1
|
Lin Z, Jiang S, Zwe YH, Zhang K, Li D. Glycogen plays a key role in survival of Salmonella Typhimurium on dry surfaces and in low-moisture foods. Food Res Int 2024; 175:113714. [PMID: 38128983 DOI: 10.1016/j.foodres.2023.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Salmonella enterica is known to survive in desiccate environments and is often associated with low-moisture foods (LMFs). In this work, S. Typhimurium ATCC 14028 was found to survive better by achieving the least reductions (3.17 ± 0.20 Log CFU reduction) compared to S. Tennessee ATCC 10722 (3.82 ± 0.13 Log CFU reduction) and S. Newport ATCC 6962 (6.03 ± 0.36 Log CFU reduction) after 30 days on surfaces with a relative humidity of 49% at ambient temperature. A metabolomic analysis revealed that S. Typhimurium was still active in energy metabolism after 24 h in the desiccate environment and glycogen, an energy reserve, was drastically reduced. We followed up on the glycogen levels over 30 days and found indeed a sharp decline on the first day. However, the glycogens detected on day 7 were significantly higher (P < 0.05) and thereafter remained stable above the original levels until day 30. The expression levels of both glycogen anabolism- and catabolism-related genes (csrA, glgA, glgC, glgX) were significantly up-regulated at all tested points (P < 0.05). The glgA and glgC insertion mutants displayed weaker survivability on both dry surfaces and in representative LMFs (flour and milk powder) compared to the wild-type strain. This work highlights the role of glycogen during different periods of desiccation, which may bring novel insight into mitigating Salmonella by disrupting glycogen metabolism.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore
| | - Shaoqian Jiang
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore
| | - Ye Htut Zwe
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore; National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Kexin Zhang
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore
| | - Dan Li
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
2
|
Mirbagheri VS, Alishahi A, Ahmadian G, Petroudi SHH, Ojagh SM, Romanazzi G. Recent findings in molecular reactions of E. coli as exposed to alkylated, nano- and ordinary chitosans. Int J Biol Macromol 2023; 253:127006. [PMID: 37734522 DOI: 10.1016/j.ijbiomac.2023.127006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The antibacterial effects of chitosan have been widely studied, but the underlying molecular mechanisms are not fully understood. We investigated the molecular responses of Escherichia coli MG1655 cell, a model gram-negative bacterium, upon exposure to chitosan (Cs), alkylated Cs (AlkCs), and chitosan nanoparticles (CsNPs). Nine target genes involved in relevant signaling pathways (ompF, ompC, ompA, mrcA, mrcB, mgtA, glnA, kdpA, lptA) were selected for analysis. A significant reduction in the expression of mrcA, mgtA, glnA, and lptA genes was observed in the cells treated with Cs. Those treated with Cs, AlkCs, and CsNPs revealed an increase in ompF gene expression, but the expression level was lower in the cells treated with AlkCs and CsNPs compared to Cs. This increase in porin expression suggests compromised membrane integrity and disrupted nutrient transport. In addition, the changes in the expression of mgtA, kdpA, and glnA are related to different effects on membrane permeability. The higher expression in the genes mrcA and mrcB is associated with morphological changes of cells treated with AlkCs and CsNPs. These findings contribute to our understanding of the molecular mechanisms underlying chitosan-induced stress responses and provide insights for the development of safer antimicrobial compounds in the future.
Collapse
Affiliation(s)
- Vasighe Sadat Mirbagheri
- Faculty of Fisheries and Environment Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan, Iran
| | - Alireza Alishahi
- Faculty of Fisheries and Environment Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan, Iran.
| | - Gholamreza Ahmadian
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Seyyed Hamidreza Hashemi Petroudi
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, PO Box 578, Sari, Iran
| | - Seyed Mahdi Ojagh
- Faculty of Fisheries and Environment Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan, Iran
| | | |
Collapse
|
3
|
Luo W, Tang J, Wang B, Wu D, Wang J, Cheng L, Geng F. The potential mechanism of low-power water bath ultrasound to enhance the effectiveness of low-concentration chlorine dioxide in inhibiting Salmonella Typhimurium. Food Chem X 2023; 20:100901. [PMID: 38144795 PMCID: PMC10740011 DOI: 10.1016/j.fochx.2023.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 09/23/2023] [Indexed: 12/26/2023] Open
Abstract
This chapter presents a systematic study of the inhibition effect of chlorine dioxide treatment alone and in combination with ultrasound treatment of Salmonella and the physiological metabolic processes within the treated cells. The low-power ultrasound (0.03 W/mL) significantly enhanced the effectiveness (110.00 %) of low concentrations of chlorine dioxide (0.25 mg/L) in inhibiting Salmonella, which, in turn, would significantly reduce the potential environmental impact. In addition, further studies found that low-power ultrasound may enhance the structural and functional damage of chlorine dioxide on Salmonella cell membranes (significant increase in permeability of the outer and inner cell membranes) and disrupt intracellular substance metabolism (small molecule and nucleotide metabolism) and energy metabolism (significant reduction in ATP content and ATPase activity) balance to improve the bacterial inhibitory effect of chlorine dioxide. The results of the study will provide a theoretical basis and methodological guidance for the implementation of "cleaner production" in the food industry.
Collapse
Affiliation(s)
- Wei Luo
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jie Tang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Beibei Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Di Wu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Lei Cheng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| |
Collapse
|
4
|
Wu J, McAuliffe O, O'Byrne CP. Trehalose transport occurs via TreB in Listeria monocytogenes and it influences biofilm development and acid resistance. Int J Food Microbiol 2023; 394:110165. [PMID: 36933360 DOI: 10.1016/j.ijfoodmicro.2023.110165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Listeria monocytogenes is a pathogenic bacterium that can inhabit a diverse range of environmental niches. This is largely attributed to the high proportion of carbohydrate-specific phosphotransferase system (PTS) genes in its genome. Carbohydrates can be assimilated as sources of energy but additionally they can serve as niche-specific cues for L. monocytogenes to shape its global gene expression, in order to cope with anticipated stresses. To examine carbon source utilization among wild L. monocytogenes isolates and to understand underlying molecular mechanisms, a diverse collection of L. monocytogenes strains (n = 168) with whole genome sequence (WGS) data available was screened for the ability to grow in chemically defined media with different carbon sources. The majority of the strains grew in glucose, mannose, fructose, cellobiose, glycerol, trehalose, and sucrose. Maltose, lactose, and rhamnose supported slower growth while ribose did not support any growth. In contrast to other strains, strain1386, which belonged to clonal complex 5 (CC5), was unable to grow on trehalose as a sole carbon source. WGS data revealed that it carried a substitution (N352K) in a putative PTS EIIBC trehalose transporter, TreB, while this asparagine residue is conserved in other strains in this collection. Spontaneous mutants of strain 1386 that could grow in trehalose were found to harbour a reversion of the substitution in TreB. These results provide genetic evidence that TreB is responsible for trehalose uptake and that the N352 residue is essential for TreB activity. Moreover, reversion mutants also restored other unusual phenotypes that strain 1386 displayed, i.e. altered colony morphology, impaired biofilm development, and reduced acid resistance. Transcriptional analysis at stationary phase with buffered BHI media revealed that trehalose metabolism positively influences the transcription of genes encoding amino acid-based acid resistance mechanisms. In summary, our results demonstrated that N352 is key to the function of the sole trehalose transporter TreB in L. monocytogenes and suggest that trehalose metabolism alters physiology to favour biofilm development and acid stress resistance. Moreover, since strain 1386 is among the strains recommended by the European Union Reference Laboratory for conducting food challenge studies in order to determine whether or not L. monocytogenes can grow in food, these findings have important implications for food safety.
