1
|
Samal RR, Subudhi U. Biochemical and biophysical interaction of rare earth elements with biomacromolecules: A comprehensive review. CHEMOSPHERE 2024; 357:142090. [PMID: 38648983 DOI: 10.1016/j.chemosphere.2024.142090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The growing utilization of rare earth elements (REEs) in industrial and technological applications has captured global interest, leading to the development of high-performance technologies in medical diagnosis, agriculture, and other electronic industries. This accelerated utilization has also raised human exposure levels, resulting in both favourable and unfavourable impacts. However, the effects of REEs are dependent on their concentration and molecular species. Therefore, scientific interest has increased in investigating the molecular interactions of REEs with biomolecules. In this current review, particular attention was paid to the molecular mechanism of interactions of Lanthanum (La), Cerium (Ce), and Gadolinium (Gd) with biomolecules, and the biological consequences were broadly interpreted. The review involved gathering and evaluating a vast scientific collection which primarily focused on the impact associated with REEs, ranging from earlier reports to recent discoveries, including studies in human and animal models. Thus, understanding the molecular interactions of each element with biomolecules will be highly beneficial in elucidating the consequences of REEs accumulation in the living organisms.
Collapse
Affiliation(s)
- Rashmi R Samal
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umakanta Subudhi
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Benjamín-Rivera J, Otero MP, Tinoco AD. Reinforcing Protein Biochemistry: A Two-Week Experiment Studying Iron(III) Binding by the Transferrin Protein through Stoichiometric Determination, Stability Analysis, and Visualization of the Binding Site. JOURNAL OF CHEMICAL EDUCATION 2024; 101:1656-1664. [PMID: 38654892 PMCID: PMC11033862 DOI: 10.1021/acs.jchemed.3c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
The two-week protein biochemistry experience described herein focuses on reinforcing key biochemical concepts and achieving significant learning domain accomplishments for students (Content Knowledge, Logical Mathematical Reasoning, Visualization, Information Literacy, and Knowledge Integration) and valuable teaching opportunities for instructors. The experience encompasses an exploration of the transport protein serum transferrin as an important regulator of Fe(III) biochemistry and incorporates techniques to assess protein-metal stoichiometry and protein stability and to perform molecular visualization. Students gain practical experience in utilizing spectrophotometric analysis for constructing stoichiometric curves, in performing urea-PAGE, and in applying the PyMOL program to evaluate metal coordination at a protein binding site and the associated protein structural change. The learning and teaching accomplishments provide valuable skills that can be extended into research and translated to other teaching formats.
Collapse
Affiliation(s)
- Josué
A. Benjamín-Rivera
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, Puerto Rico 00931, United States
| | - Mariela Pérez Otero
- Department
of Biology, University of Puerto Rico, Río Piedras Campus, Río Piedras, Puerto Rico 00931, United States
| | - Arthur D. Tinoco
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, Puerto Rico 00931, United States
| |
Collapse
|
3
|
Ahmadian M, Jahanian-Najafabadi A, Akbari V. Optimization of Buffer Additives for Efficient Recovery of hGM-CSF from Inclusion Bodies Using Response Surface Methodology. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:297-309. [PMID: 33680031 PMCID: PMC7758011 DOI: 10.22037/ijpr.2020.1101169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Overexpression of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) by Escherichia coli leads to formation of insoluble and inactive proteins, inclusion bodies. The aim of this study was to improve recovery of biologically active hGM-CSF from inclusion bodies. The effect of types, concentrations and pHs of denaturing agents and addition of reducing agents on the yield of inclusion bodies solubilization was evaluated. Next, various conditions were evaluated for refolding hGM-CSF using a two-step design of experiment (DOE) including primary screening by factorial design, and then optimization by response surface design. It was found that hGM-CSF inclusion bodies can be efficiently solubilized with 4 M urea and 4 mM β-mercaptoethanol, pH = 9. A response surface quadratic model was employed to predict the optimum refolding conditions and the accuracy of this model was confirmed by high value of R2 (0.99) and F-value of 0.64. DOE results revealed that sorbitol (0.235 M), imidazole (97 mM), and SDS (0.09%) would be the optimum buffer additives for refolding of hGM-CSF. Following refolding studies, the obtained protein was subjected to circular dichroism which confirmed correct secondary structure of the refolded hGM-CSF. The refolded hGM-CSF exhibited reasonable biological activity compared with standard protein. The approach developed in this work can be important to improve the refolding of other proteins with similar structural features.
Collapse
Affiliation(s)
- Mina Ahmadian
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Catalytic and structural effects of flexible loop deletion in organophosphorus hydrolase enzyme: A thermostability improvement mechanism. J Biosci 2020. [DOI: 10.1007/s12038-020-00026-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Uversky VN, Finkelstein AV. Life in Phases: Intra- and Inter- Molecular Phase Transitions in Protein Solutions. Biomolecules 2019; 9:E842. [PMID: 31817975 PMCID: PMC6995567 DOI: 10.3390/biom9120842] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Proteins, these evolutionarily-edited biological polymers, are able to undergo intramolecular and intermolecular phase transitions. Spontaneous intramolecular phase transitions define the folding of globular proteins, whereas binding-induced, intra- and inter- molecular phase transitions play a crucial role in the functionality of many intrinsically-disordered proteins. On the other hand, intermolecular phase transitions are the behind-the-scenes players in a diverse set of macrosystemic phenomena taking place in protein solutions, such as new phase nucleation in bulk, on the interface, and on the impurities, protein crystallization, protein aggregation, the formation of amyloid fibrils, and intermolecular liquid-liquid or liquid-gel phase transitions associated with the biogenesis of membraneless organelles in the cells. This review is dedicated to the systematic analysis of the phase behavior of protein molecules and their ensembles, and provides a description of the major physical principles governing intramolecular and intermolecular phase transitions in protein solutions.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow, Russia
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow, Russia
- Biology Department, Lomonosov Moscow State University, 119192 Moscow, Russia
- Bioltechnogy Department, Lomonosov Moscow State University, 142290 Pushchino, Moscow, Russia
| |
Collapse
|
6
|
Li W, Yang L, Dong T, Xing H, Wang W, Yang Y, Liu H. Gas-assisted low-field magnetic separation for large scale continuous magnetic bio-separation process. AIChE J 2018. [DOI: 10.1002/aic.16389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wensong Li
- College of Chemical Engineering; Xiangtan University; Hunan P.R. China
| | - Liangrong Yang
- CAS Key Laboratory of Green Process and Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| | - Tingting Dong
- CAS Key Laboratory of Green Process and Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| | - Huifang Xing
- CAS Key Laboratory of Green Process and Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| | - Weiyan Wang
- College of Chemical Engineering; Xiangtan University; Hunan P.R. China
| | - Yunquan Yang
- College of Chemical Engineering; Xiangtan University; Hunan P.R. China
| | - Huizhou Liu
- CAS Key Laboratory of Green Process and Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| |
Collapse
|
7
|
Isothermal chemical denaturation of large proteins: Path-dependence and irreversibility. Anal Biochem 2017; 539:60-69. [DOI: 10.1016/j.ab.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
|
8
|
