimer's Disease Unit, Mental Health Research Center, Moscow, Russia
| | - Anton Alvarez
- Department of Neuropsychiatry, Medinova Institute of Neurosciences, Clinica RehaSalud, A Coruña, Spain.,Clinical Research Department, QPS Holdings, A Coruña, Spain
| |
Collapse
|
3
|
Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472:1299-1343. [PMID: 32789766 PMCID: PMC7462931 DOI: 10.1007/s00424-020-02441-x] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters in capillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-d-glucose cotransporters SGLT1 are expressed. The glucose transporters mediate uptake of d-glucose across the blood-brain barrier and delivery of d-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demands in response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified and proposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based on experiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and their cerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, and SGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functional changes of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer’s disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy deficiency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome.
Collapse
|
4
|
Muro S. Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders. Drug Deliv Transl Res 2015; 2:169-86. [PMID: 24688886 DOI: 10.1007/s13346-012-0072-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of about fifty life-threatening conditions caused by genetic defects affecting lysosomal components. The underscoring molecular deficiency leads to widespread cellular dysfunction through most tissues in the body, including peripheral organs and the central nervous system (CNS). Efforts during the last few decades have rendered a remarkable advance regarding our knowledge, medical awareness, and early detection of these genetic defects, as well as development of several treatment modalities. Clinical and experimental strategies encompassing enzyme replacement, gene and cell therapies, substrate reduction, and chemical chaperones are showing considerable potential in attenuating the peripheral pathology. However, a major drawback has been encountered regarding the suboptimal impact of these approaches on the CNS pathology. Particular anatomical and biochemical constraints of this tissue pose a major obstacle to the delivery of therapeutics into the CNS. Approaches to overcome these obstacles include modalities of local administration, strategies to enhance the blood-CNS permeability, intranasal delivery, use of exosomes, and those exploiting targeting of transporters and transcytosis pathways in the endothelial lining. The later two approaches are being pursued at the time by coupling therapeutic agents to affinity moieties and drug delivery systems capable of targeting these natural transport routes. This approach is particularly promising, as using paths naturally active at this interface may render safe and effective delivery of LSD therapies into the CNS.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research University of Maryland, College Park, MD, 20742, USA ; Fischell Dept. of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
5
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
6
|
Cura AJ, Carruthers A. AMP kinase regulation of sugar transport in brain capillary endothelial cells during acute metabolic stress. Am J Physiol Cell Physiol 2012; 303:C806-14. [PMID: 22763120 DOI: 10.1152/ajpcell.00437.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP-dependent kinase (AMPK) and GLUT1-mediated sugar transport in blood-brain barrier endothelial cells are activated during acute cellular metabolic stress. Using murine brain microvasculature endothelium bEnd.3 cells, we show that AMPK phosphorylation and stimulation of 3-O-methylglucose transport by the AMPK agonist AICAR are inhibited in a dose-dependent manner by the AMPK antagonist Compound C. AMPK α1- or AMPK α2-knockdown by RNA interference or AMPK inhibition by Compound C reduces AMPK phosphorylation and 3-O-methylglucose transport stimulation induced by cellular glucose-depletion, by potassium cyanide (KCN), or by carbonyl cyanide-p-trifluoromethoxy-phenylhydrazone (FCCP). Cell surface biotinylation studies reveal that plasma membrane GLUT1 levels are increased two- to threefold by cellular glucose depletion, AICAR or KCN treatment, and that these increases are prevented by Compound C and by AMPK α1- or α2-knockdown. These results support the hypothesis that AMPK activation in blood-brain barrier-derived endothelial cells directs the trafficking of GLUT1 intracellular pools to the plasma membrane, thereby increasing endothelial sugar transport capacity.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, USA
| | | |
Collapse
|
7
|
Banks WA. Drug delivery to the brain in Alzheimer's disease: consideration of the blood-brain barrier. Adv Drug Deliv Rev 2012; 64:629-39. [PMID: 22202501 DOI: 10.1016/j.addr.2011.12.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
The successful treatment of Alzheimer's disease (AD) will require drugs that can negotiate the blood-brain barrier (BBB). However, the BBB is not simply a physical barrier, but a complex interface that is in intimate communication with the rest of the central nervous system (CNS) and influenced by peripheral tissues. This review examines three aspects of the BBB in AD. First, it considers how the BBB may be contributing to the onset and progression of AD. In this regard, the BBB itself is a therapeutic target in the treatment of AD. Second, it examines how the BBB restricts drugs that might otherwise be useful in the treatment of AD and examines strategies being developed to deliver drugs to the CNS for the treatment of AD. Third, it considers how drug penetration across the AD BBB may differ from the BBB of normal aging. In this case, those differences can complicate the treatment of CNS diseases such as depression, delirium, psychoses, and pain control in the AD population.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA , USA.