Collapse
Affiliation(s)
- Jialun Wu
- Bacterial Stress Response Group, Microbiology, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | | | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
5
|
Luo W, Wang J, Sun L, Li R, Wu D, Tang J, Zhang J, Geng F. Metabolome analysis shows that ultrasound enhances the lethality of chlorine dioxide against Salmonella enterica subsp. Enterica by disrupting its material and energy metabolism. Food Res Int 2022; 162:112135. [DOI: 10.1016/j.foodres.2022.112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
6
|
Srivastava AK, Srivastava R, Sharma A, Bharati AP, Yadav J, Singh AK, Tiwari PK, Srivatava AK, Chakdar H, Kashyap PL, Saxena AK. Transcriptome Analysis to Understand Salt Stress Regulation Mechanism of Chromohalobacter salexigens ANJ207. Front Microbiol 2022; 13:909276. [PMID: 35847097 PMCID: PMC9279137 DOI: 10.3389/fmicb.2022.909276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Soil salinity is one of the major global issues affecting soil quality and agricultural productivity. The plant growth-promoting halophilic bacteria that can thrive in regions of high salt (NaCl) concentration have the ability to promote the growth of plants in salty environments. In this study, attempts have been made to understand the salinity adaptation of plant growth-promoting moderately halophilic bacteria Chromohalobacter salexigens ANJ207 at the genetic level through transcriptome analysis. In order to identify the stress-responsive genes, the transcriptome sequencing of C. salexigens ANJ207 under different salt concentrations was carried out. Among the 8,936 transcripts obtained, 93 were upregulated while 1,149 were downregulated when the NaCl concentration was increased from 5 to 10%. At 10% NaCl concentration, genes coding for lactate dehydrogenase, catalase, and OsmC-like protein were upregulated. On the other hand, when salinity was increased from 10 to 25%, 1,954 genes were upregulated, while 1,287 were downregulated. At 25% NaCl, genes coding for PNPase, potassium transporter, aconitase, excinuclease subunit ABC, and transposase were found to be upregulated. The quantitative real-time PCR analysis showed an increase in the transcript of genes related to the biosynthesis of glycine betaine coline genes (gbcA, gbcB, and L-pro) and in the transcript of genes related to the uptake of glycine betaine (OpuAC, OpuAA, and OpuAB). The transcription of the genes involved in the biosynthesis of L-hydroxyproline (proD and proS) and one stress response proteolysis gene for periplasmic membrane stress sensing (serP) were also found to be increased. The presence of genes for various compatible solutes and their increase in expression at the high salt concentration indicated that a coordinated contribution by various compatible solutes might be responsible for salinity adaptation in ANJ207. The investigation provides new insights into the functional roles of various genes involved in salt stress tolerance and oxidative stress tolerance produced by high salt concentration in ANJ207 and further support the notion regarding the utilization of bacterium and their gene(s) in ameliorating salinity problem in agriculture.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Ruchi Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anjney Sharma
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Akhilendra Pratap Bharati
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India.,Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Jagriti Yadav
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Alok Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Praveen Kumar Tiwari
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anchal Kumar Srivatava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Hillol Chakdar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Prem Lal Kashyap
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Kumar Saxena
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| |
Collapse
|
7
|
Hu L, Dong Q, Li Z, Ma Y, Aslam MZ, Liu Y. Modelling the Adhesion and Biofilm Formation Boundary of Listeria monocytogenes ST9. Foods 2022; 11:foods11131940. [PMID: 35804756 PMCID: PMC9266252 DOI: 10.3390/foods11131940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen that can adhere to or form a biofilm on food contact surfaces, depending on the environmental conditions. The purpose of this work is to determine the adhesion and biofilm formation boundaries for L. monocytogenes ST9 under the combination environments of temperature (5, 15, and 25 °C), NaCl concentration (0%, 3%, 6%, and 9% (w/v)) and pH (5.0, 6.0, 7.0, and 8.0). The probability models of adhesion and biofilm formation were built using the logistic regression. For adhesion, only the terms of linear T and NaCl are significant for L. monocytogenes ST9 (p < 0.05), whereas the terms of linear T, NaCl, and pH, and the interaction between T and pH were significant for biofilm formation (p < 0.05). By analyzing contour maps and their surface plots for two different states, we discovered that high temperature promoted adhesion and biofilm formation, whereas excessive NaCl concentration inhibited both of them. With a stringent threshold of 0.1667, the accuracy rate for identifying both adhesion/no-adhesion and biofilm formation/no-biofilm formation events were 0.929, indicating that the probability models are reasonably accurate in predicting the adhesion and biofilm formation boundary of L. monocytogenes ST9. The boundary model may provide a useful way for determining and further controlling L. monocytogenes adhesion and biofilm formation in various food processing environments.
Collapse
|
8
|
Zhao L, Poh CN, Wu J, Zhao X, He Y, Yang H. Effects of electrolysed water combined with ultrasound on inactivation kinetics and metabolite profiles of Escherichia coli biofilms on food contact surface. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102917] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Wason S, Verma T, Subbiah J. Validation of process technologies for enhancing the safety of low-moisture foods: A review. Compr Rev Food Sci Food Saf 2021; 20:4950-4992. [PMID: 34323364 DOI: 10.1111/1541-4337.12800] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
The outbreaks linked to foodborne illnesses in low-moisture foods are frequently reported due to the occurrence of pathogenic microorganisms such as Salmonella Spp. Bacillus cereus, Clostridium spp., Cronobacter sakazakii, Escherichia coli, and Staphylococcus aureus. The ability of the pathogens to withstand the dry conditions and to develop resistance to heat is regarded as the major concern for the food industry dealing with low-moisture foods. In this regard, the present review is aimed to discuss the importance and the use of novel thermal and nonthermal technologies such as radiofrequency, steam pasteurization, plasma, and gaseous technologies for decontamination of foodborne pathogens in low-moisture foods and their microbial inactivation mechanisms. The review also summarizes the various sources of contamination and the factors influencing the survival and thermal resistance of pathogenic microorganisms in low-moisture foods. The literature survey indicated that the nonthermal techniques such as CO2 , high-pressure processing, and so on, may not offer effective microbial inactivation in low-moisture foods due to their insufficient moisture content. On the other hand, gases can penetrate deep inside the commodities and pores due to their higher diffusion properties and are regarded to have an advantage over thermal and other nonthermal processes. Further research is required to evaluate newer intervention strategies and combination treatments to enhance the microbial inactivation in low-moisture foods without significantly altering their organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Surabhi Wason
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tushar Verma
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
10
|
Medvedova A, Kocis-Koval M, Valik L. Effect of salt and temperature on the growth of Escherichia coli PSII. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2020.00213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractPresence of pathogenic strains of Escherichia coli in foodstuffs may pose a health risk for a consumer. Therefore, knowledge on the effect of environmental factors on the growth ability of E. coli is of great importance. In this work, the effect of incubation temperature (6–46 °C) and the combined effect of temperature and water activity (0.991–0.930) on the growth dynamic of E. coli PSII were analysed. Based on the growth curves obtained, growth parameters were calculated by using the Baranyi D-model. Growth parameters were further analysed in secondary phase of predictive modelling. Using the CM model that describes the effect of combined factors, cardinal values (Tmin = 4.8 ± 0.4 °C, Topt = 41.1 ± 0.8 °C, Tmax = 48.3 ± 0.9 °C, awmin = 0.932 ± 0.001, and awopt = 0.997 ± 0.003) for the isolate were calculated. Under optimal conditions, the specific growth rate is µopt = 2.84 ± 0.08 h−1. The results obtained may contribute to the assessment of the risk associated with the possible E. coli presence in raw materials and to the search for preventive measures with defined degree of accuracy and reliability.
