1
|
Fang Y, Meng X, Liu L, Li Z, Jia K, Liu W. Simultaneous In Vivo Assembly and Targeted Genome Integration of Gene Clusters in Trichoderma reesei. ACS Synth Biol 2025; 14:575-584. [PMID: 39915901 DOI: 10.1021/acssynbio.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The saprophytic filamentous fungus Trichoderma reesei represents one of the most prolific cellulase producers and also has the potential to be developed into a tractable fungal host for biosynthesizing secondary metabolite products. To expedite the genetic engineering of filamentous fungi, efficient DNA assembly processes that can facilitate the transfer of large-sized DNA to fungal hosts, including T. reesei, are still in demand. Here, we developed a method for the simultaneous in vivo assembly and targeted genome integration of multiple DNA fragments (SATIMD) in T. reesei. While efficient orderly DNA end fusions were achieved by homologous recombination (HR) with various lengths of sequence overlaps (100-500 bp), the assembled DNA was also precisely integrated into a specific locus when combined with CRISPR/Cas9-mediated genome cutting. Specifically, we have used this method to achieve the assembly and functional expression of T. reesei key transcriptional activator Xyr1 for cellulase genes. Moreover, fusions and targeted integration of up to 10 different DNA fragments comprising the 32.7 kb sorbicillinoids biosynthetic gene cluster via a single-step transformation was demonstrated. We envision that SATIMD is a powerful tool not only useful for direct large heterologous gene cluster assembly in T. reesei but also can facilitate large-scale fungal strain genetic engineering.
Collapse
Affiliation(s)
- Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Lin Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Kaili Jia
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| |
Collapse
|
2
|
Kouprina N, Larionov V. Transformation-associated recombination (TAR) cloning and its applications for gene function; genome architecture and evolution; biotechnology and biomedicine. Oncotarget 2023; 14:1009-1033. [PMID: 38147065 PMCID: PMC10750837 DOI: 10.18632/oncotarget.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Transformation-associated recombination (TAR) cloning represents a unique tool to selectively and efficiently recover a given chromosomal segment up to several hundred kb in length from complex genomes (such as animals and plants) and simple genomes (such as bacteria and viruses). The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. In this review, we summarize multiple applications of the pioneering TAR cloning technique, developed previously for complex genomes, for functional, evolutionary, and structural studies, and extended the modified TAR versions to isolate biosynthetic gene clusters (BGCs) from microbes, which are the major source of pharmacological agents and industrial compounds, and to engineer synthetic viruses with novel properties to design a new generation of vaccines. TAR cloning was adapted as a reliable method for the assembly of synthetic microbe genomes for fundamental research. In this review, we also discuss how the TAR cloning in combination with HAC (human artificial chromosome)- and CRISPR-based technologies may contribute to the future.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Zhu MC, Cui YZ, Wang JY, Xu H, Li BZ, Yuan YJ. Cross-species microbial genome transfer: a Review. Front Bioeng Biotechnol 2023; 11:1183354. [PMID: 37214278 PMCID: PMC10194841 DOI: 10.3389/fbioe.2023.1183354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Synthetic biology combines the disciplines of biology, chemistry, information science, and engineering, and has multiple applications in biomedicine, bioenergy, environmental studies, and other fields. Synthetic genomics is an important area of synthetic biology, and mainly includes genome design, synthesis, assembly, and transfer. Genome transfer technology has played an enormous role in the development of synthetic genomics, allowing the transfer of natural or synthetic genomes into cellular environments where the genome can be easily modified. A more comprehensive understanding of genome transfer technology can help to extend its applications to other microorganisms. Here, we summarize the three host platforms for microbial genome transfer, review the recent advances that have been made in genome transfer technology, and discuss the obstacles and prospects for the development of genome transfer.
