1
|
Nilsson F, Elf P, Capezza A, Wei X, Tsegaye B, Polisetti V, Svagan AJ, Hedenqvist M. Environmental concerns on water-soluble and biodegradable plastics and their applications - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177926. [PMID: 39693661 DOI: 10.1016/j.scitotenv.2024.177926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Water-soluble polymers are materials rapidly growing in volume and in number of materials and applications. Examples include synthetic plastics such as polyacrylamide, polyacrylic acid, polyethylene glycol, polyethylene oxide and polyvinyl alcohol, with applications ranging from cosmetics and paints to water purification, pharmaceutics and food packaging. Despite their abundance, their environmental concerns (e.g., bioaccumulation, toxicity, and persistence) are still not sufficiently assessed, especially since water soluble plastics are often not biodegradable, due to their chemical structure. This review aims to overview the most important water-soluble and biodegradable polymers, their applications, and their environmental impact. Degradation products from water-insoluble polymers designed for biodegradation can also be water soluble. Most water-soluble plastics are not immediately harmful for humans and the environment, but the degradation products are sometimes more hazardous, e.g. for polyacrylamide. An increased use of water-soluble plastics could also introduce unanticipated environmental hazards. Therefore, excessive use of water-soluble plastics in applications where they can enter the environment should be discouraged. Often the plastics can be omitted or replaced by natural polymers with lower risks. It is recommended to include non-biodegradable water-soluble plastics in regulations for microplastics, to make risk assessments for different water-soluble plastics and to develop labels for flushable materials.
Collapse
Affiliation(s)
- Fritjof Nilsson
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FSCN Research Centre, Mid Sweden University, 85170 Sundsvall, Sweden.
| | - Patric Elf
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Antonio Capezza
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xinfeng Wei
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Bahiru Tsegaye
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Veerababu Polisetti
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Anna J Svagan
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mikael Hedenqvist
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
2
|
Maitra J, Bhardwaj N. Development of bio-based polymeric blends - a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-35. [PMID: 39250518 DOI: 10.1080/09205063.2024.2394300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024]
Abstract
The current impetus to develop bio-based polymers for greater sustainability and lower carbon footprint is necessitated due to the alarming depletion of fossil resources, concurrent global warming, and related environmental issues. This article reviews the development of polymeric blends based on bio-based polymers. The focus on bio-based polymers is due to their greater 'Sustainability factor' as they are derived from renewable resources. The article delves into the synthesis of both conventional and highly biodegradable bio-based polymers, each crafted from feedstocks derived from nature's bounty. What sets this work apart is the exploration of blending existing bio-based polymers, culminating in the birth of entirely new materials. This review provides a comprehensive overview of the recent advancements in the development of bio-based polymeric blends, covering their synthesis, properties, applications, and potential contributions to a more sustainable future. Despite their potential benefits, bio-based materials face obstacles such as miscibility, processability issues and disparities in physical properties compared to conventional counterparts. The paper also discusses significance of compatibilizers, additives and future directions for the further advancement of these bio-based blends. While bio-based polymer blends hold promise for environmentally benign applications, many are still in the research phase. Ongoing research and technological innovations are driving the evolution of these blends as viable alternatives, but continued efforts are needed to ensure their successful integration into mainstream industrial practices. Concerted efforts from both researchers and industry stakeholders are essential to realize the full potential of bio-based polymers and accelerate their adoption on a global scale.
Collapse
Affiliation(s)
- Jaya Maitra
- Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nikita Bhardwaj
- Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Biswas A, Kumar S, Choudhury AD, Bisen AC, Sanap SN, Agrawal S, Mishra A, Verma SK, Kumar M, Bhatta RS. Polymers and their engineered analogues for ocular drug delivery: Enhancing therapeutic precision. Biopolymers 2024; 115:e23578. [PMID: 38577865 DOI: 10.1002/bip.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
4
|
Marques PAC, Guerra NB, Dos Santos LS, Mussagy CU, Pegorin Brasil GS, Burd BS, Su Y, da Silva Sasaki JC, Scontri M, de Lima Lopes Filho PE, Silva GR, Miranda MCR, Ferreira ES, Primo FL, Fernandes MA, Crotti AEM, He S, Forster S, Ma C, de Barros NR, de Mendonça RJ, Jucaud V, Li B, Herculano RD, Floriano JF. Natural rubber latex-based biomaterials for drug delivery and regenerative medicine: Trends and directions. Int J Biol Macromol 2024; 267:131666. [PMID: 38636755 DOI: 10.1016/j.ijbiomac.2024.131666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Natural Rubber Latex (NRL) has shown to be a promising biomaterial for use as a drug delivery system to release various bioactive compounds. It is cost-effective, easy to handle, biocompatible, and exhibits pro-angiogenic and pro-healing properties for both soft and hard tissues. NRL releases compounds following burst and sustained release kinetics, exhibiting first-order release kinetics. Moreover, its pore density can be adjusted for tailored kinetics profiles. In addition, biotechnological applications of NRL in amblyopia, smart mattresses, and neovaginoplasty have demonstrated success. This comprehensive review explores NRL's diverse applications in biotechnology and biomedicine, addressing challenges in translating research into clinical practice. Organized into eight sections, the review emphasizes NRL's potential in wound healing, drug delivery, and metallic nanoparticle synthesis. It also addresses the challenges in enhancing NRL's physical properties and discusses its interactions with the human immune system. Furthermore, examines NRL's potential in creating wearable medical devices and biosensors for neurological disorders. To fully explore NRL's potential in addressing important medical conditions, we emphasize throughout this review the importance of interdisciplinary research and collaboration. In conclusion, this review advances our understanding of NRL's role in biomedical and biotechnological applications, offering insights into its diverse applications and promising opportunities for future development.
Collapse
Affiliation(s)
- Paulo Augusto Chagas Marques
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13560-970 Sao Carlos, SP, Brazil
| | | | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Yanjin Su
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Josana Carla da Silva Sasaki
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Mateus Scontri
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | | | - Glaucio Ribeiro Silva
- Federal Institute of Education, Science, and Technology of Minas Gerais, s/n São Luiz Gonzaga Street, 35577-010 Formiga, Minas Gerais, Brazil
| | - Matheus Carlos Romeiro Miranda
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, 275, 09972-270 Diadema, SP, Brazil
| | - Ernando Silva Ferreira
- State University of Feira de Santana (UEFS), Department of Physics, s/n Transnordestina Highway, 44036-900 Feira de Santana, BA, Brazil
| | - Fernando Lucas Primo
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara, 14800-903, São Paulo, Brazil
| | - Mariza Aires Fernandes
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara, 14800-903, São Paulo, Brazil
| | - Antônio Eduardo Miller Crotti
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Siqi He
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Samuel Forster
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Changyu Ma
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| | - Juliana Ferreira Floriano
- School of Science, São Paulo State University (UNESP), 17033-360 Bauru, SP, Brazil; Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; National Heart and Lung Institute, Imperial College London, SW7 2AZ London, UK.
| |
Collapse
|
5
|
Wojciechowska A, Jakubczak M, Moszczyńska D, Wójcik A, Prenger K, Naguib M, Jastrzębska AM. Engineering the surface of Nb n+1C nT x MXenes to versatile bio-activity towards microorganisms. BIOMATERIALS ADVANCES 2023; 153:213581. [PMID: 37572598 DOI: 10.1016/j.bioadv.2023.213581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Two-dimensional (2D) transition metal carbides/nitrides (MXenes) are potential antibacterial agents. However, their activity against microorganisms is not fully understood. It could relate to MXenes' surface which further influences their biocidal action. Herein, we report no continuous biocidal activity for delaminated 2D niobium-based MXenes (Nbn+1XnTx) such as Nb2CTx and Nb4C3Tx prepared with HF/TMAOH protocol. Biocidal activity towards Bacillus subtilis and Staphylococcus aureus microorganisms was achieved by surface-functionalization with lysozyme macromolecule. MXenes' engineering with lysozyme changed MXene's surface charge from negative into positive thus enabling the elimination of bacteria cells during 48 h of incubation. In contrast, Nb4C3Tx functionalized with collagen stimulated the growth of Bacillus subtilis by 225 %, showing MXene's biocompatibility towards this particular strain. Altogether, our results show that MXenes are incredibly bio-tunable. Opposing bio-effects such as antimicrobial or growth-stimulating can be achieved towards various microorganisms with rational surface engineering.