Collapse
Affiliation(s)
- A. Medvedova
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - M. Kocis-Koval
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - L. Valik
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| |
Collapse
|
11
|
Hauschild P, Hilgarth M, Vogel RF. Hydrostatic pressure- and halotolerance of Photobacterium phosphoreum and P. carnosum isolated from spoiled meat and salmon. Food Microbiol 2020; 99:103679. [PMID: 34119089 DOI: 10.1016/j.fm.2020.103679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 10/23/2022]
Abstract
Photobacterium spp. occur frequently in marine environments but have been recently also found as common spoilers on chilled meats. The environmental conditions in these ecological niches differ especially regarding salinity and ambient pressure. Linking the occurrence of photobacteria in different niches may elucidate its ecology and bring insights for the food industry. We investigated tolerance of Photobacterium (P.) phosphoreum and P. carnosum strains to high hydrostatic pressure and salinity and aligned our observations with presence of relevant genes. The strains were isolated from packaged meats and salmon (or the sea) to identify adaptations to marine and terrestrial habitats. Growth of all P. carnosum strains was reduced by 40 MPa hydrostatic pressure and >3% sodium chloride, suggesting loss of traits associated with marine habitats. In contrast, P. phosphoreum strains were only slightly affected, suggesting general adaptation to marine habitats. In accordance, these strains had gene clusters associated with marine niches, e.g. flagellar and lux-operons, being incomplete in P. carnosum. Occurrence of P. carnosum strains on packaged salmon and P. phosphoreum strains on meats therefore likely results from cross-contamination in meat and fish processing. Still, these strains showed intermediate traits regarding pressure- and halotolerance, suggesting developing adaptation to their respective environment.
Collapse
Affiliation(s)
- Philippa Hauschild
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, 85354, Freising, Germany.
| | - Maik Hilgarth
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, 85354, Freising, Germany.
| | - Rudi F Vogel
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, 85354, Freising, Germany.
| |
Collapse
|
12
|
Wang H, Huang M, Zeng X, Peng B, Xu X, Zhou G. Resistance Profiles of Salmonella Isolates Exposed to Stresses and the Expression of Small Non-coding RNAs. Front Microbiol 2020; 11:130. [PMID: 32180763 PMCID: PMC7059537 DOI: 10.3389/fmicb.2020.00130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/21/2020] [Indexed: 01/21/2023] Open
Abstract
Salmonella can resist various stresses and survive during food processing, storage, and distribution, resulting in potential health risks to consumers. Therefore, evaluation of bacterial survival profiles under various environmental stresses is necessary. In this study, the resistance profiles of five Salmonella isolates [serotypes with Agona, Infantis, Typhimurium, Enteritidis, and a standard strain (ATCC 13076, Enteritidis serotype)] to acidic, hyperosmotic, and oxidative stresses were examined, and the relative expressions of non-coding small RNAs were also evaluated, including CyaR, MicC, MicA, InvR, RybB, and DsrA, induced by specific stresses. The results indicated that although all tested strains displayed a certain resistance to stresses, there was great diversity in stress resistance among the strains. According to the reduction numbers of cells exposed to stress for 3 h, S. Enteritidis showed the highest resistance to acidic and hyperosmotic stresses, whereas ATCC 13076 showed the greatest resistance to oxidative stress, with less than 0.1 Log CFU/ml of cell reduction. Greater resistance of cells to acidic, hyperosmotic, and oxidative stresses was observed within 1 h, after 2 h, and from 1 to 2 h, respectively. The relative expression of sRNAs depended on the isolate for each stress; acidic exposure for the tested isolates induced high expression levels of DsrA, MicC, InvR, RybB, MicA, and CyaR. The sRNA RybB, associated with sigma E and outer membrane protein in bacteria, showed a fold change of greater than 7 in S. Enteritidis exposed to the tested stresses. CyaR and InvR involved in general stress responses and stress adaptation were also induced to show high expression levels of Salmonella exposed to hyperosmotic stress. Overall, these findings demonstrated that the behaviors of Salmonella under specific stresses varied according to strain and were likely not related to other profiles. The finding also provided insights into the survival of Salmonella subjected to short-term stresses and for controlling Salmonella in the food industry.
Collapse
Affiliation(s)
- Huhu Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Mingyuan Huang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Xianming Zeng
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Bing Peng
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
- College of Animal Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Guanghong Zhou
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Zhang L, Hou L, Zhang S, Kou X, Li R, Wang S. Mechanism of S. aureus ATCC 25923 in response to heat stress under different water activity and heating rates. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Medveďová A, Havlíková A, Lehotová V, Valík Ľ. Staphylococcus aureus 2064 growth as affected by temperature and reduced water activity. Ital J Food Saf 2019; 8:8287. [PMID: 31897398 PMCID: PMC6912147 DOI: 10.4081/ijfs.2019.8287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/28/2019] [Indexed: 11/23/2022] Open
Abstract
Based on 247 growth data, the growth of S. aureus 2064 in dependence on temperatures (8-50°C) and aw values (0.999-0.83) was described. Optimal values of awat all studied temperatures were determined by using Gibson model. Its compatibility was confirmed by several statistical indices, e.g. root mean square errors (RMSE 0.003-0.138), standard errors of prediction (%SEP 0.6-17.5). Cardinal values for S. aureus growth (Tmin=7.7°C, Topt=40.6°C, Tmax=46.7°C, awmin=0.808, awopt=0.994, μopt=1.97 1/h) were determined by using CM model with indices RMSE=0.071, SEP=17.5%. Our findings can provide relevant growth information that can be used in S. aureus exposure assessment or in validation of other data regarding the growth of this opportunistic pathogen in foods.
Collapse
Affiliation(s)
- Alžbeta Medveďová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského
| | - Adriana Havlíková
- Military Institute of Hygiene and Epidemiology, Ministry of Defense, Bratislava, Slovak Republic
| | - Veronika Lehotová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského
| | - Ľubomír Valík
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského
| |
Collapse
|
15
|
Smet C, Baka M, Steen L, Fraeye I, Walsh J, Valdramidis V, Van Impe J. Combined effect of cold atmospheric plasma, intrinsic and extrinsic factors on the microbial behavior in/on (food) model systems during storage. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Role and regulation of the stress activated sigma factor sigma B (σ B) in the saprophytic and host-associated life stages of Listeria monocytogenes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:1-48. [PMID: 30798801 DOI: 10.1016/bs.aambs.2018.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The stress activated sigma factor sigma B (σB) plays a pivotal role in allowing the food-borne bacterial pathogen Listeria monocytogenes to modulate its transcriptional landscape in order to survive in a variety of harsh environments both outside and within the host. While we have a comparatively good understanding of the systems under the control of this sigma factor much less is known about how the activity of σB is controlled. In this review, we present a current model describing how this sigma factor is thought to be controlled including an overview of what is known about stress sensing and the early signal transduction events that trigger its activation. We discuss the known regulatory overlaps between σB and other protein and RNA regulators in the cell. Finally, we describe the role of σB in surviving both saprophytic and host-associated stresses. The complexity of the regulation of this sigma factor reflects the significant role that it plays in the persistence of this important pathogen in the natural environment, the food chain as well as within the host during the early stages of an infection. Understanding its regulation will be a critical step in helping to develop rational strategies to prevent its growth and survival in the food destined for human consumption and in the prevention of listeriosis.