Collapse
|
4
|
Paulus C, Myronovskyi M, Zapp J, Rodríguez Estévez M, Lopatniuk M, Rosenkränzer B, Palusczak A, Luzhetskyy A. Miramides A–D: Identification of Detoxin-like Depsipeptides after Heterologous Expression of a Hybrid NRPS-PKS Gene Cluster from Streptomyces mirabilis Lu17588. Microorganisms 2022; 10:microorganisms10091752. [PMID: 36144353 PMCID: PMC9503745 DOI: 10.3390/microorganisms10091752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
Natural products derived from plants, fungi or bacteria have been used for years in the medicine, agriculture and food industries as they exhibit a variety of beneficial properties, such as antibiotic, antifungal, anticancer, herbicidal and immunosuppressive activities. Compared to synthetic compounds, natural products possess a greater chemical diversity, which is a reason why they are profitable templates for developing pharmaceutical drug candidates and ongoing research on them is inevitable. Performing heterologous expression with unknown gene clusters is the preferred method to activate gene clusters that are not expressed in the wild-type strain under laboratory conditions; thus, this method offers a way to discover new interesting metabolites. Here, we report the gene cluster assembly of a hybrid NRPS-PKS gene cluster from Streptomyces mirabilis Lu17588, which was heterologously expressed in Streptomyces albus Del14. Four new compounds were produced by the obtained strain, which were named miramides A–D. Isolation and structure elucidation revealed similarity of the isolated compounds to the known depsipeptides rimosamides/detoxins.
Collapse
Affiliation(s)
- Constanze Paulus
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Marta Rodríguez Estévez
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Maria Lopatniuk
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Birgit Rosenkränzer
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Anja Palusczak
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
- AMEG Department, Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbruecken, Germany
- Correspondence: ; Tel.: +49-681-302-70200
| |
Collapse
|
5
|
Wang W, Peng X, Jin Y, Pan JA, Guo D. Reverse genetics systems for SARS-CoV-2. J Med Virol 2022; 94:3017-3031. [PMID: 35324008 PMCID: PMC9088479 DOI: 10.1002/jmv.27738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID‐19) has caused severe public health crises and heavy economic losses. Limited knowledge about this deadly virus impairs our capacity to set up a toolkit against it. Thus, more studies on severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) biology are urgently needed. Reverse genetics systems, including viral infectious clones and replicons, are powerful platforms for viral research projects, spanning many aspects such as the rescues of wild‐type or mutant viral particles, the investigation of viral replication mechanism, the characterization of viral protein functions, and the studies on viral pathogenesis and antiviral drug development. The operations on viral infectious clones are strictly limited in the Biosafety Level 3 (BSL3) facilities, which are insufficient, especially during the pandemic. In contrast, the operation on the noninfectious replicon can be performed in Biosafety Level 2 (BSL2) facilities, which are widely available. After the outbreak of COVID‐19, many reverse genetics systems for SARS‐CoV‐2, including infectious clones and replicons are developed and given plenty of options for researchers to pick up according to the requirement of their research works. In this review, we summarize the available reverse genetics systems for SARS‐CoV‐2, by highlighting the features of these systems, and provide a quick guide for researchers, especially those without ample experience in operating viral reverse genetics systems.
Collapse
Affiliation(s)
- Wenhao Wang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Xiaoxue Peng
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yunyun Jin
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Deyin Guo
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
6
|
Vashee S, Arfi Y, Lartigue C. Budding yeast as a factory to engineer partial and complete microbial genomes. CURRENT OPINION IN SYSTEMS BIOLOGY 2020; 24:1-8. [PMID: 33015421 PMCID: PMC7523139 DOI: 10.1016/j.coisb.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Yeast cells have long been used as hosts to propagate exogenous DNA. Recent progress in genome editing opens new avenues in synthetic biology. These developments allow the efficient engineering of microbial genomes in Saccharomyces cerevisiae that can then be rescued to yield modified bacteria/viruses. Recent examples show that the ability to quickly synthesize, assemble, and/or modify viral and bacterial genomes may be a critical factor to respond to emerging pathogens. However, this process has some limitations. DNA molecules much larger than two megabase pairs are complex to clone, bacterial genomes have proven to be difficult to rescue, and the dual-use potential of these technologies must be carefully considered. Regardless, the use of yeast as a factory has enormous appeal for biological applications.