Collapse
Affiliation(s)
- Anita Wojciechowska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland.
| | - Michał Jakubczak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland.
| | - Dorota Moszczyńska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland.
| | - Anna Wójcik
- Polish Academy of Sciences, Institute of Metallurgy and Materials Science, W. Reymonta 25, 30-059 Cracow, Poland.
| | - Kaitlyn Prenger
- INM - Leibniz Institute for New Materials, Campus D22, 66123 Saarbrücken, Germany.
| | - Michael Naguib
- Tulane University, Department of Physics and Engineering Physics, New Orleans, LA 70118, USA.
| | - Agnieszka Maria Jastrzębska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland.
| |
Collapse
|
6
|
McGrath M, Zimkowska K, Genoud KJ, Maughan J, Gutierrez Gonzalez J, Browne S, O’Brien FJ. A Biomimetic, Bilayered Antimicrobial Collagen-Based Scaffold for Enhanced Healing of Complex Wound Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17444-17458. [PMID: 37001059 PMCID: PMC10103052 DOI: 10.1021/acsami.2c18837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Chronic, nonhealing wounds in the form of diabetic foot ulcers (DFUs) are a major complication for diabetic patients. The inability of a DFU to heal appropriately leads to an open wound with a high risk of infection. Current standards of care fail to fully address either the underlying defective wound repair mechanism or the risk of microbial infection. Thus, it is clear that novel approaches are needed. One such approach is the use of multifunctional biomaterials as platforms to direct and promote wound healing. In this study, a biomimetic, bilayered antimicrobial collagen-based scaffold was developed to deal with the etiology of DFUs. An epidermal, antimicrobial collagen/chitosan film for the prevention of wound infection was combined with a dermal collagen-glycosaminoglycan scaffold, which serves to support angiogenesis in the wound environment and ultimately accelerate wound healing. Biophysical and biological characterization identified an 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide cross-linked bilayered scaffold to have the highest structural stability with similar mechanical properties to products on the market, exhibiting a similar structure to native skin, successfully inhibiting the growth and infiltration of Staphylococcus aureus and supporting the proliferation of epidermal cells on its surface. This bilayered scaffold also demonstrated the ability to support the proliferation of key cell types involved in vascularization, namely, induced pluripotent stem cell derived endothelial cells and supporting stromal cells, with early signs of organization of these cells into vascular structures, showing great promise for the promotion of angiogenesis. Taken together, the results indicate that the bilayered scaffold is an excellent candidate for enhancement of diabetic wound healing by preventing wound infection and supporting angiogenesis.
Collapse
Affiliation(s)
- Matthew McGrath
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, RCSI and TCD, Dublin D02 PN40, Ireland
| | - Karolina Zimkowska
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Regenerative
Medicine Institute, University of Galway, Galway H91 TK33, Ireland
| | - Katelyn J. Genoud
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, RCSI and TCD, Dublin D02 PN40, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin
2 D02 PN40, Ireland
| | - Jack Maughan
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, RCSI and TCD, Dublin D02 PN40, Ireland
- School
of Physics, Trinity College Dublin, Dublin D02 PN40, Ireland
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| | - Javier Gutierrez Gonzalez
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, RCSI and TCD, Dublin D02 PN40, Ireland
- School
of Chemistry, University of Dublin, Trinity
College Dublin, Dublin 2 D02 W085, Ireland
| | - Shane Browne
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
| | - Fergal J. O’Brien
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, RCSI and TCD, Dublin D02 PN40, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin
2 D02 PN40, Ireland
| |
Collapse
|
7
|
Wei Z, Rolle MW, Camesano TA. LL37 and collagen-binding domain-mediated LL37 binding with type I collagen: Quantification via QCM-D. Colloids Surf B Biointerfaces 2022; 220:112852. [PMID: 36179608 DOI: 10.1016/j.colsurfb.2022.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022]
Abstract
Antimicrobial peptide (AMP)-loaded biomaterials may represent a viable alternative for stimulating wound healing while protecting against infections. Previously, to develop an efficient delivery system for the cathelicidin antimicrobial peptide, LL37, our lab modified LL37 with a collagen-binding domain derived from collagenase (cCBD) as an anchoring unit to collagen-based wound dressings. However, a direct quantification of unmodified LL37 and cCBD-LL37 binding with collagen has not been performed. In this study, we used quartz crystal microbalance with dissipation monitoring (QCM-D), immunohistochemistry (IHC), and atomic force microscopy (AFM) to establish and characterize an adsorbed layer of type I collagen on the QCM-D sensor and quantify peptide-collagen binding. A collagen deposition protocol was successfully established by measuring concentration-dependent deposition of collagen in QCM-D, and collagen self-assembly was observed by IHC and AFM. Hydrophobicity is known to affect the behavior of collagen adsorption. Therefore, we compared the deposition of collagen on hydrophilic SiO2-coated sensors vs. hydrophobic polystyrene (PS)-coated sensors via QCM-D, and found that the hydrophobic surface yielded more collagen adsorption, which suggested that hydrophobic surfaces are preferable for collagen layer establishment. There was no significant difference between LL37 and cCBD-LL37 binding with collagen, but the cCBD-LL37 showed better retention on the collagen after washing with PBS, indicating that there is an advantage to using cCBD as an anchoring unit to collagen. Collectively, these results provide important information on cCBD-mediated AMP-binding mechanisms and establish an effective method for quantifying peptide-collagen binding.
Collapse
Affiliation(s)
- Ziqi Wei
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Terri A Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States.
| |
Collapse
|
8
|
Sheikh-Oleslami S, Hassanpour I, Amiri N, Jalili R, Kilani RT, Ghahary A. An Evaluation of the Treatment of Full-Thickness Wounds Using Adipose Micro-Fragments within a Liquid Dermal Scaffold. EUROPEAN BURN JOURNAL 2022; 3:457-471. [PMID: 39599959 PMCID: PMC11571836 DOI: 10.3390/ebj3030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2024]
Abstract
In full-thickness wounds, inflammation, lack of matrix deposition, and paucity of progenitor cells delay healing. As commercially available solid (sheet) scaffolds are unable to conform to wounds of varying shapes and sizes, we previously generated a nutritious, injectable, liquid skin substitute that can conform to wound topography. In combination with adipose micro-fragments as a viable source of progenitor cells, a composite, in situ forming skin substitute was tested for the treatment of silicon ring splinted full-thickness wounds in rats. The in vitro survivability and migratory capacity of adipocytes derived from rat micro-fragmented fat cultured in our scaffold was examined with a Live/Dead assay, showing viability and migration after 7 and 14 days. In vivo, the efficacy of our scaffold alone (LDS) or with adipose micro-fragments (LDS+A) was compared to a standard dressing protocol (NT). LDS and LDS+A showed ameliorated wound healing, including complete epithelialization and less immune cell infiltration, compared to the NT control. Our findings demonstrate that a 3D liquid skin scaffold is a rich environment for adipocyte viability and migration, and that the addition of adipose micro-fragments to this scaffold can be used as a rich source of cells for treating full-thickness wounds.