Collapse
|
17
|
Liu Q, Wu J, Lim ZY, Lai S, Lee N, Yang H. Metabolite profiling of Listeria innocua for unravelling the inactivation mechanism of electrolysed water by nuclear magnetic resonance spectroscopy. Int J Food Microbiol 2018; 271:24-32. [PMID: 29477806 DOI: 10.1016/j.ijfoodmicro.2018.02.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/06/2018] [Accepted: 02/11/2018] [Indexed: 01/23/2023]
Abstract
Bactericidal effects of low concentration electrolysed water (LcEW) on microorganisms are previously well reported; however, the inactivation mechanism of EW is not understood. The lethal and sublethal injuries of L. monocytogenes and L. innocua by EW treatments were determined and the metabolic profile changes for L. innocua were characterised using nuclear magnetic resonance (NMR). Microbial metabolomics approach combined with multivariate data analyses was used to interpret the cellular chemical fingerprints of L. innocua. The relative amount of intracellular reactive oxygen species (ROS) was assayed using 2',7-dichlorodihydrofluorescein diacetate (H2DCFDA). The results showed that the proportion of the sublethally injured microbial cells L. monocytogenes and L. innocua increased from 40% to 70% and from 35% to 65%, respectively, when the free available chlorine (FAC) of LcEW increased from 2 to 8 mg/L. Overall, 36 low-molecular-weight metabolic compounds in L. innocua extracts were characterised by NMR spectroscopy. EW perturbation resulted in a drastic and multitude disruption across a wide range of biochemical process including peptidoglycan synthesis, nucleotides biosynthesis and amino acid metabolism. Elevated levels of α-ketoglutarate and succinate implicated the enhanced glutamate decarboxylase (GAD) system and γ-aminobutyric acid (GABA) shunt for the protection against oxidative stress. These findings provided the comprehensive insights into the metabolic response of Listeria to EW oxidative stress and can serve as a basis for better utilisation for sanitisation.
Collapse
Affiliation(s)
- Qin Liu
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Ji'en Wu
- The Nuclear Magnetic Resonance Laboratory, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhi Yang Lim
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shaojuan Lai
- Guangzhou Pulu Medical Technology Co., Ltd, Guangzhou, Guangdong 510800, PR China
| | - Norman Lee
- Science Research Programme, Temasek Junior College, Singapore 469278, Singapore
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
18
|
Alzamora SM, López-Malo A, Guerrero SN, Tapia MS. The Hurdle Concept in Fruit Processing. FOOD ENGINEERING SERIES 2018. [DOI: 10.1007/978-1-4939-3311-2_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
19
|
Smet C, Noriega E, Rosier F, Walsh J, Valdramidis V, Van Impe J. Influence of food intrinsic factors on the inactivation efficacy of cold atmospheric plasma: Impact of osmotic stress, suboptimal pH and food structure. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.09.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Smet C, Noriega E, Van Mierlo J, Valdramidis V, Van Impe J. Influence of the growth morphology on the behavior of Salmonella Typhimurium and Listeria monocytogenes under osmotic stress. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Cebrián G, Arroyo C, Condón S, Mañas P. Osmotolerance provided by the alternative sigma factors σB and rpoS to Staphylococcus aureus and Escherichia coli is solute dependent and does not result in an increased growth fitness in NaCl containing media. Int J Food Microbiol 2015; 214:83-90. [PMID: 26256716 DOI: 10.1016/j.ijfoodmicro.2015.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
Abstract
The aim of this work was to examine the role of the alternative general stress sigma factors σ(B) and rpoS on the ability of Staphylococcus aureus and Escherichia coli, respectively, to grow in liquid and solid media of different osmolarity. For this purpose, S. aureus strain Newman and its isogenic ΔsigB mutant IK84 and E. coli strain BJ4 and its isogenic ΔrpoS mutant BJ4L1 were grown in media (TSBYE) with different concentrations of NaCl. Growth parameters (lag phase duration, growth rate and maximum number of microorganisms) and limiting growth concentrations (Maximum Non-Inhibitory Concentration - MNIC - and Minimum Inhibitory Concentration - MIC-) were determined. The mechanisms underlying the differences observed between parental and mutant strains were also explored. The absence of the sigma factors σ(B) and rpoS led to a decrease in the MNICs and MICs calculated for S. aureus and E. coli, respectively. Conversely, neither σ(B) nor rpoS provided with increased growth fitness to S. aureus and E. coli cells at NaCl concentrations up to 1.36M and 1M, respectively. The decreased osmotolerance of the σ(B) and rpoS deficient strains, as compared to their parental strains, was compensated by the addition of glycine-betaine (1mM) to the growth medium. It was also observed that the decreased tolerance to NaCl of the mutant strains was coincident with a decreased tolerance to sucrose, KCl, and LiCl but not to glycerol, MgCl2, and CaCl2. Results obtained also demonstrate that the increased osmotolerance of stationary growth phase E. coli cells, as compared to exponential growth phase ones, would be due to the activation of both rpoS-independent and rpoS-dependent mechanisms. This work will help to understand the mechanisms of bacterial resistance to osmotic stress and the role of the alternative sigma factors σ(B) and rpoS in this process.
Collapse
Affiliation(s)
- G Cebrián
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Universidad de Zaragoza, C/ Miguel Servet, 177, 50013 Zaragoza, Spain.
| | - C Arroyo
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Universidad de Zaragoza, C/ Miguel Servet, 177, 50013 Zaragoza, Spain
| | - S Condón
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Universidad de Zaragoza, C/ Miguel Servet, 177, 50013 Zaragoza, Spain
| | - P Mañas
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Universidad de Zaragoza, C/ Miguel Servet, 177, 50013 Zaragoza, Spain
| |
Collapse
|
22
|
Metabolic shift of Escherichia coli under salt stress in the presence of glycine betaine. Appl Environ Microbiol 2015; 80:4745-56. [PMID: 24858086 DOI: 10.1128/aem.00599-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important area of food safety focuses on bacterial survival and growth in unfavorable environments. In order to understand how bacteria adapt to stresses other than nutrient limitation in batch cultures, we need to develop mechanistic models of intracellular regulation and metabolism under stress. We studied the growth of Escherichia coli in minimal medium with added salt and different osmoprotectants. To characterize the metabolic efficiency with a robust parameter, we identified the optical density (OD) values at the inflection points of measured "OD versus time" growth curves and described them as a function of glucose concentration. We found that the metabolic efficiency parameter did not necessarily follow the trend of decreasing specific growth rate as the salt concentration increased. In the absence of osmoprotectant, or in the presence of proline, the metabolic efficiency decreased with increasing NaCl concentration. However, in the presence of choline or glycine betaine, it increased between 2 and 4.5% NaCl before declining at 5% NaCl and above. Microarray analysis of the transcriptional network and proteomics analysis with glycine betaine in the medium indicated that between 4.5 and 5% NaCl, the metabolism switched from aerobic to fermentative pathways and that the response to osmotic stress is similar to that for oxidative stress. We conclude that, although the growth rate appeared to decrease smoothly with increasing NaCl, the metabolic strategy of cells changed abruptly at a threshold concentration of NaCl.