Collapse
Affiliation(s)
| | - Yonathan Arfi
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, Villenave d'Ornon, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, Villenave d'Ornon, France
| |
Collapse
|
7
|
An artificial chromosome ylAC enables efficient assembly of multiple genes in Yarrowia lipolytica for biomanufacturing. Commun Biol 2020; 3:199. [PMID: 32350406 PMCID: PMC7190667 DOI: 10.1038/s42003-020-0936-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
The efficient use of the yeast Yarrowia lipolytica as a cell factory is hampered by the lack of powerful genetic engineering tools dedicated for the assembly of large DNA fragments and the robust expression of multiple genes. Here we describe the design and construction of artificial chromosomes (ylAC) that allow easy and efficient assembly of genes and chromosomal elements. We show that metabolic pathways can be rapidly constructed by various assembly of multiple genes in vivo into a complete, independent and linear supplementary chromosome with a yield over 90%. Additionally, our results reveal that ylAC can be genetically maintained over multiple generations either under selective conditions or, without selective pressure, using an essential gene as the selection marker. Overall, the ylACs reported herein are game-changing technology for Y. lipolytica, opening myriad possibilities, including enzyme screening, genome studies and the use of this yeast as a previous unutilized bio-manufacturing platform. Zhong-peng Guo et al. develop artificial chromosomes (ylAC) that allow easy and efficient assembly of multiple genes in Yarrowia lipolytica, a yeast strain commonly used for synthetic biology. ylAC provides an improved bio-manufacturing platform that is potentially useful for food, pharmaceutical, and environmental industries.
Collapse
|
8
|
Direct cloning and heterologous expression of natural product biosynthetic gene clusters by transformation-associated recombination. Methods Enzymol 2019; 621:87-110. [PMID: 31128791 DOI: 10.1016/bs.mie.2019.02.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heterologous expression of natural product biosynthetic gene clusters (BGCs) is a robust approach not only to decipher biosynthetic logic behind natural product (NP) biosynthesis, but also to discover new chemicals from uncharacterized BGCs. This approach largely relies on techniques used for cloning large BGCs into suitable expression vectors. Recently, several whole-pathway direct cloning approaches, including full-length RecE-mediated recombination in Escherichia coli, Cas9-assisted in vitro assembly, and transformation-associated recombination (TAR) in Saccharomyces cerevisiae, have been developed to accelerate BGC isolation. In this chapter, we summarize a protocol for TAR cloning large NP BGCs, detailing the process of choosing TAR plasmids, designing pathway-specific TAR vectors, generating yeast spheroplasts, performing yeast transformation, and heterologously expressing BGCs in various host strains. We believe that the established platforms can accelerate the process of discovering new NPs, understanding NP biosynthetic logic, and engineering biosynthetic pathways.
Collapse
|
9
|
Hu Y, Nan F, Maina SW, Guo J, Wu S, Xin Z. Clone of plipastatin biosynthetic gene cluster by transformation-associated recombination technique and high efficient expression in model organism Bacillus subtilis. J Biotechnol 2018; 288:1-8. [DOI: 10.1016/j.jbiotec.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
|
10
|
Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 2016; 125:621-32. [PMID: 27116033 DOI: 10.1007/s00412-016-0588-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 12/25/2022]
Abstract
Transformation-associated recombination (TAR) cloning represents a unique tool for isolation and manipulation of large DNA molecules. The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. So far, TAR cloning is the only method available to selectively recover chromosomal segments up to 300 kb in length from complex and simple genomes. In addition, TAR cloning allows the assembly and cloning of entire microbe genomes up to several Mb as well as engineering of large metabolic pathways. In this review, we summarize applications of TAR cloning for functional/structural genomics and synthetic biology.