Collapse
Affiliation(s)
- Sara Sheikh-Oleslami
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Ida Hassanpour
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Nafise Amiri
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Reza Jalili
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
- Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ruhangiz Taghi Kilani
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Aziz Ghahary
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
- Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Abstract
In vitro meat (IVM) is a recent development in the production of sustainable food. The consumer perception of IVM has a strong impact on the commercial success of IVM. Hence this review examines existing studies related to consumer concerns, acceptance and uncertainty of IVM. This will help create better marketing strategies for IVM-producing companies in the future. In addition, IVM production is described in terms of the types of cells and culture conditions employed. The applications of self-organising, scaffolding, and 3D printing techniques to produce IVM are also discussed. As the conditions for IVM production are controlled and can be manipulated, it will be feasible to produce a chemically safe and disease-free meat with improved consumer acceptance on a sustainable basis.
Collapse
|
10
|
Computational and experimental comparison on the effects of flow-induced compression on the permeability of collagen gels. J Mech Behav Biomed Mater 2022; 128:105107. [DOI: 10.1016/j.jmbbm.2022.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/14/2022] [Accepted: 01/29/2022] [Indexed: 11/23/2022]
|
11
|
Thapa RK, Grønlien KG, Tønnesen HH. Protein-Based Systems for Topical Antibacterial Therapy. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:685686. [PMID: 35047932 PMCID: PMC8757810 DOI: 10.3389/fmedt.2021.685686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, proteins are gaining attention as potential materials for antibacterial therapy. Proteins possess beneficial properties such as biocompatibility, biodegradability, low immunogenic response, ability to control drug release, and can act as protein-mimics in wound healing. Different plant- and animal-derived proteins can be developed into formulations (films, hydrogels, scaffolds, mats) for topical antibacterial therapy. The application areas for topical antibacterial therapy can be wide including bacterial infections in the skin (e.g., acne, wounds), eyelids, mouth, lips, etc. One of the major challenges of the healthcare system is chronic wound infections. Conventional treatment strategies for topical antibacterial therapy of infected wounds are inadequate, and the development of newer and optimized formulations is warranted. Therefore, this review focuses on recent advances in protein-based systems for topical antibacterial therapy in infected wounds. The opportunities and challenges of such protein-based systems along with their future prospects are discussed.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Hanne Hjorth Tønnesen
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Potential Applications of Biopolymers in Fisheries Industry. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Rethinam S, Nallathambi G, Vijayan S, Basaran B, Mert A, Bayraktar O, A. WA. A new approach for the production of multifilament suture - in vitro and in vivo analysis. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1798432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Senthil Rethinam
- Department of Biotechnology, Sathyabhama Institute of Science and Technology, Chennai, India
- Department of Textile Technology, Anna University, Chennai, India
- School of Natural and Applied Science, Ege University, Bornova/Izmir, Turkey
| | - Gobi Nallathambi
- Department of Textile Technology, Anna University, Chennai, India
| | - Sumathi Vijayan
- School of Electrical and Electronics Engineering, VIT, Chennai, India
| | - Bahri Basaran
- School of Natural and Applied Science, Ege University, Bornova/Izmir, Turkey
| | - Ali Mert
- Department of Statistics, Ege University, Bornova/Izmir, Turkey
| | - Oğuz Bayraktar
- Department of Chemical Engineering, Ege University, Bornova/Izmir, Turkey
| | - Wilson Aruni A.
- Department of Biotechnology, Sathyabhama Institute of Science and Technology, Chennai, India
- California University of Science and Medicine, San Bernardino, CA, USA
| |
Collapse
|
14
|
Park SJ, Kim D, Lee M, Yang JH, Yang JS, Lee J. GT Collagen Improves Skin Moisturization in UVB-Irradiated HaCaT Cells and SKH-I Hairless Mice. J Med Food 2021; 24:1313-1322. [PMID: 34861129 DOI: 10.1089/jmf.2021.k.0089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated the effects of GT collagen (Geltech low-molecular-weight fish collagen, FC) on skin moisturization in ultraviolet B (UVB)-irradiated HaCaT cells and SKH-I hairless mice. In vitro, we measured the expression of mRNA genes and proteins related to the skin moisturizing mechanism, hyaluronic acid concentrations, and sphingomyelin concentrations. As a result, FC increased the expression of LCB1, DEGS1, elastin, UGTrel7, and GlcNAc mRNA in UVB-irradiated HaCaT cells. Also, hyaluronic acid level, sphingomyelin level, and protein expressions of hyaluronan synthase (HAS)2 and CerS4 were increased compared to those in the UVB-irradiated control group. In vivo, we measured skin hydration through the expression of mRNA genes and proteins related to the skin moisturizing mechanism and found that the protein expression of HAS2 and CerS4 was increased in the groups taking FC. Moreover, FC intake increased the expression of LCB1, DEGS1, fibrilin-1, UGTrel8, and GlcNAc mRNA in UVB-irradiated SKH-I hairless mice. These results suggest that FC can be utilized to develop products aimed at improving skin moisturization.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | | | | | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea.,Clinical Nutrition Institute, Kyung Hee University, Seoul, Korea
| |
Collapse
|
15
|
|
16
|
Abid U, Gill YQ, Irfan MS, Umer R, Saeed F. Potential applications of polycarbohydrates, lignin, proteins, polyacids, and other renewable materials for the formulation of green elastomers. Int J Biol Macromol 2021; 181:1-29. [PMID: 33744249 DOI: 10.1016/j.ijbiomac.2021.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Renewable resources including polycarbohydrates, lignin, proteins, and polyacids are the intrinsically valuable class of materials that are naturally available in great quantities. Their utilization as green additives and reinforcing bio-fillers, in substitution of environmentally perilous petroleum-based fillers, for developing high-performance green rubber blends and composites is presently a highly tempting option. Blending of these renewable materials with elastomers is not straight-forward and research needs to exploit the high functionality of carbohydrates and other natural materials as proper physicochemical interactions are essential. Correlating and understanding the structural properties of lignin, carbohydrates, polyacids, and other biopolymers, before their incorporation in elastomers, is a potential approach towards the development of green elastomers for value-added applications. Promising properties i.e., biodegradability, biocompatibility, morphological characteristics, high mechanical properties, thermal stability, sustainability, and various other characteristics along with recent advancements in the development of green elastomers are reviewed in this paper. Structures, viability, interactions, properties, and use of most common natural polycarbohydrates (chitosan and starch), lignin, and proteins (collagen and gelatin) for elastomer modification are extensively reviewed. Challenges in commercialization, applications, and future perspectives of green elastomers are also discussed. Sustainability analysis of green elastomers is accomplished to elaborate their cost-effectiveness and environmental friendliness.