Pauli J, Pochstein M, Haase A, Napp J, Luch A, Resch-Genger U. Influence of Label and Charge Density on the Association of the Therapeutic Monoclonal Antibodies Trastuzumab and Cetuximab Conjugated to Anionic Fluorophores. Chembiochem 2016; 18:101-110. [DOI: 10.1002/cbic.201600299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Jutta Pauli
- Federal Institute for Materials Research and Testing (BAM); Division 1.10 Biophotonics; Richard-Willstaetter-Strasse 11 12489 Berlin Germany
| | - Marieke Pochstein
- Federal Institute for Materials Research and Testing (BAM); Division 1.10 Biophotonics; Richard-Willstaetter-Strasse 11 12489 Berlin Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR); Department of Chemical and Product Safety; Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Joanna Napp
- Institute of Interventional and Diagnostic Radiology; University Medical Center Göttingen; Robert-Koch-Strasse 40 37075 Göttingen Germany
- Department of Haematology and Medical Oncology; University Medical Center Göttingen; Robert-Koch-Strasse 40,
- Department of Molecular Biology of Neuronal Signal; Max-Planck-Institute of Experimental Medicine; Hermann-Rein-Strasse 3 37075 Göttingen Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR); Department of Chemical and Product Safety; Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM); Division 1.10 Biophotonics; Richard-Willstaetter-Strasse 11 12489 Berlin Germany
| |
Collapse
|
9
|
Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.02.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Kim H, Kim S, Jung Y, Han J, Yun JH, Chang I, Lee W. Probing the Folding-Unfolding Transition of a Thermophilic Protein, MTH1880. PLoS One 2016; 11:e0145853. [PMID: 26766214 PMCID: PMC4713090 DOI: 10.1371/journal.pone.0145853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
The folding mechanism of typical proteins has been studied widely, while our understanding of the origin of the high stability of thermophilic proteins is still elusive. Of particular interest is how an atypical thermophilic protein with a novel fold maintains its structure and stability under extreme conditions. Folding-unfolding transitions of MTH1880, a thermophilic protein from Methanobacterium thermoautotrophicum, induced by heat, urea, and GdnHCl, were investigated using spectroscopic techniques including circular dichorism, fluorescence, NMR combined with molecular dynamics (MD) simulations. Our results suggest that MTH1880 undergoes a two-state N to D transition and it is extremely stable against temperature and denaturants. The reversibility of refolding was confirmed by spectroscopic methods and size exclusion chromatography. We found that the hyper-stability of the thermophilic MTH1880 protein originates from an extensive network of both electrostatic and hydrophobic interactions coordinated by the central β-sheet. Spectroscopic measurements, in combination with computational simulations, have helped to clarify the thermodynamic and structural basis for hyper-stability of the novel thermophilic protein MTH1880.
Collapse
Affiliation(s)
- Heeyoun Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–740, Korea
| | - Sangyeol Kim
- Department of Physics, Pusan National University, Busan, 609–735, Korea
- Center for Proteome Biophysics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 711–873, Korea
| | - Youngjin Jung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–740, Korea
| | - Jeongmin Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–740, Korea
| | - Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–740, Korea
| | - Iksoo Chang
- Center for Proteome Biophysics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 711–873, Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 711–873, Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–740, Korea
| |
Collapse
|
11
|
Imidazolium based ionic liquid type surfactant improves activity and thermal stability of lipase of Rhizopus oryzae. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Abstract
(1)H-, (11)B-, (13)C-, (15)N-, (17)O-, (19)F-, and (31)P-NMR chemical shifts of flavocoenzymes and derivatives of it, as well as of alloxazines and isoalloxazinium salts, from NMR experiments performed under various experimental conditions (e.g., dependence of the chemical shifts on temperature, concentration, solvent polarity, and pH) are reported. Also solid-state (13)C- and (15)N-NMR experiments are described revealing the anisotropic values of corresponding chemical shifts. These data, in combination with a number of coupling constants, led to a detailed description of the electronic structure of oxidized and reduced flavins. The data also demonstrate that the structure of oxidized flavin can assume a configuration deviating from coplanarity, depending on substitutions in the isoalloxazine ring, while that of reduced flavin exhibits several configurations, from almost planar to quite bended. The complexes formed between oxidized flavin and metal ions or organic molecules revealed three coordination sites with metal ions (depending on the chemical nature of the ion), and specific interactions between the pyrimidine moiety of flavin and organic molecules, mimicking specific interactions between apoflavoproteins and their coenzymes. Most NMR studies on flavoproteins were performed using (13)C- and (15)N-substituted coenzymes, either specifically enriched in the pterin moiety of flavin or uniformly labeled flavins. The chemical shifts of free flavins are used as a guide in the interpretation of the chemical shifts observed in flavoproteins. Although the hydrogen-bonding pattern in oxidized and reduced flavoproteins varies considerably, no correlation is obvious between these patterns and the corresponding redox potentials. In all reduced flavoproteins the N(1)H group of the flavocoenzyme is deprotonated, an exception is thioredoxin reductase. Three-dimensional structures of only a few flavoproteins, mostly belonging to the family of flavodoxins, have been solved. Also the kinetics of unfolding and refolding of flavodoxins has been investigated by NMR techniques. In addition, (31)P-NMR data of all so far studied flavoproteins and some (19)F-NMR spectra are discussed.
Collapse
Affiliation(s)
- Franz Müller
- , Wylstrasse 13, CH-6052, Hergiswil, Switzerland,
| |
Collapse
|
13
|
Beitlich T, Lorenz T, Reinstein J. Folding properties of cytosine monophosphate kinase from E. coli indicate stabilization through an additional insert in the NMP binding domain. PLoS One 2013; 8:e78384. [PMID: 24205218 PMCID: PMC3813627 DOI: 10.1371/journal.pone.0078384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022] Open
Abstract
The globular 25 kDa protein cytosine monophosphate kinase (CMPK, EC ID: 2.7.4.14) from E. coli belongs to the family of nucleoside monophosphate (NMP) kinases (NMPK). Many proteins of this family share medium to high sequence and high structure similarity including the frequently found α/β topology. A unique feature of CMPK in the family of NMPKs is the positioning of a single cis-proline residue in the CORE-domain (cis-Pro124) in conjunction with a large insert in the NMP binding domain. This insert is not found in other well studied NMPKs such as AMPK or UMP/CMPK. We have analyzed the folding pathway of CMPK using time resolved tryptophan and FRET fluorescence as well as CD. Our results indicate that unfolding at high urea concentrations is governed by a single process, whereas refolding in low urea concentrations follows at least a three step process which we interpret as follows: Pro124 in the CORE-domain is in cis in the native state (N(c)) and equilibrates with its trans-isomer in the unfolded state (U(c) - U(t)). Under refolding conditions, at least the U(t) species and possibly also the U(c) species undergo a fast initial collapse to form intermediates with significant amount of secondary structure, from which the trans-Pro124 fraction folds to the native state with a 100-fold lower rate constant than the cis-Pro124 species. CMPK thus differs from homologous NMP kinases like UMP/CMP kinase or AMP kinase, where folding intermediates show much lower content of secondary structure. Importantly also unfolding is up to 100-fold faster compared to CMPK. We therefore propose that the stabilizing effect of the long NMP-domain insert in conjunction with a subtle twist in the positioning of a single cis-Pro residue allows for substantial stabilization compared to other NMP kinases with α/β topology.