| |
Collapse
|
8
|
Adeli K. Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. Am J Physiol Endocrinol Metab 2011; 301:E1051-64. [PMID: 21971522 DOI: 10.1152/ajpendo.00399.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulated cell metabolism involves acute and chronic regulation of gene expression by various nutritional and endocrine stimuli. To respond effectively to endogenous and exogenous signals, cells require rapid response mechanisms to modulate transcript expression and protein synthesis and cannot, in most cases, rely on control of transcriptional initiation that requires hours to take effect. Thus, co- and posttranslational mechanisms have been increasingly recognized as key modulators of metabolic function. This review highlights the critical role of mRNA translational control in modulation of global protein synthesis as well as specific protein factors that regulate metabolic function. First, the complex lifecycle of eukaryotic mRNAs will be reviewed, including our current understanding of translational control mechanisms, regulation by RNA binding proteins and microRNAs, and the role of RNA granules, including processing bodies and stress granules. Second, the current evidence linking regulation of mRNA translation with normal physiological and metabolic pathways and the associated disease states are reviewed. A growing body of evidence supports a key role of translational control in metabolic regulation and implicates translational mechanisms in the pathogenesis of metabolic disorders such as type 2 diabetes. The review also highlights translational control of apolipoprotein B (apoB) mRNA by insulin as a clear example of endocrine modulation of mRNA translation to bring about changes in specific metabolic pathways. Recent findings made on the role of 5'-untranslated regions (5'-UTR), 3'-UTR, RNA binding proteins, and RNA granules in mediating insulin regulation of apoB mRNA translation, apoB protein synthesis, and hepatic lipoprotein production are discussed.
Collapse
Affiliation(s)
- Khosrow Adeli
- Program in Molecular Structure & Function, Research Institute, The Hospital for Sick Children, Atrium 3653, 555 University Ave., Toronto, ON, M5G 1X8 Canada.
| |
Collapse
|
9
|
Muresanu DF, Alvarez XA, Moessler H, Novak PH, Stan A, Buzoianu A, Bajenaru O, Popescu BO. Persistence of the effects of Cerebrolysin on cognition and qEEG slowing in vascular dementia patients: Results of a 3-month extension study. J Neurol Sci 2010; 299:179-83. [DOI: 10.1016/j.jns.2010.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
|
10
|
Cura AJ, Carruthers A. Acute modulation of sugar transport in brain capillary endothelial cell cultures during activation of the metabolic stress pathway. J Biol Chem 2010; 285:15430-15439. [PMID: 20231288 DOI: 10.1074/jbc.m110.110593] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GLUT1-catalyzed equilibrative sugar transport across the mammalian blood-brain barrier is stimulated during acute and chronic metabolic stress; however, the mechanism of acute transport regulation is unknown. We have examined acute sugar transport regulation in the murine brain microvasculature endothelial cell line bEnd.3. Acute cellular metabolic stress was induced by glucose depletion, by potassium cyanide, or by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, which reduce or deplete intracellular ATP within 15 min. This results in a 1.7-7-fold increase in V(max) for zero-trans 3-O-methylglucose uptake (sugar uptake into sugar-free cells) and a 3-10-fold increase in V(max) for equilibrium exchange transport (intracellular [sugar] = extracellular [sugar]). GLUT1, GLUT8, and GLUT9 mRNAs are detected in bEnd.3 cells where GLUT1 mRNA levels are 33-fold greater than levels of GLUT8 or GLUT9 mRNA. Neither GLUT1 