Collapse
|
23
|
Shiroda M, Pratt ZL, Döpfer D, Wong ACL, Kaspar CW. RpoS impacts the lag phase of Salmonella enterica during osmotic stress. FEMS Microbiol Lett 2014; 357:195-200. [PMID: 24985365 DOI: 10.1111/1574-6968.12523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022] Open
Abstract
Salmonella enterica can survive harsh environmental conditions, including hyperosmotic stress. It is well established that the alternative sigma factor, σ(s) (RpoS), is required for maximal survival of enteric pathogens, including S. enterica. Although RpoS levels are greatest during stationary phase or stress conditions, RpoS can be found in S. enterica during growth. However, its activity during growth is poorly characterized. In this study, the impact of RpoS levels on the growth of S. enterica in LB supplemented with 6% NaCl (LB-NaCl) was examined. Cells in stationary phase prior to inoculation into LB-NaCl had a shorter lag phase than did exponential-phase cells. In addition, the deletion of rpoS from S. enterica Typhimurium M-09 (M-09 ΔrpoS) increased the length of lag phase in LB-NaCl relative to the parental strain. Complementation of M-09 ΔrpoS in trans by an inducible plasmid encoding rpoS reduced the length of lag phase. The length of lag phase in both the rpoS mutant and complemented strain was independent of their growth phase prior to inoculation of LB-NaCl. The results from this study demonstrate that the level of RpoS influences the length of lag phase and the growth of S. enterica in hyperosmotic growth conditions.
Collapse
Affiliation(s)
- Megan Shiroda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
24
|
Cebrián G, Arroyo C, Mañas P, Condón S. Bacterial maximum non-inhibitory and minimum inhibitory concentrations of different water activity depressing solutes. Int J Food Microbiol 2014; 188:67-74. [PMID: 25090605 DOI: 10.1016/j.ijfoodmicro.2014.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/09/2014] [Accepted: 07/13/2014] [Indexed: 11/30/2022]
Abstract
The NaCl MNICs (maximum non-inhibitory concentrations) and MICs (minimum inhibitory concentrations) for growth of various strains of six bacterial species were determined and then compared with those obtained for seven other solutes. The influence of prior growth conditions on the MNICs and MICs was also evaluated. No significant changes on the MNICs and MICs were found among the strains studied within each species. Among all factors investigated, only growth phase -for Gram-negatives- and growth at high NaCl concentrations led to a change in the NaCl MNICs. Species could be classified depending on its NaCl MNICs and MICs (in decreasing order) as follows: Staphylococcus aureus, Listeria monocytogenes, Cronobacter sakazakii, Enterococcus faecium, Escherichia coli and Salmonella Typhimurium. Similar results were obtained for KCl, LiCl, and sodium acetate, but not for the remaining solutes investigated (sucrose, glycerol, MgCl2 and CaCl2). Results obtained indicate that, in general, Gram-negatives showed lower MNICs and MICs than Gram-positives for all the solutes, S. aureus being the most solute tolerant microorganism. When compared on a molar basis, glycerol showed the highest MNICs and MICs for all the microorganisms -except for S. aureus- and LiCl the lowest ones. NaCl MNICs and MICs were not significantly different from those of KCl when compared on a molar basis. Therefore, the inhibitory action of NaCl could not be linked to the specific action of Na(+). Results also showed that the Na(+) tolerance of some species was Cl(-) dependent whereas for others it was not, and that factors others than aw-decrease contribute to the inhibitory action of LiCl, CaCl2 and MgCl2.
Collapse
Affiliation(s)
- G Cebrián
- Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain.
| | - C Arroyo
- Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain
| | - P Mañas
- Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain
| | - S Condón
- Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain
| |
Collapse
|
25
|
Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt downshift in water activity. PLoS One 2014; 9:e90422. [PMID: 24594867 PMCID: PMC3940904 DOI: 10.1371/journal.pone.0090422] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/30/2014] [Indexed: 01/10/2023] Open
Abstract
The present study was undertaken to investigate growth kinetics and time-dependent change in global expression of Escherichia coli O157∶H7 Sakai upon an abrupt downshift in water activity (aw). Based on viable count data, shifting E. coli from aw 0.993 to aw 0.985 or less caused an apparent loss, then recovery, of culturability. Exponential growth then resumed at a rate characteristic for the aw imposed. To understand the responses of this pathogen to abrupt osmotic stress, we employed an integrated genomic and proteomic approach to characterize its cellular response during exposure to a rapid downshift but still within the growth range from aw 0.993 to aw 0.967. Of particular interest, genes and proteins with cell envelope-related functions were induced during the initial loss and subsequent recovery of culturability. This implies that cells undergo remodeling of their envelope composition, enabling them to adapt to osmotic stress. Growth at low aw, however, involved up-regulating additional genes and proteins, which are involved in the biosynthesis of specific amino acids, and carbohydrate catabolism and energy generation. This suggests their important role in facilitating growth under such stress. Finally, we highlighted the ability of E. coli to activate multiple stress responses by transiently inducing the RpoE and RpoH regulons to control protein misfolding, while simultaneously activating the master stress regulator RpoS to mediate long-term adaptation to hyperosmolality. This investigation extends our understanding of the potential mechanisms used by pathogenic E. coli to adapt, survive and grow under osmotic stress, which could potentially be exploited to aid the selection and/or development of novel strategies to inactivate this pathogen.
Collapse
Affiliation(s)
- Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Thea King
- Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
| | - Kari Gobius
- Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
26
|
Bautista-Gallego J, Rantsiou K, Garrido-Fernández A, Cocolin L, Arroyo-López FN. Salt Reduction in Vegetable Fermentation: Reality or Desire? J Food Sci 2013; 78:R1095-100. [DOI: 10.1111/1750-3841.12170] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/25/2013] [Indexed: 11/29/2022]
Affiliation(s)
| | - K. Rantsiou
- Univ. of Torino, DISAFA, Agricultural Microbiology and Food Technology Sector; Via Leonardo da Vinci 44; 10095 Grugliasco; Torino; Italy
| | - A. Garrido-Fernández
- Dept. of Food Biotechnology; Instituto de la Grasa (CSIC), Avda, Padre García Tejero 4; 41012 Sevilla; Spain
| | - L. Cocolin
- Univ. of Torino, DISAFA, Agricultural Microbiology and Food Technology Sector; Via Leonardo da Vinci 44; 10095 Grugliasco; Torino; Italy
| | - F. N. Arroyo-López
- Dept. of Food Biotechnology; Instituto de la Grasa (CSIC), Avda, Padre García Tejero 4; 41012 Sevilla; Spain
| |
Collapse
|
27
|
Connell S, Li J, Shi R. Synergistic bactericidal activity between hyperosmotic stress and membrane-disrupting nanoemulsions. J Med Microbiol 2012; 62:69-77. [PMID: 23019188 DOI: 10.1099/jmm.0.047811-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
There is a clear clinical need for alternative types of non-antibiotic biocides due to the rising global health concern of microbial drug resistance. In this work, a novel antibacterial concept was delineated that utilized hyperosmotic stress (H) in concert with membrane-disrupting nanoemulsions (NEs). The antibacterial effects of either H or a NE, as well as in combination (H+NE), were assessed in vitro using an Escherichia coli model. It was found that exposure to H or NE alone produced dose-dependent bacteriostatic and bactericidal effects, respectively. However, the bactericidal action of NE was significantly amplified in the presence of H. Outcomes following H+NE exposure included rapid efflux of K(+) and nucleic acids, increased membrane permeability and a reduction in both intracellular ATP and cell viability. Further inspection of morphology by electron microscopy highlighted cell shrinkage, membrane dissolution and bacteriolysis. Pathogen inactivation occurred immediately upon contact with H+NE. The effects of H, NE and H+NE against Enterococcus faecalis, Staphylococcus aureus and meticillin-resistant S. aureus isolates were also examined. Similar to the Escherichia coli model, H+NE showed antibacterial synergism in these organisms when classified by the Chou-Talalay combination index for two-agent interactions. This synergistic interaction suggests that the H+NE platform may potentially serve as a new paradigm in disinfectants, antiseptics and antibacterial wound dressings. The H+NE mechanism of action was termed osmopermeation, as a descriptor for the underlying inactivation process.