Collapse
|
11
|
From selective full-length genes isolation by TAR cloning in yeast to their expression from HAC vectors in human cells. Methods Mol Biol 2015; 1227:3-26. [PMID: 25239739 DOI: 10.1007/978-1-4939-1652-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transformation-associated recombination (TAR) cloning allows selective isolation of full-length genes and genomic loci as large circular Yeast Artificial Chromosomes (YACs) in yeast. The method has a broad application for structural and functional genomics, long-range haplotyping, characterization of chromosomal rearrangements, and evolutionary studies. In this paper, we describe a basic protocol for gene isolation by TAR as well as a method to convert TAR isolates into Bacterial Artificial Chromosomes (BACs) using a retrofitting vector. The retrofitting vector contains a 3' HPRT-loxP cassette to allow subsequent gene loading into a unique loxP site of the HAC-based (Human Artificial Chromosome) gene delivery vector. The benefit of combining the TAR gene cloning technology with the HAC gene delivery system for gene expression studies is discussed.
Collapse
|
12
|
Ghiaci P, Norbeck J, Larsson C. 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system. PLoS One 2014; 9:e102774. [PMID: 25054226 PMCID: PMC4108354 DOI: 10.1371/journal.pone.0102774] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/24/2014] [Indexed: 01/30/2023] Open
Abstract
2-Butanol and its chemical precursor butanone (methyl ethyl ketone – MEK) are chemicals with potential uses as biofuels and biocommodity chemicals. In order to produce 2-butanol, we have demonstrated the utility of using a TEV-protease based expression system to achieve equimolar expression of the individual subunits of the two protein complexes involved in the B12-dependent dehydratase step (from the pdu-operon of Lactobacillus reuterii), which catalyze the conversion of meso-2,3-butanediol to butanone. We have furthermore identified a NADH dependent secondary alcohol dehydrogenase (Sadh from Gordonia sp.) able to catalyze the subsequent conversion of butanone to 2-butanol. A final concentration of 4±0.2 mg/L 2-butanol and 2±0.1 mg/L of butanone was found. A key factor for the production of 2-butanol was the availability of NADH, which was achieved by growing cells lacking the GPD1 and GPD2 isogenes under anaerobic conditions.
Collapse
Affiliation(s)
- Payam Ghiaci
- Department of Chemical and Biological Engineering, System and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Joakim Norbeck
- Department of Chemical and Biological Engineering, System and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Christer Larsson
- Department of Chemical and Biological Engineering, System and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
13
|
Kouprina N, Tomilin AN, Masumoto H, Earnshaw WC, Larionov V. Human artificial chromosome-based gene delivery vectors for biomedicine and biotechnology. Expert Opin Drug Deliv 2014; 11:517-35. [DOI: 10.1517/17425247.2014.882314] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Noskov VN, Chuang RY, Gibson DG, Leem SH, Larionov V, Kouprina N. Isolation of circular yeast artificial chromosomes for synthetic biology and functional genomics studies. Nat Protoc 2010; 6:89-96. [PMID: 21212778 DOI: 10.1038/nprot.2010.174] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circular yeast artificial chromosomes (YACs) provide significant advantages for cloning and manipulating large segments of genomic DNA in Saccharomyces cerevisiae. However, it has been difficult to exploit these advantages, because circular YACs are difficult to isolate and purify. Here we describe a method for purification of large circular YACs that is more reliable compared with previously described protocols. This method has been used to purify YACs up to 600 kb in size. The purified YAC DNA is suitable for restriction enzyme digestion, DNA sequencing and functional studies. For example, YACs carrying full-size genes can be purified from yeast and used for transfection into mammalian cells or for the construction of a synthetic genome that can be used to produce a synthetic cell. This method for isolating high-quality YAC DNA in microgram quantities should be valuable for functional and synthetic genomic studies. The entire protocol takes ∼3 d to complete.