mRNA nor total protein levels are affected by acute metabolic stress. Cell surface biotinylation reveals that plasma membrane GLUT1 levels are increased 2-3-fold by metabolic depletion, although cell surface Na(+),K(+)-ATPase levels remain unaffected by ATP depletion. Treatment with the AMP-activated kinase agonist, AICAR, increases V(max) for net 3-O-methylglucose uptake by 2-fold. Glucose depletion and treatment with potassium cyanide, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and AICAR also increase AMP-dependent kinase phosphorylation in bEnd.3 cells. These results suggest that metabolic stress rapidly stimulates blood-brain barrier endothelial cell sugar transport by acute up-regulation of plasma membrane GLUT1 levels, possibly involving AMP-activated kinase activity.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Anthony Carruthers
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
11
|
Damulin IV, Koberskaya NN, Mkhitaryan EA. Effects of cerebrolysin on moderate cognitive impairments in cerebral vascular insufficiency (a clinical-electrophysiological study). ACTA ACUST UNITED AC 2008; 38:639-45. [PMID: 18607744 DOI: 10.1007/s11055-008-9014-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The efficacy of treatment with cerebrolysin was studied in 40 patients with cerebral vascular insufficiency. Cerebrolysin (20 daily i.v. infusions of 10 ml in 200 ml of physiological saline) was found to be an effective means of treating this group of patients. Courses of cerebrolysin treatment decreased the severity of memory and attention impairments, improving the overall cognitive status of the patients. Clinical observations and neuropsychological testing were supported by electrophysiological results, in terms of the P300 cognitive evoked potential. The effects of treatment at the doses used here were delayed and were seen three months after completion of treatment.
Collapse
Affiliation(s)
- I V Damulin
- Department of Nervous Diseases, I. M. Sechenov Moscow Medical Academy, Moscow, Russia
| | | | | |
Collapse
|
12
|
A pilot study to evaluate the effects of Cerebrolysin on cognition and qEEG in vascular dementia: Cognitive improvement correlates with qEEG acceleration. J Neurol Sci 2008; 267:112-9. [DOI: 10.1016/j.jns.2007.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 09/26/2007] [Accepted: 10/04/2007] [Indexed: 11/24/2022]
|
13
|
Reductions in qEEG slowing over 1 year and after treatment with Cerebrolysin in patients with moderate-severe traumatic brain injury. J Neural Transm (Vienna) 2008; 115:683-92. [PMID: 18273537 DOI: 10.1007/s00702-008-0024-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
Changes in quantitative EEG (qEEG) recordings over a 1-year period and the effects of Cerebrolysin (Cere) on qEEG slowing and cognitive performance were investigated in postacute moderate-severe traumatic brain injury (TBI) patients. Time-related changes in qEEG activity frequency bands (increases of alpha and beta, and reductions of theta and delta relative power) and in qEEG slowing (reduction of EEG power ratio) were statistically significant in patients with a disease progress of less than 2 years at baseline, but not in those patients having a longer disease progress time. Slowing of qEEG activity was also found to be significantly reduced in TBI patients after 1 month of treatment with Cere and 3 months later. Therefore, Cere seems to accelerate the time-related reduction of qEEG slowing occurring in untreated patients. The decrease of qEEG slowing induced by Cere correlated with the improvement of attention and working memory. Results of this exploratory study suggest that Cere might improve the functional recovery after brain injury and encourage the conduction of further controlled clinical trials.