Collapse
Affiliation(s)
- Thorsten Beitlich
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thorsten Lorenz
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jochen Reinstein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
14
|
Lindhoud S, van den Berg WAM, van den Heuvel RHH, Heck AJR, van Mierlo CPM, van Berkel WJH. Cofactor binding protects flavodoxin against oxidative stress. PLoS One 2012; 7:e41363. [PMID: 22829943 PMCID: PMC3400614 DOI: 10.1371/journal.pone.0041363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/20/2012] [Indexed: 11/23/2022] Open
Abstract
In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | | | - Robert H. H. van den Heuvel
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
15
|
Felsovalyi F, Patel T, Mangiagalli P, Kumar SK, Banta S. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases. Protein Sci 2012; 21:1113-25. [PMID: 22619179 DOI: 10.1002/pro.2099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/11/2012] [Indexed: 11/10/2022]
Abstract
Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior.
Collapse
Affiliation(s)
- Flora Felsovalyi
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
16
|
Duan Y, Gu TJ, Jiang CL, Yuan RS, Zhang HF, Hou HJ, Yu XH, Chen Y, Zhang Y, Wu YG, Kong W. A novel disulfide-stabilized single-chain variable antibody fragment against rabies virus G protein with enhanced in vivo neutralizing potency. Mol Immunol 2012; 51:188-96. [PMID: 22484084 DOI: 10.1016/j.molimm.2012.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 03/03/2012] [Accepted: 03/03/2012] [Indexed: 10/28/2022]
Abstract
Rabies is a fatal infectious disease requiring efficient protection provided by post-exposure prophylaxis (PEP) with rabies immunoglobulin (RIG). The single-chain Fv fragment (scFv) is a small engineered antigen binding protein derived from antibody variable heavy (V(H)) and light (V(L)) chains. This novel antibody format may potentially replace the current application of RIG to detect and neutralize rabies virus (RV). However, the broad use of scFvs is confined by their generally low stability. In this study, a scFv (FV57) was constructed based on the monoclonal antibody, MAB57, against RV. To enhance its stability and neutralizing potency, a disulfide-stabilized scFv, ds-FV57, was also derived by introduction of cysteines at V(H)44 and V(L)100. Furthermore, the cysteine at V(L)85 of ds-FV57 was mutated to serine to construct ds-FV57(VL85Ser) in order to avoid potential mis-formed disulfide bonds which would alter the affinity of the scFv. The stability and activity of all three proteins expressed in Escherichia coli were evaluated. All of the constructed scFvs could provide efficient protection against RV infection both in vivo and in vitro. However, the stability of ds-FV57(VL85Ser) was notably improved, and its in vitro neutralizing potency against RV infection was enhanced. Our findings from these stabilization modifications support the feasibility of developing scFvs for PEP treatment of rabies.
Collapse
Affiliation(s)
- Ye Duan
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun 130012, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Felsovalyi F, Mangiagalli P, Bureau C, Kumar SK, Banta S. Reversibility of the adsorption of lysozyme on silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11873-11882. [PMID: 21859112 DOI: 10.1021/la202585r] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A central paradigm that underpins our understanding of the interaction of proteins with solid surfaces is that protein adsorption leads to changes in secondary structure. The bound proteins tend to denature, and these non-native, adsorbed structures are likely stabilized through the loss of α-helices with the concomitant formation of intermolecular β-sheets. The goal of this work is to critically assess the impact this behavior has on protein desorption, where irreversible conformational changes might lead to protein aggregation or result in other forms of instability. The adsorption, desorption, and structural transitions of lysozyme are examined on fumed silica nanoparticles as a function of the amount of protein adsorbed. Surprisingly, the data indicate not only that adsorption is reversible but also that protein desorption is predictable in a coverage-dependent manner. Additionally, there is evidence of a two-state model which involves exchange between a native-like dissolved state and a highly perturbed adsorbed state. Since the in situ circular dichroism (CD) derived secondary structures of the adsorbed proteins are essentially unaffected by changes in surface coverage, these results are not consistent with previous claims that surface-induced denaturation is coverage dependent. Inspired by results from homopolymer adsorption experiments, we speculate that more local descriptors, such as the number of amino acids per chain that are physically adsorbed on the surface, likely control the desorption process.
Collapse
Affiliation(s)
- Flora Felsovalyi
- Department of Chemical Engineering, Columbia University, 500 W 120th St., New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
18
|
Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 2011; 49:326-46. [PMID: 22112558 DOI: 10.1016/j.enzmictec.2011.06.023] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/20/2022]
Abstract
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications.
Collapse
|
19
|
Gao Y, Zhang M, Zhang H, Yu X, Kong W, Zha X, Wu Y. Thermal Stability and Structural Variations of Survivin and Its Deletants in Aqueous Solution as Revealed by Spectroscopy. J Phys Chem B 2011; 115:7038-44. [PMID: 21542596 DOI: 10.1021/jp200060q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | | | - Xiao Zha
- Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | | |
Collapse
|
20
|
Gospodarek AM, Smatlak ME, O'Connell JP, Fernandez EJ. Protein stability and structure in HIC: hydrogen exchange experiments and COREX calculations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:286-295. [PMID: 21117672 DOI: 10.1021/la103793r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hydrogen exchange mass spectrometry (HXMS) coupled to proteolytic digestion has been used to probe the conformation of bovine β-lactoglobulin (BLG), bovine α-lactalbumin (BLA), and human serum albumin (HSA) in solution and while adsorbed to the hydrophobic interaction chromatography media Phenyl Sepharose 6FF. All three proteins show evidence of EX1 exchange kinetics, indicating a loss of stability on the surface. HX protection patterns for all three proteins also indicate that the unfolded form is only partially solvent exposed. The hydrogen-deuterium exchange patterns of BLG and BLA on the surface suggest a structure that resembles each protein's respective solution phase molten globule state. The low stability of Domain II of HSA observed on Phenyl Sepharose 6FF also suggests a link to solution stability because Domain II is frequently cited as the least stable domain in solution unfolding pathways. COREX, an algorithm used to compute protein folding stabilities, correctly predicts solution hydrogen-deuterium exchange patterns for BLG and offers insight into its adsorbed phase stabilities but is unreliable for BLA predictions. The results of this work demonstrate a link between solution-phase local stability patterns and the nature of partially unfolded states that proteins can adopt on HIC surfaces.
Collapse
Affiliation(s)
- Adrian M Gospodarek
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4741, United States
| | | | | | | |
Collapse
|
21
|
Stagg L, Samiotakis A, Homouz D, Cheung MS, Wittung-Stafshede P. Residue-specific analysis of frustration in the folding landscape of repeat beta/alpha protein apoflavodoxin. J Mol Biol 2009; 396:75-89. [PMID: 19913555 DOI: 10.1016/j.jmb.2009.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 11/17/2022]
Abstract
Flavodoxin adopts the common repeat beta/alpha topology and folds in a complex kinetic reaction with intermediates. To better understand this reaction, we analyzed a set of Desulfovibrio desulfuricans apoflavodoxin variants with point mutations in most secondary structure elements by in vitro and in silico methods. By equilibrium unfolding experiments, we first revealed how different secondary structure elements contribute to overall protein resistance to heat and urea. Next, using stopped-flow mixing coupled with far-UV circular dichroism, we probed how individual residues affect the amount of structure formed in the experimentally detected burst-phase intermediate. Together with in silico folding route analysis of the same point-mutated variants and computation of growth in nucleation size during early folding, computer simulations suggested the presence of two competing folding nuclei at opposite sides of the central beta-strand 3 (i.e., at beta-strands 1 and 4), which cause early topological frustration (i.e., misfolding) in the folding landscape. Particularly, the extent of heterogeneity in folding nuclei growth correlates with the in vitro burst-phase circular dichroism amplitude. In addition, phi-value analysis (in vitro and in silico) of the overall folding barrier to apoflavodoxin's native state revealed that native-like interactions in most of the beta-strands must form in transition state. Our study reveals that an imbalanced competition between the two sides of apoflavodoxin's central beta-sheet directs initial misfolding, while proper alignment on both sides of beta-strand 3 is necessary for productive folding.