Collapse
Affiliation(s)
- Sean Connell
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jianming Li
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Gayán E, Torres JA, Paredes-Sabja D. Hurdle Approach to Increase the Microbial Inactivation by High Pressure Processing: Effect of Essential Oils. FOOD ENGINEERING REVIEWS 2012. [DOI: 10.1007/s12393-012-9055-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
|
30
|
Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T. Integrated transcriptomic and proteomic analysis of the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions of cold and water activity stress. Mol Cell Proteomics 2012; 11:M111.009019. [PMID: 22008207 PMCID: PMC3270098 DOI: 10.1074/mcp.m111.009019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An integrated transcriptomic and proteomic analysis was undertaken to determine the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions relevant to low temperature and water activity conditions experienced during meat carcass chilling in cold air. The response of E. coli during exponential growth at 25 °C a(w) 0.985, 14 °C a(w) 0.985, 25 °C a(w) 0.967, and 14 °C a(w) 0.967 was compared with that of a reference culture (35 °C a(w) 0.993). Gene and protein expression profiles of E. coli were more strongly affected by low water activity (a(w) 0.967) than by low temperature (14 °C). Predefined group enrichment analysis revealed that a universal response of E. coli to all test conditions included activation of the master stress response regulator RpoS and the Rcs phosphorelay system involved in the biosynthesis of the exopolysaccharide colanic acid, as well as down-regulation of elements involved in chemotaxis and motility. However, colanic acid-deficient mutants were shown to achieve comparable growth rates to their wild-type parents under all conditions, indicating that colanic acid is not required for growth. In contrast to the transcriptomic data, the proteomic data revealed that several processes involved in protein synthesis were down-regulated in overall expression at 14 °C a(w) 0.985, 25 °C a(w) 0.967, and 14 °C a(w) 0.967. This result suggests that during growth under these conditions, E. coli, although able to transcribe the required mRNA, may lack the cellular resources required for translation. Elucidating the global adaptive response of E. coli O157:H7 during exposure to chilling and water activity stress has provided a baseline of knowledge of the physiology of this pathogen.
Collapse
Affiliation(s)
- Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia
| | - Thea King
- CSIRO Food and Nutritional Sciences, PO Box 52, North Ryde NSW 1670, Australia
| | - Kari Gobius
- CSIRO Food and Nutritional Sciences, PO Box 745, Archerfield BC QLD 4108, Australia
| | - John P Bowman
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia.
| |
Collapse
|
31
|
Ells TC, Truelstrup Hansen L. Increased thermal and osmotic stress resistance in Listeria monocytogenes 568 grown in the presence of trehalose due to inactivation of the phosphotrehalase-encoding gene treA. Appl Environ Microbiol 2011; 77:6841-51. [PMID: 21821737 PMCID: PMC3187093 DOI: 10.1128/aem.00757-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 07/27/2011] [Indexed: 11/20/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes is a problem for food processors and consumers alike, as the organism is resistant to harsh environmental conditions and inimical barriers implemented to prevent the survival and/or growth of harmful bacteria. One mechanism by which listeriae mediate survival is through the accumulation of compatible solutes, such as proline, betaine and carnitine. In other bacteria, including Escherichia coli, the synthesis and accumulation of another compatible solute, trehalose, are known to aid in the survival of stressed cells. The objective of this research was to investigate trehalose metabolism in L. monocytogenes, where the sugar is thought to be transferred across the cytoplasmic membrane via a specific phosphoenolpyruvate phosphotransferase system and phosphorylation to trehalose-6-phosphate (T6P). The latter is subsequently broken down into glucose and glucose-6-phosphate by α,α-(1,1) phosphotrehalase, the putative product of the treA gene. Here we report on an isogenic treA mutant of L. monocytogenes 568 (568:ΔTreA) which, relative to the wild-type strain, displays increased tolerances to multiple stressors, including heat, high osmolarity, and desiccation. This is the first study to examine the putative trehalose operon in L. monocytogenes, and we demonstrate that lmo1254 (treA) in L. monocytogenes 568 indeed encodes a phosphotrehalase required for the hydrolysis of T6P. Disruption of the treA gene results in the accumulation of T6P which is subsequently dephosphorylated to trehalose in the cytosol, thereby contributing to the stress hardiness observed in the treA mutant. This study highlights the importance of compatible solutes for microbial survival in adverse environments.
Collapse
Affiliation(s)
- Timothy C Ells
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, NS, Canada B4N 1J5.
| | | |
Collapse
|
32
|
Metris A, George S, Baranyi J. Modelling osmotic stress by Flux Balance Analysis at the genomic scale. Int J Food Microbiol 2011; 152:123-8. [PMID: 21807434 DOI: 10.1016/j.ijfoodmicro.2011.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/05/2011] [Accepted: 06/20/2011] [Indexed: 01/16/2023]
Abstract
Predictive microbiology for food safety is still primarily based on empirical models describing the effect of the environmental conditions of the food on the kinetics of the growth of foodborne pathogens. One way to make these models more mechanistic is to use systems biology methods such as Flux Balance Analysis (FBA). FBA consists of evaluating the possible fluxes through the metabolic reactions taking place in a cell. Using this method, the specific growth rate of Escherichia coli can be predicted by assuming, as an objective function, that the cells maximise their biomass production during balanced growth. Whilst this works under favourable environmental conditions, our simulations show that this objective function is not sufficient to explain the decrease of the growth rate due to osmotic stress. One feature of the FBA models is that the parameters and objective function in general refer to chemostat experiments where the carbon source is the main limiting factor. This may be relevant to some foods where the carbon to nitrogen balance is limiting but, in general, it is the physico-chemical conditions which are the most stringent. We therefore need to examine the effect of such constraints on the fluxes and/or modify the objective function, or to elaborate the metabolic model by taking into account other functional levels of the cell in order to develop mechanistic predictive models for osmotic stress conditions.
Collapse
Affiliation(s)
- Aline Metris
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | | | | |
Collapse
|
33
|
Lehrke G, Hernaez L, Mugliaroli SL, von Staszewski M, Jagus RJ. Sensitization of Listeria innocua to inorganic and organic acids by natural antimicrobials. Lebensm Wiss Technol 2011. [DOI: 10.1016/j.lwt.2010.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Fermentation profiles of Manzanilla-Aloreña cracked green table olives in different chloride salt mixtures. Food Microbiol 2010; 27:403-12. [DOI: 10.1016/j.fm.2009.11.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 11/05/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022]
|
35
|
Caly D, Takilt D, Lebret V, Tresse O. Sodium chloride affects Listeria monocytogenes adhesion to polystyrene and stainless steel by regulating flagella expression. Lett Appl Microbiol 2009; 49:751-6. [PMID: 19793195 DOI: 10.1111/j.1472-765x.2009.02735.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To study the adhesion capability of seven strains of Listeria monocytogenes to polystyrene and stainless steel surfaces after cultivation at various NaCl concentrations. METHODS AND RESULTS Determination of growth limits indicated that all seven strains were able to grow in up to 11% NaCl in rain heart infusion and 3 g l(-1) yeast extract-glucose at 20 degrees C, but no growth was detected at 15% NaCl. Adhesion of L. monocytogenes was estimated after 4-h incubation at 20 degrees C in 96-well microtitre plates. Statistical results revealed no significant difference between adhesion to polystyrene and stainless steel although surface properties were different. Adhesion between 0% and 6% NaCl was not different, whereas adhesion at 11% NaCl was significantly lower. This discrepancy in adhesion was correlated with the down-regulation of flagella at 11% NaCl. CONCLUSIONS Only high salinity levels, close to nongrowth conditions, repressed the expression of flagella, and consequently, decreased the adhesion capability of L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY Adhesion of L. monocytogenes to inert surfaces depends on environmental conditions that affect flagellum expression. High salinity concentrations would delay biofilm formation.