Collapse
Affiliation(s)
- Umer Abid
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| | - Yasir Qayyum Gill
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| | - Muhammad Shafiq Irfan
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan; Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Farhan Saeed
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| |
Collapse
|
17
|
Theodoridis K, Manthou ME, Aggelidou E, Kritis A. In Vivo Cartilage Regeneration with Cell-Seeded Natural Biomaterial Scaffold Implants: 15-Year Study. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:206-245. [PMID: 33470169 DOI: 10.1089/ten.teb.2020.0295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Articular cartilage can be easily damaged from human's daily activities, leading to inflammation and to osteoarthritis, a situation that can diminish the patients' quality of life. For larger cartilage defects, scaffolds are employed to provide cells the appropriate three-dimensional environment to proliferate and differentiate into healthy cartilage tissue. Natural biomaterials used as scaffolds, attract researchers' interest because of their relative nontoxic nature, their abundance as natural products, their easy combination with other materials, and the relative easiness to establish Marketing Authorization. The last 15 years were chosen to review, document, and elucidate the developments on cell-seeded natural biomaterials for articular cartilage treatment in vivo. The parameters of the experimental designs and their results were all documented and presented. Considerations about the newly formed cartilage and the treatment of cartilage defects were discussed, along with difficulties arising when applying natural materials, research limitations, and tissue engineering approaches for hyaline cartilage regeneration.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology, Embryology, and Anthropology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| |
Collapse
|
18
|
Collagen/Chitosan Functionalization of Complex 3D Structures Fabricated by Laser Direct Writing via Two-Photon Polymerization for Enhanced Osteogenesis. Int J Mol Sci 2020; 21:ijms21176426. [PMID: 32899318 PMCID: PMC7504713 DOI: 10.3390/ijms21176426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
The fabrication of 3D microstructures is under continuous development for engineering bone substitutes. Collagen/chitosan (Col/CT) blends emerge as biomaterials that meet the mechanical and biological requirements associated with bone tissue. In this work, we optimize the osteogenic effect of 3D microstructures by their functionalization with Col/CT blends with different blending ratios. The structures were fabricated by laser direct writing via two-photons polymerization of IP-L780 photopolymer. They comprised of hexagonal and ellipsoidal units 80 µm in length, 40 µm in width and 14 µm height, separated by 20 µm pillars. Structures’ functionalization was achieved via dip coating in Col/CT blends with specific blending ratios. The osteogenic role of Col/CT functionalization of the 3D structures was confirmed by biological assays concerning the expression of alkaline phosphatase (ALP) and osteocalcin secretion as osteogenic markers and Alizarin Red (AR) as dye for mineral deposits in osteoblast-like cells seeded on the structures. The structures having ellipsoidal units showed the best results, but the trends were similar for both ellipsoidal and hexagonal units. The strongest osteogenic effect was obtained for Col/CT blending ratio of 20/80, as demonstrated by the highest ALP activity, osteocalcin secretion and AR staining intensity in the seeded cells compared to all the other samples.
Collapse
|
19
|
Pradhan S, Brooks A, Yadavalli V. Nature-derived materials for the fabrication of functional biodevices. Mater Today Bio 2020; 7:100065. [PMID: 32613186 PMCID: PMC7317235 DOI: 10.1016/j.mtbio.2020.100065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Nature provides an incredible source of inspiration, structural concepts, and materials toward applications to improve the lives of people around the world, while preserving ecosystems, and addressing environmental sustainability. In particular, materials derived from animal and plant sources can provide low-cost, renewable building blocks for such applications. Nature-derived materials are of interest for their properties of biodegradability, bioconformability, biorecognition, self-repair, and stimuli response. While long used in tissue engineering and regenerative medicine, their use in functional devices such as (bio)electronics, sensors, and optical systems for healthcare and biomonitoring is finding increasing attention. The objective of this review is to cover the varied nature derived and sourced materials currently used in active biodevices and components that possess electrical or electronic behavior. We discuss materials ranging from proteins and polypeptides such as silk and collagen, polysaccharides including chitin and cellulose, to seaweed derived biomaterials, and DNA. These materials may be used as passive substrates or support architectures and often, as the functional elements either by themselves or as biocomposites. We further discuss natural pigments such as melanin and indigo that serve as active elements in devices. Increasingly, combinations of different biomaterials are being used to address the challenges of fabrication and performance in human monitoring or medicine. Finally, this review gives perspectives on the sourcing, processing, degradation, and biocompatibility of these materials. This rapidly growing multidisciplinary area of research will be advanced by a systematic understanding of nature-inspired materials and design concepts in (bio)electronic devices.
Collapse
Affiliation(s)
- S. Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - A.K. Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - V.K. Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
20
|
Rozmysłowska-Wojciechowska A, Szuplewska A, Wojciechowski T, Poźniak S, Mitrzak J, Chudy M, Ziemkowska W, Chlubny L, Olszyna A, Jastrzębska AM. A simple, low-cost and green method for controlling the cytotoxicity of MXenes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110790. [PMID: 32279790 DOI: 10.1016/j.msec.2020.110790] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
MXene phases are a member of the intriguing 2D material family, beyond graphene. They are good candidates for many applications, however, their potential toxicity is of crucial importance for future development. Herein, we present a simple, low-cost and fully green approach for controlling the potential cytotoxicity of 2D MXenes after delamination by harnessing the interactions that occur between the surface of MXene phases and natural biomacromolecule - collagen. We also demonstrate that the step-by-step adsorption and desorption of collagen from the surface of 2D MXenes is easily controlled using in situ zeta potential measurements coupled with dynamic light scattering (DLS) method. The obtained results demonstrated that the electrostatically driven unprecedented susceptibility of the MXenes' surfaces to collagen. Surface-modification reduces toxicity of MXenes in vitro i.e. adjust cells' viabilities as well as reduce their oxidative stress. This indicates enhanced biocompatibility of 2D Ti3C2 and Ti2C MXenes surface-modified with collagen, which is involved in many bio-interactions as important building blocks in the human body. The presented study opens new avenues for designing MXenes with defined surface properties and paves the way for their future successful management in nano-medicinal applications.
Collapse
Affiliation(s)
- A Rozmysłowska-Wojciechowska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland.
| | - A Szuplewska
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland.
| | - T Wojciechowski
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland.
| | - S Poźniak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland
| | - J Mitrzak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland
| | - M Chudy
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland.
| | - W Ziemkowska
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland.
| | - L Chlubny
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 30-059 Krakow, Mickiewicza 30, Poland.
| | - A Olszyna
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland.
| | - A M Jastrzębska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Woloska 141, Poland.
| |
Collapse
|
21
|
More SH, Ganesh KN. Spiegelmeric 4
R
/
S
‐hydroxy/amino‐L/D‐prolyl collagen peptides: conformation and morphology of self‐assembled structures. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shahaji H More
- Chemistry DepartmentIndian Institute of Science Education and Research Pune Pune India
| | - Krishna N Ganesh
- Chemistry DepartmentIndian Institute of Science Education and Research Pune Pune India
- Department of ChemistryIndian Institute of Science Education and Research Tirupati Tirupati Andhra Pradesh India
| |
Collapse
|
22
|
Trubiani O, Marconi GD, Pierdomenico SD, Piattelli A, Diomede F, Pizzicannella J. Human Oral Stem Cells, Biomaterials and Extracellular Vesicles: A Promising Tool in Bone Tissue Repair. Int J Mol Sci 2019; 20:E4987. [PMID: 31600975 PMCID: PMC6834314 DOI: 10.3390/ijms20204987] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and/or regenerative medicine are fields of life science exploiting both engineering and biological fundamentals to originate new tissues and organs and to induce the regeneration of damaged or diseased tissues and organs. In particular, de novo bone tissue regeneration requires a mechanically competent osteo-conductive/inductive 3D biomaterial scaffold that guarantees the cell adhesion, proliferation, angiogenesis and differentiation into osteogenic lineage. Cellular components represent a key factor in tissue engineering and bone growth strategies take advantage from employment of mesenchymal stem cells (MSCs), an ideal cell source for tissue repair. Recently, the application of extracellular vesicles (EVs), isolated from stem cells, as cell-free therapy has emerged as a promising therapeutic strategy. This review aims at summarizing the recent and representative research on the bone tissue engineering field using a 3D scaffold enriched with human oral stem cells and their derivatives, EVs, as a promising therapeutic potential in the reconstructing of bone tissue defects.