Collapse
Affiliation(s)
- Loren Stagg
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | | | | | |
Collapse
|
22
|
Non-native hydrophobic interactions detected in unfolded apoflavodoxin by paramagnetic relaxation enhancement. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:689-98. [PMID: 19894043 PMCID: PMC2841281 DOI: 10.1007/s00249-009-0556-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/30/2009] [Accepted: 10/09/2009] [Indexed: 11/15/2022]
Abstract
Transient structures in unfolded proteins are important in elucidating the molecular details of initiation of protein folding. Recently, native and non-native secondary structure have been discovered in unfolded A. vinelandii flavodoxin. These structured elements transiently interact and subsequently form the ordered core of an off-pathway folding intermediate, which is extensively formed during folding of this α–β parallel protein. Here, site-directed spin-labelling and paramagnetic relaxation enhancement are used to investigate long-range interactions in unfolded apoflavodoxin. For this purpose, glutamine-48, which resides in a non-native α-helix of unfolded apoflavodoxin, is replaced by cysteine. This replacement enables covalent attachment of nitroxide spin-labels MTSL and CMTSL. Substitution of Gln-48 by Cys-48 destabilises native apoflavodoxin and reduces flexibility of the ordered regions in unfolded apoflavodoxin in 3.4 M GuHCl, because of increased hydrophobic interactions in the unfolded protein. Here, we report that in the study of the conformational and dynamic properties of unfolded proteins interpretation of spin-label data can be complicated. The covalently attached spin-label to Cys-48 (or Cys-69 of wild-type apoflavodoxin) perturbs the unfolded protein, because hydrophobic interactions occur between the label and hydrophobic patches of unfolded apoflavodoxin. Concomitant hydrophobic free energy changes of the unfolded protein (and possibly of the off-pathway intermediate) reduce the stability of native spin-labelled protein against unfolding. In addition, attachment of MTSL or CMTSL to Cys-48 induces the presence of distinct states in unfolded apoflavodoxin. Despite these difficulties, the spin-label data obtained here show that non-native contacts exist between transiently ordered structured elements in unfolded apoflavodoxin.
Collapse
|
23
|
Anbazhagan V, Wang HM, Lu CS, Yu C. A residue-level investigation of the equilibrium unfolding of the C2A domain of synaptotagmin 1. Arch Biochem Biophys 2009; 490:158-62. [DOI: 10.1016/j.abb.2009.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
|
24
|
Zandomeneghi G, Zandomeneghi M. Determination of holo- and apo-riboflavin binding protein in avian egg whites through circular dichroism and fluorescence spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6510-6517. [PMID: 19722562 DOI: 10.1021/jf901079n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The hen egg white contains proteins able to strongly bind, with a definite stoichiometry, small molecules such as biotin and riboflavin, or ions such as Cu2+ or Fe3+. The complexation process modifies the spectral properties of these low-molecular-weight species. On the basis of these changes, it is possible, in principle, to measure the quantity of the binding protein and to evaluate the protein-substrate interactions. Here, we present a method to determine the concentration of both the apo and holo forms of the riboflavin-binding protein (RFBP) present in avian egg white, by measuring the circular dichroism (CD) related to the controlled addition of riboflavin (or vitamin B2) to the egg white. At the same time, front-face fluorescence is used to confirm the concentration of apo-RFBP obtained from CD data. The method is based on data only from spectroscopy, and no process involving either extraction, chromatography, electrophoresis, or mass spectrometry is involved. We study the egg whites from four different avian species, reporting and comparing the concentration of the apo- and holo-RFBP and the molar circular dichroism spectra (Deltaepsilon) of riboflavin in the RFBP binding site. Finally, egg whites from different hen individuals are analyzed, and a surprising variation of the RFBP concentration is found.
Collapse
Affiliation(s)
- Giorgia Zandomeneghi
- Physical Chemistry, ETH-Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
25
|
Nabuurs SM, Westphal AH, van Mierlo CPM. Noncooperative Formation of the off-pathway molten globule during folding of the alpha-beta parallel protein apoflavodoxin. J Am Chem Soc 2009; 131:2739-46. [PMID: 19170491 DOI: 10.1021/ja8089476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During folding of many proteins, molten globules are formed. These partially folded forms of proteins have a substantial amount of secondary structure but lack virtually all tertiary side-chain packing characteristic of native structures. Molten globules are ensembles of interconverting conformers and are prone to aggregation, which can have detrimental effects on organisms. Consequently, molten globules attract considerable attention. The molten globule that is observed during folding of flavodoxin from Azotobacter vinelandii is a kinetically off-pathway species, as it has to unfold before the native state of the protein can be formed. This intermediate contains helices and can be populated at equilibrium using guanidinium hydrochloride as denaturant, allowing the use of NMR spectroscopy to follow molten globule formation at the residue level. Here, we track changes in chemical shifts of backbone amides, as well as disappearance of resonances of unfolded apoflavodoxin, upon decreasing denaturant concentration. Analysis of the data shows that structure formation within virtually all parts of the unfolded protein precedes folding to the molten globule state. This folding transition is noncooperative and involves a series of distinct transitions. Four structured elements in unfolded apoflavodoxin transiently interact and subsequently form the ordered core of the molten globule. Although hydrophobic, tryptophan side chains are not involved in the latter process. This ordered core is gradually extended upon decreasing denaturant concentration, but part of apoflavodoxin's molten globule remains random coil in the denaturant range investigated. The results presented here, together with those reported on the molten globule of alpha-lactalbumin, show that helical molten globules apparently fold in a noncooperative manner.