Collapse
Affiliation(s)
- D Caly
- UMR-INRA SECALIM, Ecole Vétérinaire de Nantes, France
| | | | | | | |
Collapse
|
36
|
Somolinos M, García D, Pagán R, Mackey B. Relationship between sublethal injury and microbial inactivation by the combination of high hydrostatic pressure and citral or tert-butyl hydroquinone. Appl Environ Microbiol 2008; 74:7570-7. [PMID: 18952869 PMCID: PMC2607182 DOI: 10.1128/aem.00936-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 10/18/2008] [Indexed: 11/20/2022] Open
Abstract
The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log(10) cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log(10) cycles of E. coli at pH 7.0 and almost 3 log(10) cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes.
Collapse
Affiliation(s)
- Maria Somolinos
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain
| | | | | | | |
Collapse
|
37
|
Vargas C, Argandoña M, Reina-Bueno M, Rodríguez-Moya J, Fernández-Aunión C, Nieto JJ. Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance. SALINE SYSTEMS 2008; 4:14. [PMID: 18793408 PMCID: PMC2553793 DOI: 10.1186/1746-1448-4-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 09/15/2008] [Indexed: 11/10/2022]
Abstract
Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. Osmoprotection is achieved by the accumulation of compatible solutes either by transport (betaine, choline) or synthesis (mainly ectoine and hydroxyectoine). Ectoines can play additional roles as nutrients and, in the case of hydroxyectoine, in thermotolerance. A supplementary solute, trehalose, not present in cells grown at 37°C, is accumulated at higher temperatures, suggesting its involvement in the response to heat stress. Trehalose is also accumulated at 37°C in ectoine-deficient mutants, indicating that ectoines suppress trehalose synthesis in the wild-type strain. The genes for ectoine (ectABC) and hydroxyectoine (ectD, ectE) production are arranged in three different clusters within the C. salexigens chromosome. In order to cope with changing environment, C. salexigens regulates its cytoplasmic pool of ectoines by a number of mechanisms that we have started to elucidate. This is a highly complex process because (i) hydroxyectoine can be synthesized by other enzymes different to EctD (ii) ectoines can be catabolized to serve as nutrients, (iii) the involvement of several transcriptional regulators (σS, σ32, Fur, EctR) and hence different signal transduction pathways, and (iv) the existence of post-trancriptional control mechanisms. In this review we summarize our present knowledge on the physiology and genetics of the processes allowing C. salexigens to cope with osmotic stress and high temperature, with emphasis on the transcriptional regulation.
Collapse
Affiliation(s)
- Carmen Vargas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | | | | | | | | | | |
Collapse
|
38
|
Use of a D-optimal design with constrains to quantify the effects of the mixture of sodium, potassium, calcium and magnesium chloride salts on the growth parameters of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2008; 35:889-900. [PMID: 18465155 DOI: 10.1007/s10295-008-0361-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
The combined effect of NaCl, KCl, CaCl(2), and MgCl(2) on the water activity (a (w)) and the growth parameters of Saccharomyces cerevisiae was studied by means of a D-optimal mixture design with constrains (total salt concentrations < or = 9.0%, w/v). The a (w) was linearly related to the concentrations of the diverse salts; its decrease, by similar concentrations of salts, followed the order NaCl > CaCl(2) > KCl > MgCl(2), regardless of the reference concentrations used (total absence of salts or 5% NaCl). The equations that expressed the maximum specific growth (mu (max)), lag phase duration (lambda), and maximum population reached (N (max)) showed that the values of these parameters depended on linear effects and two-way interactions of the studied chloride salts. The mu (max) decreased as NaCl and CaCl(2) increased (regardless of the presence or not of previous NaCl); however, in the presence of a 5% NaCl, a further addition of KCl and MgCl(2) markedly increased mu (max). The lambda was mainly affected by MgCl(2) and the interactions NaCl x CaCl(2) and CaCl(2) x MgCl(2). The further addition of NaCl and CaCl(2) to a 5% NaCl medium increased the lag phase while KCl and MgCl(2) had negligible or slightly negative effect, respectively. N (max) was mainly affected by MgCl(2) and its interactions with NaCl, KCl, and CaCl(2); MgCl(2) stimulated N (max) in the presence of 5% NaCl while KCl, NaCl, and CaCl(2) had a progressive decreasing effect. These results can be of interest for the fermentation and preservation of vegetable products, and foods in general, in which this yeast could be present.
Collapse
|
39
|
Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 2008; 74:3764-73. [PMID: 18456858 DOI: 10.1128/aem.00453-08] [Citation(s) in RCA: 491] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chitosan is a polysaccharide biopolymer that combines a unique set of versatile physicochemical and biological characteristics which allow for a wide range of applications. Although its antimicrobial activity is well documented, its mode of action has hitherto remained only vaguely defined. In this work we investigated the antimicrobial mode of action of chitosan using a combination of approaches, including in vitro assays, killing kinetics, cellular leakage measurements, membrane potential estimations, and electron microscopy, in addition to transcriptional response analysis. Chitosan, whose antimicrobial activity was influenced by several factors, exhibited a dose-dependent growth-inhibitory effect. A simultaneous permeabilization of the cell membrane to small cellular components, coupled to a significant membrane depolarization, was detected. A concomitant interference with cell wall biosynthesis was not observed. Chitosan treatment of Staphylococcus simulans 22 cells did not give rise to cell wall lysis; the cell membrane also remained intact. Analysis of transcriptional response data revealed that chitosan treatment leads to multiple changes in the expression profiles of Staphylococcus aureus SG511 genes involved in the regulation of stress and autolysis, as well as genes associated with energy metabolism. Finally, a possible mechanism for chitosan's activity is postulated. Although we contend that there might not be a single classical target that would explain chitosan's antimicrobial action, we speculate that binding of chitosan to teichoic acids, coupled with a potential extraction of membrane lipids (predominantly lipoteichoic acid) results in a sequence of events, ultimately leading to bacterial death.
Collapse
|
40
|
Kieboom J, Kusumaningrum HD, Tempelaars MH, Hazeleger WC, Abee T, Beumer RR. Survival, elongation, and elevated tolerance of Salmonella enterica serovar Enteritidis at reduced water activity. J Food Prot 2006; 69:2681-6. [PMID: 17133811 DOI: 10.4315/0362-028x-69.11.2681] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Growing microorganisms on dry surfaces, which results in exposure to low water activity (a(w)), may change their normal morphology and physiological activity. In this study, the morphological changes and cell viability of Salmonella enterica serovar Enteritidis challenged to low a(w) were analyzed. The results indicated that exposure to reduced a(w) induced filamentation of the cells. The amount of filamentous cells at a(w) 0.94 was up to 90% of the total number of cells. Surviving filamentous cells maintained their membrane integrity after exposure to low a(w) for 21 days. Furthermore, cells prechallenged to low a(w), obtained with an ionic humectant, demonstrated higher resistance to sodium hypochlorite than control cells. These resistant cells are able to survive disinfection more efficiently and can therefore cause contamination of foods coming in contact with surfaces. This points to the need for increased attention to cleaning of surfaces in household environments and disinfection procedures in processing plants.