Collapse
Affiliation(s)
- Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Guya D Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Sante D Pierdomenico
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Jacopo Pizzicannella
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
- ASL02 Lanciano-Vasto-Chieti, Ss. Annunziata Hospital, 66100 Chieti, Italy.
| |
Collapse
|
23
|
Yang Q, Guo C, Deng F, Ding C, Yang J, Wu H, Ni Y, Huang L, Chen L, Zhang M. Fabrication of highly concentrated collagens using cooled urea/HAc as novel binary solvent. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Das D, Noh I. Overviews of Biomimetic Medical Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1064:3-24. [PMID: 30471023 DOI: 10.1007/978-981-13-0445-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter describes the overviews of biomimetic medical materials which covers innovation and significance of terminology, diverse fabrication methods, and technologies ranges from nanotechnology to 3D printing to develop biomimetic materials for medical applications. It also depicts specific fundamental characteristics required for a material to be a model biomimetic material for particular medical application. It basically outlines current statuses of biomimetic medical materials used for tissue engineering and regenerative medicine, drug/protein delivery, bioimaging, biosensing, and 3D bioprinting technology. It also illustrates the effect of functionalization of a material through chemical and biological approaches towards different applications. Not only, the key properties and potential applications of the biomimetic materials, but it also explains the protection and utilization of intellectual property associated with biomedical materials.
Collapse
Affiliation(s)
- Dipankar Das
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, South Korea.,Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, South Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, South Korea. .,Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, South Korea.
| |
Collapse
|
25
|
Lee SJ, Frederick SW, Cross AR. Use of an amikacin-infused collagen sponge concurrent with implant removal for treatment of tibial plateau leveling osteotomy surgical site infection in 31 cases. Vet Surg 2019; 48:700-706. [PMID: 31168817 DOI: 10.1111/vsu.13249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 05/16/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To report the use and long-term outcome of dogs with surgical site infection (SSI) after tibial plateau leveling osteotomy (TPO), treated with an amikacin-infused collagen sponge and implant removal. STUDY DESIGN Retrospective study. ANIMALS Thirty-one client-owned dogs. METHODS Medical records were reviewed for dogs with SSI after a TPLO that were treated with surgical implant removal and concurrent implantation of an amikacin-infused collagen sponge. Relevant clinical and surgical data were recorded. The TPLO implants were routinely removed; the surgical site was swabbed for culture. The sponge was aseptically infused with amikacin prior to implantation. Postprocedure examinations consisted of visual inspection of the incision by the surgeon and lameness scoring. RESULTS Thirty-one dogs met all inclusion criteria. Median follow-up time was 687 days. Short-term examination after implant removal and sponge implantation revealed uneventful incisional healing in 24 dogs. Six (19.4%) dogs exhibited inflamed incision sites a median of 4 days (range, 3-9) postoperatively that resolved without additional treatment. One (3.2%) dog required empirical antibiotic treatment 7 days postoperatively but was lost to long-term follow-up. Long-term follow-up examination revealed no clinical evidence of SSI recurrence and no lameness in the remaining 30 cases. CONCLUSION Surgical implant removal and implantation of an absorbable collagen sponge infused with amikacin alone was an effective treatment for postoperative TPLO SSI. CLINICAL SIGNIFICANCE This procedure had a 96.8% long-term resolution of SSI. It should be considered as a treatment option for TPLO SSI.
Collapse
Affiliation(s)
- Sylvia J Lee
- Surgery Department, BluePearl Veterinary Partners, Tampa, Florida
| | - Steven W Frederick
- Surgery Department, BluePearl Veterinary Partners, Sandy Springs, Georgia
| | - Alan R Cross
- Surgery Department, BluePearl Veterinary Partners, Sandy Springs, Georgia
| |
Collapse
|
26
|
Um IW, Kim YK, Park JC, Lee JH. Clinical application of autogenous demineralized dentin matrix loaded with recombinant human bone morphogenetic-2 for socket preservation: A case series. Clin Implant Dent Relat Res 2018; 21:4-10. [PMID: 30589195 DOI: 10.1111/cid.12710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/12/2018] [Accepted: 11/24/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Demineralized dentin matrix (DDM) has potential application as a carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2) in bone regeneration. PURPOSE To evaluate the efficacy of DDM loaded with rhBMP-2 for socket preservation. MATERIALS AND METHODS DDM loaded with rhBMP-2 (DDM/rhBMP-2) was applied to 10 experimental sites and DDM alone to 6 control sites. The changes in height and width of the extraction socket after preservation were measured by cone beam computed tomography. Trephine cores were harvested for histomorphometric evaluation before placement of the implant. RESULTS The reductions in height and width of the socket were more significant in the group treated with DDM than in the group treated with DDM/rhBMP-2. The amount of new bone formation was 34.39% with DDM/rhBMP-2 and 29.75% with DDM; the respective amounts of residual dentin were 8.35% and 16.15%. Although the differences were not statistically significant, the dimensional changes, amount of bone formation, and replacement of DDM in DDM/rhBMP-2 with bone were superior to those of DDM alone. CONCLUSIONS Within the limitations of this study, we suggest that DDM may be a potential carrier for rhBMP-2 and that it may be possible to reduce the rhBMP-2 concentration to 0.2 mg/mL.
Collapse
Affiliation(s)
- In-Woong Um
- R&D Institute, Korea Tooth Bank, Seoul, Republic of Korea
| | - Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Departmental Biology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jong-Ho Lee
- Clinical Trial Center, Seoul National University Dental Hospital, Seoul, South Korea
| |
Collapse
|
27
|
Carvalho AM, Marques AP, Silva TH, Reis RL. Evaluation of the Potential of Collagen from Codfish Skin as a Biomaterial for Biomedical Applications. Mar Drugs 2018; 16:E495. [PMID: 30544788 PMCID: PMC6316778 DOI: 10.3390/md16120495] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Collagen is one of the most widely used biomaterials, not only due its biocompatibility, biodegradability and weak antigenic potential, but also due to its role in the structure and function of tissues. Searching for alternative collagen sources, the aim of this study was to extract collagen from the skin of codfish, previously obtained as a by-product of fish industrial plants, and characterize it regarding its use as a biomaterial for biomedical application, according to American Society for Testing and Materials (ASTM) Guidelines. Collagen type I with a high degree of purity was obtained through acid-extraction, as confirmed by colorimetric assays, SDS-PAGE and amino acid composition. Thermal analysis revealed a denaturing temperature around 16 °C. Moreover, collagen showed a concentration-dependent effect in metabolism and on cell adhesion of lung fibroblast MRC-5 cells. In conclusion, this study shows that collagen can be obtained from marine-origin sources, while preserving its bioactivity, supporting its use in biomedical applications.