Collapse
Affiliation(s)
- Sanne M Nabuurs
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
26
|
Yang S, Noble CG, Yang D. Characterization of DLC1-SAM Equilibrium Unfolding at the Amino Acid Residue Level. Biochemistry 2009; 48:4040-9. [DOI: 10.1021/bi9000936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuai Yang
- Department of Chemistry, 3 Science Drive 3, Faculty of Science, National University of Singapore, Singapore 117543
| | - Christian G. Noble
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Daiwen Yang
- Department of Biological Sciences, 14 Science Drive 4, Faculty of Science, National University of Singapore, Singapore 117543
| |
Collapse
|
27
|
Engel R, Westphal AH, Huberts DH, Nabuurs SM, Lindhoud S, Visser AJ, van Mierlo CP. Macromolecular Crowding Compacts Unfolded Apoflavodoxin and Causes Severe Aggregation of the Off-pathway Intermediate during Apoflavodoxin Folding. J Biol Chem 2008; 283:27383-27394. [DOI: 10.1074/jbc.m802393200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Abstract
Submolecular details of Azotobacter vinelandii apoflavodoxin (apoFD) (un)folding are revealed by time-resolved fluorescence anisotropy using wild-type protein and variants lacking one or two of apoFD's three tryptophans. ApoFD equilibrium (un)folding by guanidine hydrochloride follows a three-state model: native <--> unfolded <--> intermediate. In native protein, W128 is a sink for Förster resonance energy transfer (FRET). Consequently, unidirectional FRET with a 50-ps transfer correlation time occurs from W167 to W128. FRET from W74 to W167 is much slower (6.9 ns). In the intermediate, W128 and W167 have native-like geometry because the 50-ps transfer time is observed. However, non-native structure exists between W74 and W167 because instead of 6.9 ns the transfer correlation time is 2.0 ns. In unfolded apoFD this 2.0-ns transfer correlation time is also detected. This decrease in transfer correlation time is a result of W74 and W167 becoming solvent accessible and randomly oriented toward one another. Apparently W74 and W167 are near-natively separated in the folding intermediate and in unfolded apoFD. Both tryptophans may actually be slightly closer in space than in the native state, even though apoFD's radius increases substantially upon unfolding. In unfolded apoFD the 50-ps transfer time observed for native and intermediate folding states becomes 200 ps as W128 and W167 are marginally further separated than in the native state. Apparently, apoFD's unfolded state is not a featureless statistical coil but contains well-defined substructures. The approach presented is a powerful tool to study protein folding.
Collapse
|
29
|
Chugh J, Sharma S, Kumar D, Misra JR, Hosur RV. Effect of a single point mutation on the stability, residual structure and dynamics in the denatured state of GED: relevance to self-assembly. Biophys Chem 2008; 137:13-8. [PMID: 18586378 DOI: 10.1016/j.bpc.2008.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
Abstract
The GTPase effector domain (GED) of dynamin forms large soluble oligomers in vitro, while its mutant--I697A--lacks this property at low concentrations. With a view to understand the intrinsic structural characteristics of the polypeptide chain, the global unfolding characteristics of GED wild type (WT) and I697A were compared using biophysical techniques. Quantitative analysis of the CD and fluorescence denaturation profiles revealed that unfolding occurred by a two-state process and the mutant was less stable than the WT. Even in the denatured state, the mutation caused chemical shift perturbations and significant differences were observed in the 15N transverse relaxation rates (R2), not only at the mutation site but all around. These results demonstrate that the hydrophobic change associated with the mutation perturbs the structural and motional preferences locally, which are then relayed via different folding pathways along the chain and the property of oligomerization in the native state is affected.
Collapse
Affiliation(s)
- Jeetender Chugh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-400005, India
| | | | | | | | | |
Collapse
|
30
|
Abe M, Ohno S, Yokogawa T, Nakanishi T, Arisaka F, Hosoya T, Hiramatsu T, Suzuki M, Ogasawara T, Sawasaki T, Nishikawa K, Kitamura M, Hori H, Endo Y. Detection of structural changes in a cofactor binding protein by using a wheat germ cell-free protein synthesis system coupled with unnatural amino acid probing. Proteins 2007; 67:643-52. [PMID: 17348022 DOI: 10.1002/prot.21341] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A cell-free protein synthesis system is a powerful tool with which unnatural amino acids can be introduced into polypeptide chains. Here, the authors describe unnatural amino acid probing in a wheat germ cell-free translation system as a method for detecting the structural changes that occur in a cofactor binding protein on a conversion of the protein from an apo-form to a holo-form. The authors selected the FMN-binding protein from Desulfovibrio vulgaris as a model protein. The apo-form of the protein was synthesized efficiently in the absence of FMN. The purified apo-form could be correctly converted to the holo-form. Thus, the system could synthesize the active apo-form. Gel filtration chromatography, analytical ultracentrifugation, and circular dichroism-spectra studies suggested that the FMN-binding site of the apo-form is open as compared with the holo-form. To confirm this idea, the unnatural amino acid probing was performed by incorporating 3-azido-L-tyrosine at the Tyr35 residue in the FMN-binding site. The authors optimized three steps in their system. The introduced 3-azido-L-tyrosine residue was subjected to specific chemical modification by a fluorescein-triarylphosphine derivative. The initial velocity of the apo-form reaction was 20 fold faster than that of the holo-form, demonstrating that the Tyr35 residue in the apo-form is open to solvent.
Collapse
Affiliation(s)
- Masato Abe
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chatterjee A, Krishna Mohan PM, Prabhu A, Ghosh-Roy A, Hosur RV. Equilibrium unfolding of DLC8 monomer by urea and guanidine hydrochloride: Distinctive global and residue level features. Biochimie 2007; 89:117-34. [PMID: 17029744 DOI: 10.1016/j.biochi.2006.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
We present circular dichroism (CD), steady state fluorescence and multidimensional NMR investigations on the equilibrium unfolding of monomeric dynein light chain protein (DLC8) by urea and guanidine hydrochloride (GdnHCl). Quantitative analysis of the CD and fluorescence denaturation curves reveals that urea unfolding is a two-state process, whereas guanidine unfolding is more complex. NMR investigations in the native state and in the near native states created by low denaturant concentrations enabled residue level characterization of the early structural and dynamic perturbations by the two denaturants. Firstly, (15)N transverse relaxation rates in the native state indicate that the regions around N10, Q27, the loop between beta2 and beta4 strands, and K87 at the C-terminal are potential unfolding initiation sites in the protein. Amide and (15)N chemical shift perturbations indicate different accessibilities of the residues along the chain and help identify locations of the early perturbations by the two denaturants. Guanidine and urea are seen to interact at several sites some of which are different in the two cases. Notable among the common interaction site is that around K87 which is in close proximity to W54 on the protein structure, but the interaction modes of the two denaturants are different. The secondary chemical shifts indicate that the structural perturbation by 1M urea is small, compared to that by guanidine which is more encompassing over the length of the chain. The probable (phi, psi) changes at the individual residues have been calculated using the TALOS algorithm. It appears that the helices in the protein are significantly perturbed by guanidine. Further, comparison of the spectral density functions of the native and the two near native states in the two denaturants implicate greater loosening of the structure by guanidine as compared to that by urea, even though the structures are still in the native state ensemble. These differences in the early perturbations of the native state structure and dynamics by the two denaturants might direct the protein along different pathways, as the unfolding progresses on further increasing the denaturant concentration.
Collapse
Affiliation(s)
- Amarnath Chatterjee
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, Maharashtra, India
| | | | | | | | | |
Collapse
|
32
|
Pappas DJ, Rimm DL. Direct interaction of the C-terminal domain of alpha-catenin and F-actin is necessary for stabilized cell-cell adhesion. ACTA ACUST UNITED AC 2006; 13:151-70. [PMID: 16798615 DOI: 10.1080/15419060600726142] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Alpha-catenin functions to anchor adherens junctions to the filamentous actin (F-actin) cytoskeleton, through direct and indirect binding mechanisms. When truncated at amino acid 865, alpha-catenin exhibited a markedly reduced F-actin binding affinity compared to wild-type. Expression of the truncated mutant in the alpha-catenin deficient colon carcinoma cell line, Clone A, could not restore an adhesive phenotype when compared. Furthermore, the truncated alpha-catenin fusion protein failed to concentrate at sites of cell-cell contact, to promote morphological changes associated with epithelial monolayers, and to stimulate resistance to shearing forces in a hanging drop aggregation assay. Subsequent attempts to isolate single residues governing the direct F-actin interaction, using neutralizing charge or reverse charge mutations of basic residues within a homology modeled alpha-catenin C-terminal 5-helix bundle, had no effect on F-actin cosedimentation. We conclude that direct attachment of alpha-catenin to F-actin is required to promote cadherin-mediated contact formation and strong cell-cell adhesive states.