Collapse
|
15
|
Noskov VN, Segall-Shapiro TH, Chuang RY. Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast. Nucleic Acids Res 2010; 38:2570-6. [PMID: 20228123 PMCID: PMC2860121 DOI: 10.1093/nar/gkq099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The complete synthetic Mycoplasma genitalium genome (∼583 kb) has been assembled and cloned as a circular plasmid in the yeast Saccharomyces cerevisiae. Attempts to engineer the cloned genome by standard genetic methods involving the URA3/5-fluoroorotic acid (5-FOA) counter-selection have shown a high background of 5-FOA resistant clones derived from spontaneous deletions of the bacterial genome maintained in yeast. Here, we report a method that can seamlessly modify the bacterial genome in yeast with high efficiency. This method requires two sequential homologous recombination events. First, the target region is replaced with a mutagenesis cassette that consists of a knock-out CORE (an18-bp I-SceI recognition site, the SCEI gene under the control of the GAL1 promoter, and the URA3 marker) and a DNA fragment homologous to the sequence upstream of the target site. The replacement generates tandem repeat sequences flanking the CORE. Second, galactose induces the expression of I-SceI, which generates a double-strand break (DSB) at the recognition site. This DSB promotes intra-molecular homologous recombination between the repeat sequences, and leads to an excision of the CORE. As a result, a seamless modification is generated. This method can be adapted for a variety of genomic modifications and may provide an important tool to modify and design natural or synthetic genomes propagated in yeast.
Collapse
Affiliation(s)
- Vladimir N Noskov
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | |
Collapse
|
16
|
Kouprina N, Larionov V. Selective isolation of mammalian genes by TAR cloning. CURRENT PROTOCOLS IN HUMAN GENETICS 2008; Chapter 5:Unit 5.17. [PMID: 18428393 DOI: 10.1002/0471142905.hg0517s49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transformation-associated recombination (TAR) cloning provides a unique tool for selective isolation of desired chromosome segments and full-size genes from complex genomes in the form of a circular yeast artificial chromosome (YAC) up to 250 kb in size. The method has a broad application for structural and functional genomics, long-range haplotyping, mutational analysis of gene families, characterization of chromosomal rearrangements, and evolutionary studies. This unit describes a procedure for gene isolation by TAR as well as a method for conversion of YAC-TAR isolates into a bacterial artificial chromosome (BAC) form.
Collapse
|
17
|
Kouprina N, Pavlicek A, Noskov VN, Solomon G, Otstot J, Isaacs W, Carpten JD, Trent JM, Schleutker J, Barrett JC, Jurka J, Larionov V. Dynamic structure of the SPANX gene cluster mapped to the prostate cancer susceptibility locus HPCX at Xq27. Genome Res 2006; 15:1477-86. [PMID: 16251457 PMCID: PMC1310635 DOI: 10.1101/gr.4212705] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Genetic linkage studies indicate that germline variations in a gene or genes on chromosome Xq27-28 are implicated in prostate carcinogenesis. The linkage peak of prostate cancer overlies a region of approximately 750 kb containing five SPANX genes (SPANX-A1, -A2, -B, -C, and -D) encoding sperm proteins associated with the nucleus; their expression was also detected in a variety of cancers. SPANX genes are >95% identical and reside within large segmental duplications (SDs) with a high level of similarity, which confounds mutational analysis of this gene family by routine PCR methods. In this work, we applied transformation-associated recombination cloning (TAR) in yeast to characterize individual SPANX genes from prostate cancer patients showing linkage to Xq27-28 and unaffected controls. Analysis of genomic TAR clones revealed a dynamic nature of the replicated region of linkage. Both frequent gene deletion/duplication and homology-based sequence transfer events were identified within the region and were presumably caused by recombinational interactions between SDs harboring the SPANX genes. These interactions contribute to diversity of the SPANX coding regions in humans. We speculate that the predisposition to prostate cancer in X-linked families is an example of a genomic disease caused by a specific architecture of the SPANX gene cluster.