Collapse
|
14
|
Windisch M, Hutter-Paier B, Grygar E, Doppler E, Moessler H. N-PEP-12 – a novel peptide compound that protects cortical neurons in culture against different age and disease associated lesions. J Neural Transm (Vienna) 2005; 112:1331-43. [PMID: 15750682 DOI: 10.1007/s00702-005-0283-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 01/15/2005] [Indexed: 10/25/2022]
Abstract
The neuroprotective potency of N-PEP-12, a novel, proprietary compound consisting of biopeptides and amino acids was investigated. Lesion models have been applied in neuronal cultures of embryonic chicken cortex, pre-treated with N-PEP-12 from the first day onwards. On day 8 in vitro neurons were lesioned and cell viability was measured 24 and 48 hours later. To simulate acute brain ischemia, cytotoxic hypoxia was induced by sodium cyanide or by iodoacetate and excitotoxicity by L-glutamate. Ionomycin for up to 48 hours induced calcium overload. The cytoskeleton was disrupted by addition of colchicine. N-PEP-12 shows dose-dependent neuroprotection in all different models. The effect size depends on the recovery time but also on the extent of the lesion. In cases of mild to moderate lesion pronounced dose-dependent effects could be demonstrated. This indicates that chronic exposure to N-PEP-12 is able to prevent neuronal cell death associated to conditions occurring during normal aging and neurological disorders like ischemic stroke, hypoxia, brain trauma, or AD.
Collapse
Affiliation(s)
- M Windisch
- JSW-Research Forschungslabor GmbH, Graz, Austria.
| | | | | | | | | |
Collapse
|
15
|
Abstract
N-PEP-12 is a derivative of cerebrolysin, a brain-derived neuropeptide compound that has been approved for the treatment of Alzheimer's disease (AD) in more than 30 countries. N-PEP-12 is much less potent than cerebrolysin but it can be administered orally whereas the parent compound must be administered through multiple intravenous infusions. This study was undertaken to determine whether N-PEP-12 is effective in improving memory and other cognitive abilities among healthy older adults who have experienced 'normal' age-related memory loss. Subjects were 54 males and females, aged 50 years and older, who presented both subjective and objective evidence of memory loss since early adulthood. The study was a fully randomized, double-blind comparison of N-PEP-12 and placebo. Cognitive assessments were performed at baseline and following 30 days of treatment. The primary outcome measure was the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-cog) Memory score, with the Syndrom Kurz Test (SKT) test, digit cancellation, digit span, verbal fluency and clinical ratings as secondary outcomes. N-PEP-12 treated subjects performed better than placebo-treated subjects on the ADAS-cog Memory score, the SKT, clinical ratings and some, but not other tests. N-PEP-12 may be an effective treatment for memory loss in healthy older adults.
Collapse
|
16
|
Choeiri C, Staines W, Miki T, Seino S, Messier C. Glucose transporter plasticity during memory processing. Neuroscience 2005; 130:591-600. [PMID: 15590143 DOI: 10.1016/j.neuroscience.2004.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Various types of learning, including operant conditioning, induce an increase in cellular activation concomitant with an increase in local cerebral glucose utilization (LCGU). This increase is mediated by increased cerebral blood flow or changes in brain capillary density and diameter. Because glucose transporters are ultimately responsible for glucose uptake, we examined their plastic expression in response to cellular activation. In vitro and in vivo studies have demonstrated that cerebral glucose transporter 1 (GLUT1) expression consistently parallels changes in LCGU. The present study is the first to investigate the effect of memory processing on glucose transporters expression. Changes in GLUT expression produced by training in an operant conditioning task were measured in the brain of CD1 mice. Using semi-quantitative immunohistochemistry, Western blot and real time RT-PCR the cerebral GLUT1 and GLUT3 expression was quantified immediately, 220 min and 24 h following training. Relative to sham-trained and naive controls, operant conditioning training induced an immediate increase in GLUT1 immunoreactivity level in the hippocampus CA1 pyramidal cells as well as in the sensorimotor cortex. At longer post-learning delays, GLUT1 immunoreactivity decreased in the sensorimotor cortex and putamen. Parallel to the changes in protein levels, hippocampus GLUT1 mRNA level also increased immediately following learning. No effect of learning was found on hippocampal GLUT3 protein or mRNA expression. Measures of changes in glucose transporters expression present a link between cellular activation and glucose metabolism. The learning-induced localized increases in GLUT1 protein as well as mRNA levels observed in the present study confirm the previous findings that GLUT1 expression is plastic and respond to changes in cellular metabolic demands.