Collapse
Affiliation(s)
- Derek J Pappas
- The Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8023, USA
| | | |
Collapse
|
33
|
Campos LA, Sancho J. Native-specific stabilization of flavodoxin by the FMN cofactor: structural and thermodynamical explanation. Proteins 2006; 63:581-94. [PMID: 16444751 DOI: 10.1002/prot.20855] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Flavodoxins are useful models to investigate protein/cofactor interactions. The binding energy of the apoflavodoxin-FMN complex is high and therefore the holoflavodoxin is expected to be more stable than the apoprotein. This expectation has been challenged by reports on the stability of Desulfovibrio desulfuricans flavodoxin indicating that FMN binds to the unfolded polypeptide with similar affinity as to the native state, thus causing no net effect on protein stability. In previous work, we have analyzed in detail the stability of the apoflavodoxin from Anabaena PCC 7119 and the energetics of its functional complex with FMN. Here, we use the Anabaena holoprotein to directly investigate the contribution of the bound cofactor to protein stability through a detailed analysis of the chemical and thermal denaturation equilibria. Our data clearly shows that FMN binding largely stabilizes the protein towards both chemical and thermal denaturation, and that the stabilization observed at 25 degrees C in low ionic strength conditions is precisely the one expected if full release of the cofactor takes place upon flavodoxin unfolding. On the other hand, the binding of FMN to the native polypeptide is shown to simplify the thermal unfolding so that, while apoflavodoxin follows a three-state mechanism, the holoprotein unfolds in a two-state fashion. Comparison of the X-ray structure of native apoflavodoxin with the phi-structure of the thermal intermediate indicates that the increase in cooperativity driven by the cofactor originates in its preferential binding to the native state, which is a consequence of the disorganization in the intermediate of the FMN binding loops and of an adjacent longer loop.
Collapse
Affiliation(s)
- L A Campos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias & Biocomputation and Complex Systems Physics Institute, Universidad de Zaragoza, Zaragoza, Spain
| | | |
Collapse
|
34
|
Okuno T, Yamanaka K, Ogura T. Flavodoxin, a new fluorescent substrate for monitoring proteolytic activity of FtsH lacking a robust unfolding activity. J Struct Biol 2006; 156:115-9. [PMID: 16563797 DOI: 10.1016/j.jsb.2006.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 10/25/2022]
Abstract
Escherichia coli FtsH, which belongs to the ATPases associated with diverse cellular activities (AAA) family, is an ATP-dependent and membrane-bound protease. FtsH degrades misassembled membrane proteins and a subset of cytoplasmic regulatory proteins. To elucidate the molecular mechanisms of the proteolysis, a system for precisely monitoring substrate degradation is required. We have exploited E. coli flavodoxin containing non-covalently bound flavin mononucleotide (FMN) as a model substrate for monitoring protein degradation. It was found that FtsH degrades FMN-free apo-flavodoxin but not holo-flavodoxin. However, degradation of a mutant flavodoxin carrying a substitution of Tyr94 to Asp with a lower affinity for FMN could be monitored by fluorimetry. This newly developed monitoring system will also be applicable for proteolysis by other ATP-dependent proteases.
Collapse
Affiliation(s)
- Takashi Okuno
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
35
|
Hill JJ, Shalaev EY, Zografi G. Thermodynamic and dynamic factors involved in the stability of native protein structure in amorphous solids in relation to levels of hydration. J Pharm Sci 2005; 94:1636-67. [PMID: 15965985 DOI: 10.1002/jps.20333] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The internal, dynamical fluctuations of protein molecules exhibit many of the features typical of polymeric and bulk small molecule glass forming systems. The response of a protein's internal molecular mobility to temperature changes is similar to that of other amorphous systems, in that different types of motions freeze out at different temperatures, suggesting they exhibit the alpha-beta-modes of motion typical of polymeric glass formers. These modes of motion are attributed to the dynamic regimes that afford proteins the flexibility for function but that also develop into the large-scale collective motions that lead to unfolding. The protein dynamical transition, T(d), which has the same meaning as the T(g) value of other amorphous systems, is attributed to the temperature where protein activity is lost and the unfolding process is inhibited. This review describes how modulation of T(d) by hydration and lyoprotectants can determine the stability of protein molecules that have been processed as bulk, amorphous materials. It also examines the thermodynamic, dynamic, and molecular factors involved in stabilizing folded proteins, and the effects typical pharmaceutical processes can have on native protein structure in going from the solution state to the solid state.
Collapse
Affiliation(s)
- John J Hill
- ICOS Corporation, 22021 20th Avenue SE, Bothell, WA 98021, USA.
| | | | | |
Collapse
|
36
|
Ternström T, Svendsen A, Akke M, Adlercreutz P. Unfolding and inactivation of cutinases by AOT and guanidine hydrochloride. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1748:74-83. [PMID: 15752695 DOI: 10.1016/j.bbapap.2004.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 12/08/2004] [Accepted: 12/15/2004] [Indexed: 11/17/2022]
Abstract
We present a comparative analysis of the unfolding and inactivation of three cutinases in the presence of guanidine hydrochloride (GdnHCl) and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). Previous investigations have focused on the cutinase from Fusarium solani pisi (FsC). In addition to FsC, the present study includes the cutinase from Humicola insolens (HiC) and a mutant variant of HiC (muHiC) with increased activity and decreased surfactant sensitivity. Equilibrium and time-resolved denaturation by AOT were studied in aqueous solution and reverse micelles, and were compared with GdnHCl denaturation. The far-UV CD and fluorescence denaturation profiles obtained in the aqueous solutions of the two denaturants coincide for all three cutinases, indicating that unfolding is a co-operative two-state process under these conditions. In reverse micelles, the cutinases unfold with mono-exponential rates, again indicating a two-state process. The free energy of denaturation in water was calculated by linear extrapolation of equilibrium data, yielding very similar values for the three cutinases with averages of -11.6 kcal mol(-1) and -2.6 kcal mol(-1) for GdnHCl and AOT, respectively. Hence, the AOT denatured state (D(AOT)) is less destabilised than the GdnHCl denatured state (D(GdnHCl)), relative to the native state in water. Far-UV CD spectroscopy revealed that D(AOT) retains some secondary structure, while D(GdnHCl) is essentially unstructured. Similarly, fluorescence data suggest that D(AOT) is more compact than D(GdnHCl). Activity measurements reveal that both D(AOT) and D(GdnHCl) are practically inactive (catalytic activity <1% of that of the native enzyme). The fluorescence spectrum of D(AOT) in reverse micelles did not differ significantly from that observed in aqueous AOT. NMR studies of D(AOT) in reverse micelles indicated that the structure is characteristic of a molten globule, consistent with the CD and fluorescence data.