Collapse
Affiliation(s)
- Jasper Kieboom
- Laboratory of Food Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Stewart CM, Cole MB, Legan JD, Slade L, Schaffner DW. Solute-specific effects of osmotic stress on Staphylococcus aureus. J Appl Microbiol 2005; 98:193-202. [PMID: 15610432 DOI: 10.1111/j.1365-2672.2004.02445.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To determine if cell death from osmotic stress is because of lack of sufficient energy to maintain cell metabolism. Additionally, the solute-specific effect of five humectants on bacterial osmoregulation and cell survival was examined. METHODS AND RESULTS Staphylococcus aureus was placed into 84% relative humidity (RH) broth (five humectants used individually). ATP, ADP and cell viability measurements were determined over time. The results indicate that ATP is not the limiting factor for cell survival under excessive osmotic stress. Although the same RH was achieved with various humectants, the rates of cell death varied greatly as did the sensitivities of the cell populations to osmotic stress. CONCLUSIONS The results from this study provide strong evidence that mechanisms of osmotic inactivation depend on the solute. The molecular mobility of the system may be an important means to explain these differences. SIGNIFICANCE AND IMPACT OF THE STUDY By bringing together an understanding of solute-specific effects, microbial physiology and genetics, the mechanisms of inactivation of micro-organisms by solute-specific osmotic stress may be elucidated, and this knowledge may then be exploited to ensure the production of high quality, safe foods.
Collapse
|
42
|
Chihib NE, Tierny Y, Mary P, Hornez JP. Adaptational changes in cellular fatty acid branching and unsaturation of Aeromonas species as a response to growth temperature and salinity. Int J Food Microbiol 2005; 102:113-9. [PMID: 15925007 DOI: 10.1016/j.ijfoodmicro.2004.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 07/23/2004] [Accepted: 12/30/2004] [Indexed: 11/25/2022]
Abstract
The effects of growth temperature and salinity on the cellular fatty acids were investigated on Aeromonas caviae, Aeromonas hydrophila and Aeromonas sobria. Under optimal growth conditions, fatty acids patterns were dominated by even-numbered chains C(16:0), C(16:1cis9), C(18:1cis11), C(12:0) and C(14:0). Growth temperature modifications induced, in the three Aeromonas species, important changes in fatty acid (i) unsaturation, (ii) branching and (iii) chain length. An important decrease in the C(18:1cis11) fatty acid content was observed for the three species below 15 degrees C and above 25 degrees C. The evolution of C(18:1cis11) and C(16:0) showed a mirror image for the three Aeromonas species. Low NaCl concentrations did not elicit significant changes in the fatty acids content of the three Aeromonas species. However, for high NaCl concentration in the medium, the growth ability was related to an important decrease of the unsaturated to saturated fatty acids ratio indicating a membrane rigidification. Thermal and salinity adaptations were branched fatty acid-dependent for A. caviae, whereas this phenomenon was less significant for A. hydrophila and A. sobria.
Collapse
Affiliation(s)
- Nour Eddine Chihib
- Université des Sciences et Technologies de Lille, Laboratoire de Microbiologie, Bâtiment SN2, Cité Scientifique, F-59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | |
Collapse
|
43
|
Stecchini ML, Del Torre M, Venir E. Growth of Listeria monocytogenes as influenced by viscosity and water activity. Int J Food Microbiol 2004; 96:181-7. [PMID: 15364472 DOI: 10.1016/j.ijfoodmicro.2004.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/08/2004] [Accepted: 03/10/2004] [Indexed: 11/26/2022]
Abstract
The effects of osmotic stress on Listeria monocytogenes growth parameters was examined in relation to the viscosity of the growth media. In low-viscosity systems, growth of L. monocytogenes in glucose-supplemented media was comparable to growth in sucrose-supplemented media. The relative lag time (RLT: the lag time divided by the generation time) responses were found to increase in the more restrictive water activity conditions. In high-viscosity systems containing polyvinylpyrrolidone (PVP), growth rate was reduced, whereas lag time showed no discernible modification. Osmotic stress in medium- and high-viscosity media supplemented with glucose resulted in approximately exponential increasing of the RLT values. Thus, the biological effects of osmotic stress on L. monocytogenes could be affected by the physical properties of the system, such as viscosity and diffusivity.
Collapse
Affiliation(s)
- Mara Lucia Stecchini
- Department of Food Science, University of Udine, via Marangoni 97, 33100 Udine, Italy.
| | | | | |
Collapse
|
44
|
Martinez-Urtaza J, Peiteado J, Lozano-León A, Garcia-Martin O. Detection of Salmonella Senftenberg associated with high saline environments in mussel processing facilities. J Food Prot 2004; 67:256-63. [PMID: 14968956 DOI: 10.4315/0362-028x-67.2.256] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A contamination by Salmonella Senftenberg in frozen mussels was detected in 1998 during a routine analytical surveillance. From June 1998 to December 2001, a total of 3,410 samples of steamed frozen mussels and items related to their manufacture were analyzed for the presence of Salmonella. Salmonella Senftenberg was isolated in 573 (16.8%) samples, and no other serovar was detected. The contamination episodes extended for several months. Salmonella Senftenberg colonies from the first contamination events showed a rugose morphology on agar with a shiny crystalline layer and limited colony formation on microbiological media. These contaminations were mainly associated with brine (300 g of NaCl per liter), while the live molluscs that were being processed were free of Salmonella. When the brine contaminations were nearly controlled, new episodes were detected that were associated with live mussels. In the new episodes, colonies showed the typical characteristics of Salmonella and normal growth on agar. Salmonella Senftenberg presented a high resistance to unfavorable environments and showed a preference for clean environments. While Salmonella Senftenberg could be isolated from mussels after steam treatment, it could not survive after immersion in water at 80 degrees C for 1 min. This fact was used to develop a process to remove contamination from products, minimizing the health risk associated with frozen mussel consumption. The general incidence of Salmonella Senftenberg in facilities and mussels was reduced from 31.2% in 1998 to 2.5% in 2001. During this study, no cases of illness from consumption of frozen mussels were reported, indicating a possible lack of virulence of Salmonella Senftenberg in these contamination events.
Collapse
Affiliation(s)
- Jaime Martinez-Urtaza
- Unidad de Control de Moluscos, Instituto de Acuicultura, Universidad de Santiago de Compostela, Campus Universitario Sur, 15782 Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
45
|
Beales N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review. Compr Rev Food Sci Food Saf 2004; 3:1-20. [DOI: 10.1111/j.1541-4337.2004.tb00057.x] [Citation(s) in RCA: 459] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Miller S, Bartlett W, Chandrasekaran S, Simpson S, Edwards M, Booth IR. Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J 2003; 22:36-46. [PMID: 12505982 PMCID: PMC140058 DOI: 10.1093/emboj/cdg011] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The major structural features of the Escherichia coli MscS mechanosensitive channel protein have been explored using alkaline phosphatase (PhoA) fusions, precise deletions and site-directed mutations. PhoA protein fusion data, combined with the positive-inside rule, strongly support a model in which MscS crosses the membrane three times, adopting an N(out)-C(in) configuration. Deletion data suggest that the C-terminal domain of the protein is essential for the stability of the MscS channel, whereas the protein will tolerate small deletions at the N-terminus. Four mutants that exhibit either gain-of-function (GOF) or loss-of-function have been identified: a double mutation I48D/S49P inactivates MscS, whereas the MscS mutants T93R, A102P and L109S cause a strong GOF phenotype. The similarity of MscS to the last two domains of MscK (formerly KefA) is reinforced by the demonstration that expression of a truncated MscK protein can substitute for MscL and MscS in downshock survival assays. The data derived from studies of the organization, conservation and the influence of mutations provide significant insights into the structure of the MscS channel.
Collapse
Affiliation(s)
| | | | - Subramanian Chandrasekaran
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
Present address: Division of Biochemistry, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK Corresponding author e-mail:
| | | | | | - Ian R. Booth
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
Present address: Division of Biochemistry, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK Corresponding author e-mail:
| |
Collapse
|