Collapse
Affiliation(s)
- Natalay Kouprina
- Laboratory of Biosystems and Cancer, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ayabe F, Katoh M, Inoue T, Kouprina N, Larionov V, Oshimura M. A novel expression system for genomic DNA loci using a human artificial chromosome vector with transformation-associated recombination cloning. J Hum Genet 2005; 50:592-599. [PMID: 16231070 DOI: 10.1007/s10038-005-0300-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 08/11/2005] [Indexed: 12/17/2022]
Abstract
Following the recent completion of the human genome sequence, genomics research has shifted its focus to understanding gene complexity, expression, and regulation. However, in order to investigate such issues, there is a need to develop a practical system for genomic DNA expression. Transformation-associated recombination (TAR) cloning has proven to be a convenient tool for selective isolation of a genetic locus from a complex genome as a circular YAC using recombination in yeast. The human artificial chromosome (HAC) vector containing an acceptor loxP site has served as a platform for the reproducible expression of transgenes. In this study, we describe a system that efficiently expresses a genetic locus in mammalian cells by retrofitting a TAR-YAC with the donor loxP site and loading it onto the HAC vector by the Cre/loxP system. In order to demonstrate functional expression of genomic loci, the entire human hypoxanthine phosphoribosyl transferase (HPRT) locus contained in a 100 kb YAC was loaded onto the HAC vector and was shown to complement the genetic defect in Hprt-deficient CHO cells. Thus, the combination of TAR cloning and the HAC vector may serve as a powerful tool for functional genomic studies.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- CHO Cells
- Chromosomes, Artificial, Human/genetics
- Cloning, Molecular/methods
- Cricetinae
- Cricetulus
- DNA Primers
- Electrophoresis, Gel, Pulsed-Field
- Gene Expression Profiling/methods
- Genome, Human/genetics
- Humans
- Hypoxanthine Phosphoribosyltransferase/genetics
- In Situ Hybridization, Fluorescence
- Polymerase Chain Reaction
- Recombination, Genetic/genetics
- Restriction Mapping
- Transformation, Genetic/genetics
Collapse
Affiliation(s)
- Fumiaki Ayabe
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Motonobu Katoh
- Department of Human Genome Science, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Toshiaki Inoue
- Department of Human Genome Science, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Natalay Kouprina
- Laboratory of Biosystems and Cancer, National Cancer Institute, NIH, Bldg. 37, Room 5032, 90000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Vladimir Larionov
- Laboratory of Biosystems and Cancer, National Cancer Institute, NIH, Bldg. 37, Room 5032, 90000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Mitsuo Oshimura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
- Department of Human Genome Science, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
19
|
Pavlicek A, Noskov VN, Kouprina N, Barrett JC, Jurka J, Larionov V. Evolution of the tumor suppressor BRCA1 locus in primates: implications for cancer predisposition. Hum Mol Genet 2004; 13:2737-51. [PMID: 15385441 DOI: 10.1093/hmg/ddh301] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Germ-line mutations in the BRCA1 gene predispose affected individuals to breast and ovarian cancer syndromes. In an attempt to systematically analyze a broader spectrum of genetic changes ranging from frequent exon deletions and duplications to amino acid replacements and protein truncations, we isolated and characterized full size BRCA1 homologues from a representative group of non-human primates. Our analysis represents the first comprehensive sequence comparison of primate BRCA1 loci and corresponding proteins. The comparison revealed an unusually high proportion of indels in non-coding DNA. The major force driving evolutionary changes in non-coding BRCA1 sequences was Alu-mediated rearrangements, including Alu transpositions and Alu-associated deletions, indicating that structural instability of this locus may be intrinsic in anthropoids. Analysis of the non-synonymous/synonymous ratio in coding portions of the gene revealed the presence of both conserved and rapidly evolving regions in the BRCA1 protein. Previously, a rapidly evolving region with evidence of positive evolutionary selection in human and chimpanzee had been identified only in exon 11. Here, we show that most of the internal BRCA1 sequence is variable between primates and evolved under positive selection. In contrast, the terminal regions of BRCA1, which encode the RING finger and BRCT domains, experienced negative selection, which left them almost identical between the compared primates. Distribution of the reported missense mutations, but not frameshift and nonsense mutations, is positively correlated with BRCA1 protein conservation. Finally, on the basis of protein sequence conservation, we identified missense changes that are likely to compromise BRCA1 function.