Collapse
Affiliation(s)
- C Choeiri
- School of Psychology, University of Ottawa, 11 Marie Curie, Room 215, Ottawa, Ontario, Canada K1N 6N5
| | | | | | | | | |
Collapse
|
17
|
Zhang H, Zhang X, Xu B. Analysis and determination of biological activity of short-chain peptides from porcine brain hydrolysate. J Pharm Biomed Anal 2005; 37:333-9. [PMID: 15708675 DOI: 10.1016/j.jpba.2004.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 10/23/2004] [Accepted: 10/25/2004] [Indexed: 11/18/2022]
Abstract
Gel permeation chromatography fractions of short-chain peptides from a hydrolysate product, which in turn was from the purified porcine brain through enzyme hydrolysis, were tested for their biological activities. The results showed that the fractions A4 and A5 had significant biological activities. The two fractions were analyzed with analytical techniques such as high-performance liquid chromatography (HPLC), capillary zone electrophoresis (CZE), isoelectric focusing (IEF), discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Preliminary results showed that the main components of these two fractions were short-chain acidic peptides with a relative molecular mass (M(r)) of less than 2400.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Analytical Chemistry, School of Pharmaceutical Science, Capital University of Medical Sciences, Beijing 100054, PR China
| | | | | |
Collapse
|
18
|
Abstract
Neurovascular and neurometabolic coupling help the brain to maintain an appropriate energy flow to the neural tissue under conditions of increased neuronal activity. Both coupling phenomena provide us, in addition, with two macroscopically measurable parameters, blood flow and intermediate metabolite fluxes, that are used to dynamically image the functioning brain. The main energy substrate for the brain is glucose, which is metabolized by glycolysis and oxidative breakdown in both astrocytes and neurons. Neuronal activation triggers increased glucose consumption and glucose demand, with new glucose being brought in by stimulated blood flow and glucose transport over the blood-brain barrier. Glucose is shuttled over the barrier by the GLUT-1 transporter, which, like all transporter proteins, has a ceiling above which no further stimulation of the transport is possible. Blood-brain barrier glucose transport is generally accepted as a nonrate-limiting step but to prevent it from becoming rate-limiting under conditions of neuronal activation, it might be necessary for the transport parameters to be adapted to the increased glucose demand. It is proposed that the blood-brain barrier glucose transport parameters are dynamically adapted to the increased glucose needs of the neural tissue after activation according to a neurobarrier coupling scheme. This review presents neurobarrier coupling within the current knowledge on neurovascular and neurometabolic coupling, and considers arguments and evidence in support of this hypothesis.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Physiology and Pathophysiology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
19
|
Naftalin RJ, Cunningham P, Afzal-Ahmed I. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport. Br J Pharmacol 2004; 142:594-608. [PMID: 15148255 PMCID: PMC1574967 DOI: 10.1038/sj.bjp.0705798] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
1 Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide galanin in human erythrocytes in vitro. 2 The potencies of nootropic drugs in opposing scopolamine-induced memory loss correlate with their potencies in antagonising pentobarbital inhibition of erythrocyte glucose transport in vitro (P<0.01). Less potent nootropics, D-levetiracetam and D-pyroglutamate, have higher antagonist Ki's against pentobarbital inhibition of glucose transport than more potent L-stereoisomers (P<0.001). 3 Piracetam and TRH have no direct effects on net glucose transport, but competitively antagonise hypnotic drug inhibition of glucose transport. Other nootropics, like aniracetam and levetiracetam, while antagonising pentobarbital action, also inhibit glucose transport. Analeptics like bemigride and methamphetamine are more potent inhibitors of glucose transport than antagonists of hypnotic action on glucose transport. 4 There are similarities between amino-acid sequences in human glucose transport protein isoform 1 (GLUT1) and the benzodiazepine-binding domains of GABAA (gamma amino butyric acid) receptor subunits. Mapped on a 3D template of GLUT1, these homologies suggest that the site of diazepam and piracetam interaction is a pocket outside the central hydrophilic pore region. 5 Nootropic pyrrolidone antagonism of hypnotic drug inhibition of glucose transport in vitro may be an analogue of TRH antagonism of galanin-induced narcosis.