Collapse
Affiliation(s)
- Tomas Ternström
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
37
|
Muralidhara BK, Wittung-Stafshede P. Thermal unfolding of Apo and Holo Desulfovibrio desulfuricans flavodoxin: cofactor stabilizes folded and intermediate states. Biochemistry 2004; 43:12855-64. [PMID: 15461458 DOI: 10.1021/bi048944e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We here compare thermal unfolding of the apo and holo forms of Desulfovibrio desulfuricans flavodoxin, which noncovalently binds a flavin mononucleotide (FMN) cofactor. In the case of the apo form, fluorescence and far-UV circular dichroism (CD) detected transitions are reversible but do not overlap (T(m) of 50 and 60 degrees C, respectively, pH 7). The thermal transitions for the holo form follow the same pattern but occur at higher temperatures (T(m) of 60 and 67 degrees C for fluorescence and CD transitions, respectively, pH 7). The holoprotein transitions are also reversible and exhibit no protein concentration dependence (above 10 microM), indicating that the FMN remains bound to the polypeptide throughout. Global analysis shows that the thermal reactions for both apo and holo forms proceed via an equilibrium intermediate that has approximately 90% nativelike secondary structure and significant enthalpic stabilization relative to the unfolded states. Incubation of unfolded holoflavodoxin at high temperatures results in FMN dissociation. Rebinding of FMN at these conditions is nominal, and therefore, cooling of holoprotein heated to 95 degrees C follows the refolding pathway of the apo form. However, FMN readily rebinds to the apoprotein at lower temperatures. We conclude that (1) a three-state thermal unfolding behavior appears to be conserved among long- and short-chain, as well as apo and holo forms of, flavodoxins and (2) flavodoxin's thermal stability (in both native and intermediate states) is augmented by the presence of the FMN cofactor.
Collapse
Affiliation(s)
- B K Muralidhara
- Department of Biochemistry and Cell Biology and Department of Chemistry, Rice University, Houston, Texas 77251, USA
| | | |
Collapse
|
38
|
López-Llano J, Maldonado S, Jain S, Lostao A, Godoy-Ruiz R, Sanchez-Ruiz JM, Cortijo M, Fernández-Recio J, Sancho J. The Long and Short Flavodoxins. J Biol Chem 2004; 279:47184-91. [PMID: 15317817 DOI: 10.1074/jbc.m405791200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flavodoxins are classified in two groups according to the presence or absence of a approximately 20-residue loop of unknown function. In the accompanying paper (36), we have shown that the differentiating loop from the long-chain Anabaena PCC 7119 flavodoxin is a peripheral structural element that can be removed without preventing the proper folding of the apoprotein. Here we investigate the role played by the loop in the stability and folding mechanism of flavodoxin by comparing the equilibrium and kinetic behavior of the full-length protein with that of loop-lacking, shortened variants. We show that, when the loop is removed, the three-state equilibrium thermal unfolding of apoflavodoxin becomes two-state. Thus, the loop is responsible for the complexity shown by long-chain apoflavodoxins toward thermal denaturation. As for the folding reaction, both shortened and wild type apoflavodoxins display three-state behavior but their folding mechanisms clearly differ. Whereas the full-length protein populates an essentially off-pathway transient intermediate, the additional state observed in the folding of the shortened variant analyzed seems to be simply an alternative native conformation. This finding suggests that the long loop may also be responsible for the accumulation of the kinetic intermediate observed in the full-length protein. Most revealing, however, is that the influence of the loop on the overall conformational stability of apoflavodoxin is quite low and the natively folded shortened variant Delta(120-139) is almost as stable as the wild type protein. The fact that the loop, which is not required for a proper folding of the polypeptide, does not even play a significant role in increasing the conformational stability of the protein supports our proposal (36) that the differentiating loop of long-chain flavodoxins may be related to a recognition function, rather than serving a structural purpose.
Collapse
Affiliation(s)
- Jon López-Llano
- Biocomputation and Complex Systems Physics Institute, Zaragoza University, Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Flavoproteins are ubiquitous redox proteins that are involved in many biological processes. In the majority of flavoproteins, the flavin cofactor is tightly but noncovalently bound. Reversible dissociation of flavoproteins into apoprotein and flavin prosthetic group yields valuable insights in flavoprotein folding, function and mechanism. Replacement of the natural cofactor with artificial flavins has proved to be especially useful for the determination of the solvent accessibility, polarity, reaction stereochemistry and dynamic behaviour of flavoprotein active sites. In this review we summarize the advances made in the field of flavoprotein deflavination and reconstitution. Several sophisticated chromatographic procedures to either deflavinate or reconstitute the flavoprotein on a large scale are discussed. In a subset of flavoproteins, the flavin cofactor is covalently attached to the polypeptide chain. Studies from riboflavin-deficient expression systems and site-directed mutagenesis suggest that the flavinylation reaction is a post-translational, rather than a cotranslational, process. These genetic approaches have also provided insight into the mechanism of covalent flavinylation and the rationale for this atypical protein modification.
Collapse
Affiliation(s)
- Marco H Hefti
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | | |
Collapse
|
40
|
Pollegioni L, Iametti S, Fessas D, Caldinelli L, Piubelli L, Barbiroli A, Pilone MS, Bonomi F. Contribution of the dimeric state to the thermal stability of the flavoprotein D-amino acid oxidase. Protein Sci 2003; 12:1018-29. [PMID: 12717024 PMCID: PMC2323872 DOI: 10.1110/ps.0234603] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The flavoenzyme DAAO from Rhodotorula gracilis, a structural paradigm of the glutathione-reductase family of flavoproteins, is a stable homodimer with a flavin adenine dinucleotide (FAD) molecule tightly bound to each 40-kD subunit. In this work, the thermal unfolding of dimeric DAAO was compared with that of two monomeric forms of the same protein: a Deltaloop mutant, in which 14 residues belonging to a loop connecting strands betaF5-betaF6 have been deleted, and a monomer obtained by treating the native holoenzyme with 0.5 M NH(4)SCN. Thiocyanate specifically and reversibly affects monomer association in wild-type DAAO by acting on hydrophobic residues and on ionic pairs between the betaF5-betaF6 loop of one monomer and the alphaI3' and alphaI3" helices of the symmetry-related monomer. By using circular dichroism spectroscopy, protein and flavin fluorescence, activity assays, and DSC, we demonstrated that thermal unfolding involves (in order of increasing temperatures) loss of tertiary structure, followed by loss of some elements of secondary structure, and by general unfolding of the protein structure that was concomitant to FAD release. Temperature stability of wild-type DAAO is related to the presence of a dimeric structure that affects the stability of independent structural domains. The monomeric Deltaloop mutant is thermodynamically less stable than dimeric wild-type DAAO (with melting temperatures (T(m)s) of 48 degrees C and 54 degrees C, respectively). The absence of complications ensuing from association equilibria in the mutant Deltaloop DAAO allowed identification of two energetic domains: a low-temperature energetic domain related to unfolding of tertiary structure, and a high-temperature energetic domain related to loss of secondary structure elements and to flavin release.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Structural and Functional Biology, University of Insubria, 21100 Varese, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Uribe S, Sampedro JG. Measuring Solution Viscosity and its Effect on Enzyme Activity. Biol Proced Online 2003; 5:108-115. [PMID: 14569610 PMCID: PMC154660 DOI: 10.1251/bpo52] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Revised: 03/26/2003] [Accepted: 03/29/2003] [Indexed: 11/23/2022] Open
Abstract
In proteins, some processes require conformational changes involving structural domain diffusion. Among these processes are protein folding, unfolding and enzyme catalysis. During catalysis some enzymes undergo large conformational changes as they progress through the catalytic cycle. According to Kramers theory, solvent viscosity results in friction against proteins in solution, and this should result in decreased motion, inhibiting catalysis in motile enzymes. Solution viscosity was increased by adding increasing concentrations of glycerol, sucrose and trehalose, resulting in a decrease in the reaction rate of the H+-ATPase from the plasma membrane of Kluyveromyces lactis. A direct correlation was found between viscosity (η) and the inhibition of the maximum rate of catalysis (Vmax). The protocol used to measure viscosity by means of a falling ball type viscometer is described, together with the determination of enzyme kinetics and the application of Kramers’ equation to evaluate the effect of viscosity on the rate of ATP hydrolysis by the H+-ATPase.