Collapse
Affiliation(s)
- Ana M Carvalho
- 3B's Research Group, I3Bs⁻Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine Avepark⁻Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's⁻PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Alexandra P Marques
- 3B's Research Group, I3Bs⁻Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine Avepark⁻Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's⁻PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Tiago H Silva
- 3B's Research Group, I3Bs⁻Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine Avepark⁻Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's⁻PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs⁻Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine Avepark⁻Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's⁻PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
28
|
Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018; 4:3939-3961. [DOI: 10.1021/acsbiomaterials.8b01098] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annish Jain
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Sumit K. Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Shailendra K. Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs − Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Sonia Kapoor
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201 313, Uttar Pradesh, India
| |
Collapse
|
29
|
Vijayakumar S, Vaseeharan B. Antibiofilm, anti cancer and ecotoxicity properties of collagen based ZnO nanoparticles. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
30
|
Rethinam S, Thotapalli Parvathaleswara S, Nandhagobal G, Alagumuthu T, Robert B. Preparation of absorbable surgical suture: Novel approach in biomedical application. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Diomede F, D'Aurora M, Gugliandolo A, Merciaro I, Orsini T, Gatta V, Piattelli A, Trubiani O, Mazzon E. Biofunctionalized Scaffold in Bone Tissue Repair. Int J Mol Sci 2018; 19:E1022. [PMID: 29596323 PMCID: PMC5979468 DOI: 10.3390/ijms19041022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023] Open
Abstract
Bone tissue engineering is based on bone grafting to repair bone defects. Bone graft substitutes can contribute to the addition of mesenchymal stem cells (MSCs) in order to enhance the rate and the quality of defect regeneration. The stem cell secretome contains many growth factors and chemokines, which could affect cellular characteristics and behavior. Conditioned medium (CM) could be used in tissue regeneration avoiding several problems linked to the direct use of MSCs. In this study, we investigated the effect of human periodontal ligament stem cells (hPDLSCs) and their CM on bone regeneration using a commercially available membrane scaffold Evolution (EVO) implanted in rat calvarias. EVO alone or EVO + hPDLSCs with or without CM were implanted in Wistar male rats subjected to calvarial defects. The in vivo results revealed that EVO membrane enriched with hPDLSCs and CM showed a better osteogenic ability to repair the calvarial defect. These results were confirmed by acquired micro-computed tomography (CT) images and the increased osteopontin levels. Moreover, RT-PCR in vitro revealed the upregulation of three genes (Collagen (COL)5A1, COL16A1 and transforming growth factor (TGF)β1) and the down regulation of 26 genes involved in bone regeneration. These results suggest a promising potential application of CM from hPDLSCs and scaffolds for bone defect restoration and in particular for calvarial repair in case of trauma.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Marco D'Aurora
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | | | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Tiziana Orsini
- CNR-National Research Council, Institute of Cell Biology and Neurobiology (IBCN), via Ramarini 32, Monterotondo, 00015 Roma, Italy.
| | - Valentina Gatta
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy.
| |
Collapse
|
32
|
Oderinde O, Liu S, Li K, Kang M, Imtiaz H, Yao F, Fu G. Multifaceted polymeric materials in three-dimensional processing (3DP) technologies: Current progress and prospects. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Olayinka Oderinde
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Shunli Liu
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Kewen Li
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Mengmeng Kang
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Hussain Imtiaz
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Fang Yao
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering Southeast University; Jiangning District Nanjing 211189 China
| |
Collapse
|
33
|
Pathan IB, Munde SJ, Shelke S, Ambekar W, Mallikarjuna Setty C. Curcumin loaded fish scale collagen-HPMC nanogel for wound healing application: Ex-vivo and In-vivo evaluation. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1429437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Inayat B. Pathan
- Department of Pharmaceutics, Government College of Pharmacy, Aurangabad, Maharashtra, India
| | - Santosh J. Munde
- Department of Pharmaceutics, Government College of Pharmacy, Aurangabad, Maharashtra, India
| | - Santosh Shelke
- Department of Pharmaceutics, Yash Institute of Pharmacy, Aurangabad, Maharashtra, India
| | - Wahid Ambekar
- Department of Pharmaceutics, Dr. VVPF’s College of Pharmacy, Ahmednagar, Maharashtra, India
| | - C. Mallikarjuna Setty
- Department of Pharmaceutics, The Oxford College of Pharmacy, Pharmaceutics, Hongasandra, Bangalore, India
| |
Collapse
|
34
|
Demineralized Dentin Matrix (DDM) As a Carrier for Recombinant Human Bone Morphogenetic Proteins (rhBMP-2). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:487-499. [PMID: 30357705 DOI: 10.1007/978-981-13-0947-2_26] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A bone graft and bone graft substitute should have at least one of the following properties: it should be (1) osteogenic, (2) osteoinductive and/or (3) osteoconductive. In addition, bone graft substitutes should be biocompatible and bioresorbable as well as easy to use and cost effective. Autologous cancellous bone is the clinical gold standard in bone grafting procedures1, 4 and it has osteogenic, osteoinductive, and osteoconductive properties. Because of disadvantages associated with harvesting autologous bone graft material, such as requiring an additional operation and possible donor site morbidity, there is a need for an alternative in terms of enhancing the bone healing for the treatment of large bony defects. One possible option is a newly developed biomaterial, the demineralized dentin matrix (DDM). It is based on autogenous tooth dentin and is produced through demineralization. It is osteoconductive and osteoinductive due to the fact that dentin contains extracellular Type I collagen and various growth factors. Based on the demineralization process the factors stay available to the host environment. In 1965, Urist already showed the formation of ectopic bone after implanting DDM into muscle pouches in rodents. DDM is used for example in dental surgery in the treatment of extraction socket preservation and guided bone regenerations. It functions as a scaffold to support bone regeneration, but can also be used as a carrier for rhBMP-2. When DDM serves as a carrier, it combines the properties of the grafting material with those of the delivered substances. This chapter will present the experimental and clinical studies of DDM for rhBMP-2 carrier as well as alternatives of bone graft substitute.
Collapse
|
35
|
Widdowson JP, Picton AJ, Vince V, Wright CJ, Mearns-Spragg A. In vivo comparison of jellyfish and bovine collagen sponges as prototype medical devices. J Biomed Mater Res B Appl Biomater 2017; 106:1524-1533. [PMID: 28741862 PMCID: PMC5947132 DOI: 10.1002/jbm.b.33959] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022]
Abstract
Jellyfish have emerged as a source of next generation collagen that is an attractive alternative to existing sources, such as bovine and porcine, due to a plentiful supply and providing a safer source through lack of bovine spongiform encephalopathy (BSE) transmission risk and potential viral vectors, both of which could be transmitted to humans. Here we compare collagen implantable sponges derived for the first time from the Rhizostoma pulmo jellyfish. A further novelty for the research was that there was a comparison for sponges that were either uncrosslinked or crosslinked using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), and an assessment on how this affected resorption, as well as their biocompatibility compared to bovine type I collagen sponges. The scaffolds were prepared and examined using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) and scanning electron microscopy (SEM). The samples were implanted in adult male Wistar rats for in vivo experimentation. Both crosslinked and uncrosslinked jellyfish collagen sponges showed a significant reduction in histopathology scores over the course of the study, whereas the bovine collagen sponge scores were not significantly reduced. Both jellyfish collagen sponges and the bovine sponge were tolerated well by the hosts, and a recovery was visible in all samples, suggesting that R. pulmo jellyfish-derived collagen could offer compelling biocompatibility with wound healing applications. We also demonstrate that noncrosslinked samples could be safer with better resorption times than crosslinked samples. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1524-1533, 2018.