Collapse
Affiliation(s)
- Richard J Naftalin
- Physiology Division, Centre for Vascular Biology and Medicine, King's College London, Guy's Campus, New Hunt's House, London SE1 1UL.
| | | | | |
Collapse
|
20
|
Klepper J, Diefenbach S, Kohlschütter A, Voit T. Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome. Prostaglandins Leukot Essent Fatty Acids 2004; 70:321-7. [PMID: 14769490 DOI: 10.1016/j.plefa.2003.07.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 07/01/2003] [Indexed: 11/23/2022]
Abstract
The ketogenic diet (KD), established to treat intractable childhood epilepsy, has emerged as the principal treatment of GLUT1 deficiency syndrome (OMIM 606777). This defect of glucose transport into the brain results in hypoglycorrhachia causing epilepsy, developmental delay, and a complex motor disorder in early childhood. Ketones provided by a high-fat, low-carbohydrate diet serve as an alternative fuel to the brain. Glucose, lactate, lipids, and ketones in blood and cerebrospinal fluid were investigated in five GLUT1-deficient patients before and on the KD. Hypoglycorrhachia was detected in the non-ketotic and ketotic state. In ketosis, lactate concentrations in the cerebrospinal fluid increased moderately. The CSF/blood ratio for acetoacetate was higher compared to beta-hydroxybutyrate. Free fatty acids did not enter the brain in significant amounts. Blood concentrations of essential fatty acids determined in 18 GLUT1-deficient patients on the KD were sufficient in all age groups. The effects of the KD in GLUT1 deficiency syndrome, particularly the course of blood lipids, are discussed in an illustrative case. In this syndrome, the KD effectively restores brain energy metabolism. Ketosis does not influence impaired GLUT1-mediated glucose transport into brain: hypoglycorrhachia, the biochemical hallmark of the disease, can be identified in GLUT1-deficient patients on a KD. The effects of ketosis on the concentrations of glucose, lactate, ketones, and fatty acids in blood and cerebrospinal fluid in this entity are discussed in view of previous data on ketosis in man.
Collapse
Affiliation(s)
- Jörg Klepper
- Department of Pediatric Neurology, University of Essen, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | | | |
Collapse
|
21
|
Dwyer DS, Vannucci SJ, Simpson IA. Expression, regulation, and functional role of glucose transporters (GLUTs) in brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:159-88. [PMID: 12420359 DOI: 10.1016/s0074-7742(02)51005-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Donard S Dwyer
- Departments of Psychiatry and Pharmacology, LSU Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
22
|
Eder P, Reinprecht I, Schreiner E, Skofitsch G, Windisch M. Increased density of glutamate receptor subunit 1 due to Cerebrolysin treatment: an immunohistochemical study on aged rats. THE HISTOCHEMICAL JOURNAL 2001; 33:605-12. [PMID: 12197668 DOI: 10.1023/a:1016394031947] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamate receptor subunit 1 (GluR1) is one of the four possible subunits of the AMPA-type glutamate receptor. The integrity of this receptor is crucial for learning processes. However, reductions of GluR1 are noticeable in the hippocampal formation of patients suffering from Alzheimer's disease. Such degradations presumably result in an impaired synaptic communication and might be causally linked to the neurodegenerative process in this cognitive disorder. The peptidergic drug Cerebrolysin counteracts cognitive deficits of patients affected by Alzheimer's disease. These findings are supported by experiments revealing neuroprotective and neurotrophic capacities of the drug. In order to examine the effect of the drug on the density of GluR1 in hippocampal formation 24-month-old rats were treated with either Cerebrolysin or its peptide fraction E021, or saline as a control. Spatial navigation of the animals was tested in the Morris water maze. Rat brain slices were stained immunohistochemically with a GluR1-specific antibody. GluR1 immunoreactivity was quantified using light microscopy and a computerised image analysis system. Cerebrolysin and E021 increased GluR1 density in most measured regions of the hippocampal formation in a highly significant way. These results correlate with the behavioural outcome, revealing an improvement in learning and memory of these rats after treatment with Cerebrolysin and E021.