Collapse
Affiliation(s)
- Adam Pavlicek
- Genetic Information Research Institute, Mountain View, CA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kouprina N, Pavlicek A, Mochida GH, Solomon G, Gersch W, Yoon YH, Collura R, Ruvolo M, Barrett JC, Woods CG, Walsh CA, Jurka J, Larionov V. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLoS Biol 2004; 2:E126. [PMID: 15045028 PMCID: PMC374243 DOI: 10.1371/journal.pbio.0020126] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 02/24/2004] [Indexed: 02/07/2023] Open
Abstract
Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes) consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.
Collapse
Affiliation(s)
- Natalay Kouprina
- 1Laboratory of Biosystems and Cancer, National Cancer InstituteBethesda, MarylandUnited States of America
| | - Adam Pavlicek
- 2Genetic Information Research Institute, Mountain ViewCaliforniaUnited States of America
| | - Ganeshwaran H Mochida
- 3Department of Neurology, Howard Hughes Medical Institute and Beth Israel Deaconess Medical CenterBoston, MassachusettsUnited States of America
| | - Gregory Solomon
- 4Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health SciencesResearch Triangle Park, North CarolinaUnited States of America
| | - William Gersch
- 4Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health SciencesResearch Triangle Park, North CarolinaUnited States of America
| | - Young-Ho Yoon
- 1Laboratory of Biosystems and Cancer, National Cancer InstituteBethesda, MarylandUnited States of America
| | - Randall Collura
- 5Harvard University, CambridgeMassachusettsUnited States of America
| | - Maryellen Ruvolo
- 5Harvard University, CambridgeMassachusettsUnited States of America
| | - J. Carl Barrett
- 1Laboratory of Biosystems and Cancer, National Cancer InstituteBethesda, MarylandUnited States of America
| | | | - Christopher A Walsh
- 3Department of Neurology, Howard Hughes Medical Institute and Beth Israel Deaconess Medical CenterBoston, MassachusettsUnited States of America
| | - Jerzy Jurka
- 2Genetic Information Research Institute, Mountain ViewCaliforniaUnited States of America
| | - Vladimir Larionov
- 1Laboratory of Biosystems and Cancer, National Cancer InstituteBethesda, MarylandUnited States of America
| |
Collapse
|
21
|
Leem SH, Kouprina N, Grimwood J, Kim JH, Mullokandov M, Yoon YH, Chae JY, Morgan J, Lucas S, Richardson P, Detter C, Glavina T, Rubin E, Barrett JC, Larionov V. Closing the gaps on human chromosome 19 revealed genes with a high density of repetitive tandemly arrayed elements. Genome Res 2004; 14:239-46. [PMID: 14718380 PMCID: PMC327099 DOI: 10.1101/gr.1929904] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 11/24/2003] [Indexed: 12/18/2022]
Abstract
The reported human genome sequence includes about 400 gaps of unknown sequence that were not found in the bacterial artificial chromosome (BAC) and cosmid libraries used for sequencing of the genome. These missing sequences correspond to approximately 1% of euchromatic regions of the human genome. Gap filling is a laborious process because it relies on analysis of random clones of numerous genomic BAC or cosmid libraries. In this work we demonstrate that closing the gaps can be accelerated by a selective recombinational capture of missing chromosomal segments in yeast. The use of both methodologies allowed us to close the four remaining gaps on the human chromosome 19. Analysis of the gap sequences revealed that they contain several abnormalities that could result in instability of the sequences in microbe hosts, including large blocks of micro- and minisatellites and a high density of Alu repeats. Sequencing of the gap regions, in both BAC and YAC forms, allowed us to generate a complete sequence of four genes, including the neuronal cell signaling gene SCK1/SLI. The SCK1/SLI gene contains a record number of minisatellites, most of which are polymorphic and transmitted through meiosis following a Mendelian inheritance. In conclusion, the use of the alternative recombinational cloning system in yeast may greatly accelerate work on closing the remaining gaps in the human genome (as well as in other complex genomes) to achieve the goal of annotation of all human genes.
Collapse
Affiliation(s)
- Sun-Hee Leem
- Laboratory of Biosystems and Cancer, Center for Cancer Research, National Cancer Institute (NCI, NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|