Collapse
Affiliation(s)
- Jonathan P Widdowson
- Jellagen Pty Ltd, Unit G5, Capital Business Park, Cardiff, UK.,Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL), The Systems and Process Engineering Centre (SPEC), Swansea University, Swansea, UK
| | - Alex J Picton
- Jellagen Pty Ltd, Unit G5, Capital Business Park, Cardiff, UK
| | | | - Chris J Wright
- Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL), The Systems and Process Engineering Centre (SPEC), Swansea University, Swansea, UK
| | | |
Collapse
|
36
|
Controlled release of insulin from folic acid-insulin complex nanoparticles. Colloids Surf B Biointerfaces 2017; 154:48-54. [DOI: 10.1016/j.colsurfb.2017.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/05/2023]
|
37
|
Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res 2017; 120:68-87. [DOI: 10.1016/j.phrs.2017.03.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/23/2017] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
|
38
|
Kim BS, Yang SS, Lee J. Precoating of biphasic calcium phosphate bone substitute with atelocollagen enhances bone regeneration through stimulation of osteoclast activation and angiogenesis. J Biomed Mater Res A 2017; 105:1446-1456. [PMID: 28177580 DOI: 10.1002/jbm.a.36032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 02/03/2017] [Indexed: 11/09/2022]
Abstract
Type I collagen (Col) is a naturally polymerizing protein and important extracellular matrix bone component. The aim of this study was to improve bone regeneration capacity by precoating the surface of biphasic calcium phosphate (BCP) granules with AT-Col, and evaluating its biological effects. BCP granules were precoated with AT-Col using adsorption and lyophilization method. Morphology of AT-Col precoated surfaces was observed using scanning electron microscopy (SEM). Biocompatibility and osteogenic activity of AT-Col were determined in vitro with human mesenchymal stem cell (hMSCs). In vivo bone healing efficiency and related biological effects were determined using a rabbit calvarial defect model. SEM results revealed numerous irregularly distributed AT-Col polymer clusters on BCP granule surface. Biocompatibility experiments demonstrated that AT-Col was non-cytotoxic, and that cell proliferation, adhesion, and osteogenic activity were improved by AT-Col precoating. After in vivo surgical implantation into bone defects, new bone formation was improved by AT-Col granule precoating. Specifically, 8 weeks post-surgery, percentage bone volume was significantly higher in AT-Col/BCP animals (35.02 ± 1.89%) compared with BCP-treated animals (8.94 ± 1.47%) (p < 0.05). Furthermore, tartrate-resistant acid phosphatase staining and CD31 immunohistochemical staining revealed that osteoclast activation and new blood vessel formation in vivo were also induced by AT-Col precoating. Collectively, these data indicate that AT-Col/BCP may be potentially used as a bone substitute to enable effective bone regeneration through enhanced new blood vessel formation and osteoclast activation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1446-1456, 2017.
Collapse
Affiliation(s)
- Beom-Su Kim
- Bonecell Biotech Inc, Dunsan-dong, Seo-gu, Daejeon, 302-830, Republic of Korea.,Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Sun-Sik Yang
- Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Jun Lee
- Bonecell Biotech Inc, Dunsan-dong, Seo-gu, Daejeon, 302-830, Republic of Korea.,Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, 570-749, Republic of Korea.,Department of Oral and Maxillofacial Surgery, Daejeon Dental Hospital, College of Dentistry, Wonkwang University, 302-830, Republic of Korea
| |
Collapse
|
39
|
Um IW, Jun SH, Yun PY, Kim YK. Histological Comparison of Autogenous and Allogenic Demineralized Dentin Matrix Loaded with Recombinant Human Bone Morphogenetic Protein-2 for Alveolar Bone Repair: A Preliminary Report. J HARD TISSUE BIOL 2017. [DOI: 10.2485/jhtb.26.417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Sang-Ho Jun
- Department of Dentistry, Korea University Anam Hospital
| | - Pil-Young Yun
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital
| | - Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital
- Department of Dentistry and Dental Research Institute, School of Dentistry, Seoul National University
| |
Collapse
|
40
|
Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 2017. [DOI: 10.1039/c7py00826k] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last decade, interest in the field of three-dimensional (3D) bioprinting has increased enormously. This review describes all the currently used bio-printing inks, including polymeric hydrogels, polymer bead microcarriers, cell aggregates and extracellular matrix proteins.
Collapse
Affiliation(s)
- Ilze Donderwinkel
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- Department of Bio-organic Chemistry
| | - Jan C. M. van Hest
- Department of Bio-organic Chemistry
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
- Department of Chemical Engineering and Chemistry
| | - Neil R. Cameron
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- School of Engineering
| |
Collapse
|
41
|
Kim JE, Kim SH, Jung Y. Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng Regen Med 2016; 13:636-646. [PMID: 30603445 PMCID: PMC6170864 DOI: 10.1007/s13770-016-0125-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022] Open
Abstract
Recently, three-dimensional (3D) printing technologies have become an attractive manufacturing process, which is called additive manufacturing or rapid prototyping. A 3D printing system can design and fabricate 3D shapes and geometries resulting in custom 3D scaffolds in tissue engineering. In tissue regeneration and replacement, 3D printing systems have been frequently used with various biomaterials such as natural and synthetic polymers. In tissue engineering, soft tissue regeneration is very difficult because soft tissue has the properties of high elasticity, flexibility and viscosity which act as an obstacle when creating a 3D structure by stacking layer after layer of biomaterials compared to hard tissue regeneration. To overcome these limitations, many studies are trying to fabricate constructs with a very similar native micro-environmental property for a complex biofunctional scaffold with suitable biological and mechanical parameters by optimizing the biomaterials, for example, control the concentration and diversification of materials. In this review, we describe the characteristics of printing biomaterials such as hydrogel, synthetic polymer and composite type as well as recent advances in soft tissue regeneration. It is expected that 3D printed constructs will be able to replace as well as regenerate defective tissues or injured functional tissues and organs.
Collapse
Affiliation(s)
- Ji Eun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Korea
| |
Collapse
|
42
|
Spatiotemporal Programing for the On-Demand Release of Bupivacaine Based on an Injectable Composite Hydrogel. J Pharm Sci 2016; 105:3634-3644. [DOI: 10.1016/j.xphs.2016.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 11/23/2022]
|
43
|
Haynl C, Hofmann E, Pawar K, Förster S, Scheibel T. Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties. NANO LETTERS 2016; 16:5917-22. [PMID: 27513098 DOI: 10.1021/acs.nanolett.6b02828] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Collagens are widely used as biomaterials in drug-delivery and tissue engineering applications due to their biodegradability, biocompatibility and hypoallergenicity. Besides gelatin-based materials, collagen microfibers are in the focus of biomedical research. Commonly, man-made fibers are produced by wet-spinning yielding fiber diameters higher than 8 μm. Here, assembly and continuous production of single collagen type I microfibers were established using a microfluidic chip. Microfluidics-produced microfibers exhibited tensile strength and Young's modulus exceeding that of fibers produced in classical wet-spinning devices and even that of natural tendon and they showed lower diameters. Their structural orientation was examined by polarized Fourier transform infrared spectroscopy (FTIR) showing fibril alignment within the microfiber. Cell culture tests using the neuronal cell line NG108-15 showed cell alignment and axon growth along the microfiber axes inaugurating potential applications in, for example, peripheral nerve repair.
Collapse
Affiliation(s)
| | | | | | - Stephan Förster
- Bayerisches Polymerinstitut (BPI) , Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Thomas Scheibel
- Bayerisches Polymerinstitut (BPI) , Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
44
|
Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review. J Clin Diagn Res 2015; 9:ZE21-5. [PMID: 26501034 DOI: 10.7860/jcdr/2015/13907.6565] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/05/2015] [Indexed: 01/07/2023]
Abstract
Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.