Collapse
Affiliation(s)
- P Eder
- Institute of Experimental Pharmacology, JSW-Research, Graz, Austria
| | | | | | | | | |
Collapse
|
23
|
Boado RJ. Amplification of blood-brain barrier GLUT1 glucose transporter gene expression by brain-derived peptides. Neurosci Res 2001; 40:337-42. [PMID: 11463479 DOI: 10.1016/s0168-0102(01)00246-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucose is a critical nutrient for the brain, and the transport of this hexose from blood to brain is mediated by the blood-brain barrier (BBB) GLUT1 glucose transporter. The expression of the BBB-GLUT1 gene is compromised in different pathological conditions and it is modulated by brain trophic factors. The brain-derived peptide preparation Cerebrolysin (Cl, EBEWE, Austria) increases the expression of the BBB-GLUT1 via mRNA stabilization. In order to gain more insights into the mechanism of BBB-GLUT1 gene regulation, the present investigation studied the effect of Cl on the expression of both the GLUT1 protein and GLUT1 reporter genes in brain endothelial cultured cells (ECL). Cl markedly increased the expression of reporter genes containing GLUT1 translational control elements and cis-acting elements involved in the stabilization of the GLUT1 mRNA transcript in a dose dependent manner. Cl produced only marginal effects on the reporter gene control lacking the GLUT1 regulatory elements. In parallel experiments, Cl markedly increased the uptake of 3H-2-deoxy-D-glucose and the levels of the GLUT1 protein measured by ELISA. Data presented here demonstrate: (i) that Cl increases the expression of BBB-GLUT1 reporter genes containing regulatory cis-elements involved in the stabilization and translation of the GLUT1 transcript; (ii) that the effect on both regulatory elements cooperates to increase gene expression; and (iii) that the increased levels of the BBB-GLUT1 reporter genes in Cl-treated ECL cells are associated with an increase in the glucose uptake and in the expression of the GLUT1 protein.
Collapse
Affiliation(s)
- R J Boado
- Department of Medicine and Brain Research Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Gschanes A, Boado R, Sametz W, Windisch M. The drug cerebrolysin and its peptide fraction E021 increase the abundance of the blood-brain barrier GLUT1 glucose transporter in brains of young and old rats. THE HISTOCHEMICAL JOURNAL 2000; 32:71-7. [PMID: 10816070 DOI: 10.1023/a:1004003008683] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The brain-derived peptidergic drug Cerebrolysin has been found to support the survival of neurons in vitro and in vivo. In the present study, we investigated the effects of Cerebrolysin and its peptide preparation E021 on spatial learning and memory, as well as on the abundance of the blood-brain barrier GLUT1 glucose transporter (GLUT1) in 2-month-old and 24-month-old rats. Young rats were treated with the drugs or saline (2.5 ml/kg/day) daily on postnatal days 1-7, and old rats for 19 consecutive days. For behavioural testing the Morris water maze was used. The abundance of GLUT1 was determined in brain slices by immunocytochemistry. Quantification of the density of the GLUT1 immunostaining was performed using light microscopy and a computerised image analysing system. All drug-treated rats, young and old, exhibit shorter escape latencies in the water maze, on all testing days (p < 0.01), indicating improved cognitive performance. Immunohistochemical data show an age-related decrease of the density of GLUTI (p < 0.05). In young animals, the administration of the drugs led to an increase of the abundance of GLUT1 in all experimental groups (p < 0.01). In old rats, the treatment with Cerebrolysin, but not with E021, resulted in an increase in the immunoreactive GLUT1 (p < 0.01). The elevated abundance of GLUT1 after the administration of both peptidergic substances might be supportive for the cognitive effects of this drug, by causing an improved nutritional supply of glucose to the neurons.