Collapse
Affiliation(s)
- Salvador Uribe
- Departamento de Bioquímica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM). A.P. 70-242, 04510 Mexico City. Mexico
| | - José G. Sampedro
- Área Académica de Nutrición, Instituto de Ciencias de la Salud ICSA, Universidad Autónoma del Estado de Hidalgo (UAEH). Abasolo 600, C.P 42000. Pachuca, Hidalgo. Mexico
| |
Collapse
|
42
|
Vincentelli R, Bignon C, Gruez A, Canaan S, Sulzenbacher G, Tegoni M, Campanacci V, Cambillau C. Medium-scale structural genomics: strategies for protein expression and crystallization. Acc Chem Res 2003; 36:165-72. [PMID: 12641473 DOI: 10.1021/ar010130s] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While high-throughput methods of protein production and crystallization are beginning to be well documented, owing to the output of large structural genomics programs, medium-throughput methods at the laboratory scale lag behind. In this paper, we report a possible way for an academic laboratory to adapt high-throughput to medium-throughput methods, on the basis of the first results of two projects aimed at solving the 3D structures of Escherichia coli and Mycobacterium tuberculosis (Tb) proteins of unknown function. We have developed sequential and iterative procedures as well as new technical processes for these programs. Our results clearly demonstrate the value of this medium-throughput approach. For instance, in the first 14 months of the E. coli program, 69 out of 108 target genes led to soluble proteins, 36 were brought to crystallization, and 28 yielded crystals; among the latter, 13 led to usable data sets and 9 to structures. These results, still incomplete, might help in planning future directions of expression and crystallization of proteins applied to medium-throughput structural genomics programs.
Collapse
Affiliation(s)
- Renaud Vincentelli
- AFMB, UMR 6098, CNRS & Universités Aix-Marseille I & II, 31 Chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li G, Mao H, Ruan X, Xu Q, Gong Y, Zhang X, Zhao N. Association of heat-induced conformational change with activity loss of Rubisco. Biochem Biophys Res Commun 2002; 290:1128-32. [PMID: 11798193 DOI: 10.1006/bbrc.2001.6322] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circular dichroism (CD), fluorescence, and differential scanning calorimetry (DSC) were used to investigate the thermal conformational change associated with the activity loss of spinach Rubisco. CD and intrinsic fluorescence demonstrated a three stage thermal unfolding of Rubisco. At 25-45 degrees C, the secondary structure did not change but the tertiary and/or quaternary structure changed obviously with increased temperature. In 45-60 degrees C, the secondary structure showed much change with increased temperature and the tertiary and/or quaternary structure changed much faster. Over 60 degrees C, whole conformation changed abruptly with increased temperature and finally unfolded completely. DSC, CD and activity assays after annealing showed that the conformational change and the activity loss of Rubisco were completely reversible if the heating temperature was below 45 degrees C, partly reversible between 45 and 60 degrees C, and irreversible beyond 60 degrees C.
Collapse
Affiliation(s)
- Guofu Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, 100084, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Nuallain BO, Mayhew SG. A comparison of the urea-induced unfolding of apoflavodoxin and flavodoxin from Desulfovibrio vulgaris. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:212-23. [PMID: 11784315 DOI: 10.1046/j.0014-2956.2002.02637.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The kinetics and thermodynamics of the urea-induced unfolding of flavodoxin and apoflavodoxin from Desulfovibrio vulgaris were investigated by measuring changes in flavin and protein fluorescence. The reaction of urea with flavodoxin is up to 5000 times slower than the reaction with the apoprotein (0.67 s(-1) in 3 m urea in 25 mm sodium phosphate at 25 degrees C), and it results in the dissociation of FMN. The rate of unfolding of apoflavodoxin depends on the urea concentration, while the reaction with the holoprotein is independent of urea. The rates decrease in high salt with the greater effect occurring with apoprotein. The fluorescence changes fit two-state models for unfolding, but they do not exclude the possibility of intermediates. Calculation suggests that 21% and 30% of the amino-acid side chains become exposed to solvent during unfolding of flavodoxin and apoflavodoxin, respectively. The equilibrium unfolding curves move to greater concentrations of urea with increase of ionic strength. This effect is larger with phosphate than with chloride, and with apoflavodoxin than with flavodoxin. In low salt the conformational stability of the holoprotein is greater than that of apoflavodoxin, but in high salt the relative stabilities are reversed. It is calculated that two ions are released during unfolding of the apoprotein. It is concluded that the urea-dependent unfolding of flavodoxin from D. vulgaris occurs because apoprotein in equilibrium with FMN and holoprotein unfolds and shifts the equilibrium so that flavodoxin dissociates. Small changes in flavin fluorescence occur at low concentrations of urea and these may reflect binding of urea to the holoprotein.
Collapse
Affiliation(s)
- Brian O Nuallain
- Department of Biochemistry, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|
45
|
Lepesheva GI, Podust LM, Bellamine A, Waterman MR. Folding Requirements Are Different between Sterol 14α-Demethylase (CYP51) from Mycobacterium tuberculosis and Human or Fungal Orthologs. J Biol Chem 2001; 276:28413-20. [PMID: 11373285 DOI: 10.1074/jbc.m102767200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon sequence alignment of CYP51 sterol 14alpha-demethylase from animals, plants, fungi, and bacteria, arginine corresponding to Arg-448 of CYP51 in Mycobacterium tuberculosis (MT) is conserved near the C terminus of all family members. In MTCYP51 Arg-448 forms a salt bridge with Asp-287, connecting beta-strand 3-2 with helix J. Deletion of the three C-terminal residues of MTCYP51 has little effect on expression of P450 in Escherichia coli. However, truncation of the fourth amino acid (Arg-448) completely abolishes P450 expression. We have investigated whether Arg-448 has other structural or functional roles in addition to folding and whether its conservation reflects conservation of a common folding pathway in the CYP51 family. Characterization of wild type protein and three mutants, R448K, R448I, and R448A, including examination of catalytic activity, secondary and tertiary structure analysis by circular dichroism and tryptophan fluorescence, and studies of both equilibrium and temporal MTCYP51 unfolding behavior, shows that Arg-448 does not play any role in P450 function or maintenance of the native structure. C-terminal truncation of Candida albicans and human CYP51 orthologs reveals that, despite conservation in sequence, the requirement for arginine at the homologous C-terminal position in folding in E. coli is not conserved. Thus, despite similar spatial folds, functionally related but evolutionarily distinct P450s can follow different folding pathways.
Collapse
Affiliation(s)
- G I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| | | | | | | |
Collapse
|