Collapse
Affiliation(s)
- Preeti Yadav
- Senior Lecturer, Department of Prosthodontics, Crown and Bridge and Implantology, NIMS Dental College , Jaipur, Rajasthan, India
| | - Harsh Yadav
- Private Practioner, Oral & Maxillofacial Surgery, Gurgaon, Haryana, India
| | - Veena Gowri Shah
- Reader, Department of Prosthodontics, Crown and Bridge and Implantology, NIMS Dental College , Jaipur, Rajasthan, India
| | - Gaurav Shah
- Reader, Department of Oral & Maxillofacial Surgery, NIMS Dental College , Jaipur, Rajasthan, India
| | - Gaurav Dhaka
- Private Practitioner, Meerut, Uttar Pradesh, India
| |
Collapse
|
45
|
Duraipandy N, Lakra R, Vinjimur Srivatsan K, Ramamoorthy U, Korrapati PS, Kiran MS. Plumbagin caged silver nanoparticle stabilized collagen scaffold for wound dressing. J Mater Chem B 2015; 3:1415-1425. [DOI: 10.1039/c4tb01791a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wound dressing material based on nano-biotechnological intervention by caging plumbagin on silver nanoparticle (PCSN) as a multi-site cross-linking agent of collagen scaffolds with potent anti-microbial and wound healing activity.
Collapse
Affiliation(s)
- N. Duraipandy
- Biomaterials Division
- CSIR-Central Leather Research Institute
- Chennai-600020
- India
- Academy of Scientific and Innovative Research
| | - Rachita Lakra
- Biomaterials Division
- CSIR-Central Leather Research Institute
- Chennai-600020
- India
| | | | - Usha Ramamoorthy
- Biomaterials Division
- CSIR-Central Leather Research Institute
- Chennai-600020
- India
| | - Purna Sai Korrapati
- Biomaterials Division
- CSIR-Central Leather Research Institute
- Chennai-600020
- India
- Academy of Scientific and Innovative Research
| | - Manikantan Syamala Kiran
- Biomaterials Division
- CSIR-Central Leather Research Institute
- Chennai-600020
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
46
|
Abidin FZ, Gouveia RM, Connon CJ. Application of retinoic acid improves form and function of tissue engineered corneal construct. Organogenesis 2015; 11:122-36. [PMID: 26496651 PMCID: PMC4879898 DOI: 10.1080/15476278.2015.1093267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/22/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid has recently been shown to control the phenotype and extracellular matrix composition of corneal stromal cells cultured in vitro as monolayers. This study set out to investigate the effects of retinoic acid on human corneal keratocytes within a 3D environment. Human corneal keratocytes were encapsulated in collagen gels, which were subsequently compressed under load, and cultured in serum-free media supplemented with 10 µM retinoic acid or DMSO vehicle for 30 days. Cell proliferation was quantified on selected days, while the expression of several important keratocytes markers was evaluated at day 30 using RT-PCR and immunoblotting. The weight and size of the collagen constructs were measured before and after hydration and contraction analyses. Retinoic acid enhanced keratocyte proliferation until day 30, whereas cells in control culture conditions showed reduced numbers after day 21. Both gene and protein expressions of keratocyte-characteristic proteoglycans (keratocan, lumican and decorin), corneal crystallins and collagen type I and V were significantly increased following retinoic acid supplementation. Retinoic acid also significantly reduced the expression of matrix metalloproteases 1, 3 and 9 while not increasing α-smooth muscle actin and fibronectin expression. Furthermore, these effects were also correlated with the ability of retinoic acid to significantly inhibit the contractility of keratocytes while allowing the build-up of corneal stromal extracellular matrix within the 3D constructs. Thus, retinoic acid supplementation represents a promising strategy to improve the phenotype of 3D-cultured keratocytes, and their usefulness as a model of corneal stroma for corneal biology and regenerative medicine applications.
Collapse
Affiliation(s)
- Fadhilah Z Abidin
- Institute of Genetic Medicine; Newcastle University; Center for Life; Newcastle, UK
| | - Ricardo M Gouveia
- Institute of Genetic Medicine; Newcastle University; Center for Life; Newcastle, UK
| | - Che J Connon
- Institute of Genetic Medicine; Newcastle University; Center for Life; Newcastle, UK
| |
Collapse
|
47
|
The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 2014; 41:89-96. [PMID: 25522968 DOI: 10.1016/j.biomaterials.2014.11.031] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/30/2014] [Accepted: 11/08/2014] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is still a worldwide clinical challenge for which there is no viable therapeutic method. We focused on developing combinatorial methods targeting the complex pathological process of SCI. In this study, we implanted linear-ordered collagen scaffold (LOCS) fibers with collagen binding brain-derived neurotrophic factor (BDNF) by tagging a collagen-binding domain (CBD) (LOCS + CBD-BDNF) in completely transected canine SCI with multisystem rehabilitation to validate its potential therapeutic effect through a long-term (38 weeks) observation. We found that LOCS + CBD-BDNF implants strikingly promoted locomotion and functional sensory recovery, with some dogs standing unassisted and transiently moving. Further histological analysis showed that administration of LOCS + CBD-BDNF reduced lesion volume, decreased collagen deposits, promoted axon regeneration and improved myelination, leading to functional recovery. Collectively, LOCS + CBD-BDNF showed striking therapeutic effect on completely transected canine SCI model and it is the first time to report such breakthrough in the war with SCI. Undoubtedly, it is a potentially promising therapeutic method for SCI paralysis or other movement disorders caused by neurological diseases in the future.
Collapse
|
48
|
Choi J, Park H, Kim T, Jeong Y, Oh MH, Hyeon T, Gilad AA, Lee KH. Engineered collagen hydrogels for the sustained release of biomolecules and imaging agents: promoting the growth of human gingival cells. Int J Nanomedicine 2014; 9:5189-201. [PMID: 25429215 PMCID: PMC4243508 DOI: 10.2147/ijn.s71304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We present here the in vitro release profiles of either fluorescently labeled biomolecules or computed tomography contrast nanoagents from engineered collagen hydrogels under physiological conditions. The collagen constructs were designed as potential biocompatible inserts into wounded human gingiva. The collagen hydrogels were fabricated under a variety of conditions in order to optimize the release profile of biomolecules and nanoparticles for the desired duration and amount. The collagen constructs containing biomolecules/nanoconstructs were incubated under physiological conditions (ie, 37°C and 5% CO2) for 24 hours, and the release profile was tuned from 20% to 70% of initially loaded materials by varying the gelation conditions of the collagen constructs. The amounts of released biomolecules and nanoparticles were quantified respectively by measuring the intensity of fluorescence and X-ray scattering. The collagen hydrogel we fabricated may serve as an efficient platform for the controlled release of biomolecules and imaging agents in human gingiva to facilitate the regeneration of oral tissues.
Collapse
Affiliation(s)
- Jonghoon Choi
- Department of Bionanotechnology, Hanyang University, Seoul Campus, Seoul, Korea ; Department of Bionanoengineering, Hanyang University, ERICA Campus, Ansan, Korea
| | - Hoyoung Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Taeho Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Korea ; School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Yoon Jeong
- Department of Bionanotechnology, Hanyang University, Seoul Campus, Seoul, Korea ; Department of Bionanoengineering, Hanyang University, ERICA Campus, Ansan, Korea
| | - Myoung Hwan Oh
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Korea ; School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Korea ; School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Assaf A Gilad
- Department of Radiology and Radiological Health, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Institute for Cell Engineering, Baltimore, MD, USA
| | - Kwan Hyi Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| |
Collapse
|
49
|
Sahiner M, Alpaslan D, Bitlisli BO. Collagen-based hydrogel films as drug-delivery devices with antimicrobial properties. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1235-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing. Biopolymers 2014; 101:821-33. [PMID: 24633807 PMCID: PMC4203321 DOI: 10.1002/bip.22486] [Citation(s) in RCA: 624] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 01/13/2023]
Abstract
With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three-dimensional scaffolds that are intrinsically biocompatible, biodegradable, nontoxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on-going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds.
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| |
Collapse
|