Collapse
Affiliation(s)
- A Gschanes
- Institute of Experimental Pharmacology, Research Initiative Ebewe, Graz, Austria
| | | | | | | |
Collapse
|
25
|
Boado RJ. Post-transcription modulation of the blood-brain barrier GLUT1 glucose transporter by brain-derived factors. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2000; 59:255-61. [PMID: 10961437 DOI: 10.1007/978-3-7091-6781-6_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Brain-derived peptides or factors in the brain-derived preparation Cerebrolysin (Cl, EBEWE, Austria) increase the expression of the blood-brain barrier (BBB) GLUT1 glucose transporter via mRNA stabilization. The post-transcriptional regulation of the BBB-GLUT1 gene is principally exerted by interaction of cis-regulatory elements located in the 3'-untranslated region of GLUT1 mRNA with cellular trans-acting factors (TAF). UV-cross linking and RNase T1 protection studies demonstrated the presence of 2 major GLUT1 RNA-TAF complexes named p88 (stabilizing) and the p44 (destabilizing). The p88 TAF was detected in cytosol of brain endothelial cultured cells (ECL) as a duplex of molecular weight of approximately 88 kDa, which were defined A and B (high and low MW, respectively). Cl markedly increased the abundance of the BBB-GLUT1 p88 TAF (complex B) in ECL cells, without changes in the levels of the p88 complex A. This was also confirmed by antisense oligomer displacement of the GLUT1 RNA-TAF complex formation. Cl per se, did not bind to the GLUT1 mRNA, nor induced the expression of the destabilizing p44 TAF. Data presented here suggest that the increased stabilization of the GLUT1 transcript induced by Cl is associated with augmented levels of the GLUT1 stabilizing p88 TAF.
Collapse
Affiliation(s)
- R J Boado
- Department of Medicine and Brain Research Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Windisch M. Approach towards an integrative drug treatment of Alzheimer's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2000; 59:301-13. [PMID: 10961442 DOI: 10.1007/978-3-7091-6781-6_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
At present pharmacotherapy of Alzheimer's disease (AD) is limited to acetylcholinesterase inhibitors. These drugs produce small, but consistent improvements of memory and global function, some are also positively influencing activities of daily living. This therapeutic approach neglects the complexity of AD and the fact that most of the degenerating neurons are not cholinergic. Acetylcholinesterase inhibitors are symptomatic drugs, with no influence on disease progression. There is a need for disease modifying compounds, or preventive drugs. Data are indicating that vitamin E has some ability to influence the disease progression. The potency of non-steroidal anti-inflammatory drugs (NSAIDs) or estrogen as preventive agents has to be explored further in prospective clinical studies. The initial hope in the use of naturally occurring neurotrophic factors, like nerve growth factor, to rescue cholinergic neurons from degeneration and to restore cognitive function has been disappointed in first, small clinical studies. The peptidergic drug Cerebrolysin exhibiting neurotrophic stimulation, neuroimmunotrophic regulation and induction of BBB glucose transporter expression, might be able to address the pathological changes of AD at different levels simultaneously. In addition to an impressive preclinical database, results from 3 placebo-controlled, double-blind studies demonstrate significant improvements of cognitive performance, global function and activities of daily living in AD patients. In all studies persisting improvements, up to 6 months after drug withdrawal, indicate a powerful disease modifying activity.
Collapse
Affiliation(s)
- M Windisch
- JSW-Research Forschungslabor Graz, Austria
| |
Collapse
|