1
|
Fernández-Ramos D, Lopitz-Otsoa F, Lu SC, Mato JM. S-Adenosylmethionine: A Multifaceted Regulator in Cancer Pathogenesis and Therapy. Cancers (Basel) 2025; 17:535. [PMID: 39941901 PMCID: PMC11816870 DOI: 10.3390/cancers17030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
S-adenosylmethionine (SAMe) is a key methyl donor that plays a critical role in a variety of cellular processes, such as DNA, RNA and protein methylation, essential for maintaining genomic stability, regulating gene expression and maintaining cellular homeostasis. The involvement of SAMe in cancer pathogenesis is multifaceted, as through its multiple cellular functions, it can influence tumor initiation, progression and therapeutic resistance. In addition, the connection of SAMe with polyamine synthesis and oxidative stress management further underscores its importance in cancer biology. Recent studies have highlighted the potential of SAMe as a biomarker for cancer diagnosis and prognosis. Furthermore, the therapeutic implications of SAMe are promising, with evidence suggesting that SAMe supplementation or modulation could improve the efficacy of existing cancer treatments by restoring proper methylation patterns and mitigating oxidative damage and protect against damage induced by chemotherapeutic drugs. Moreover, targeting methionine cycle enzymes to both regulate SAMe availability and SAMe-independent regulatory effects, particularly in methionine-dependent cancers such as colorectal and lung cancer, presents a promising therapeutic approach. Additionally, exploring epitranscriptomic regulations, such as m6A modifications, and their interaction with non-coding RNAs could enhance our understanding of tumor progression and resistance mechanisms. Precision medicine approaches integrating patient subtyping and combination therapies with chemotherapeutics, such as decitabine or doxorubicin, together with SAMe, can enhance chemosensitivity and modulate epigenomics, showing promising results that may improve treatment outcomes. This review comprehensively examines the various roles of SAMe in cancer pathogenesis, its potential as a diagnostic and prognostic marker, and its emerging therapeutic applications. While SAMe modulation holds significant promise, challenges such as bioavailability, patient stratification and context-dependent effects must be addressed before clinical implementation. In addition, better validation of the obtained results into specific cancer animal models would also help to bridge the gap between research and clinical practice.
Collapse
Affiliation(s)
- David Fernández-Ramos
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - José M. Mato
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| |
Collapse
|
2
|
Wang YW, Chu T, Wang XL, Fan YQ, Cao L, Chen YH, Zhu YW, Liu HX, Ji XY, Wu DD. The role of cystathionine β-synthase in cancer. Cell Signal 2024; 124:111406. [PMID: 39270916 DOI: 10.1016/j.cellsig.2024.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Cystathionine β-synthase (CBS) occupies a key position as the initiating and rate-limiting enzyme in the sulfur transfer pathway and plays a vital role in health and disease. CBS is responsible for regulating the metabolism of cysteine, the precursor of glutathione (GSH), an important antioxidant in the body. Additionally, CBS is one of the three enzymes that produce hydrogen sulfide (H2S) in mammals through a variety of mechanisms. The dysregulation of CBS expression in cancer cells affects H2S production through direct or indirect pathways, thereby influencing cancer growth and metastasis by inducing angiogenesis, facilitating proliferation, migration, and invasion, modulating cellular energy metabolism, promoting cell cycle progression, and inhibiting apoptosis. It is noteworthy that CBS expression exhibits complex changes in different cancer models. In this paper, we focus on the CBS synthesis and metabolism, tissue distribution, potential mechanisms influencing tumor growth, and relevant signaling pathways. We also discuss the impact of pharmacological CBS inhibitors and silencing CBS in preclinical cancer models, supporting their potential as targeted cancer therapies.
Collapse
Affiliation(s)
- Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Hong-Xia Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Lipari Pinto P, Dixon M, Sudhakar S, Baric I, Baruteau J. Asymptomatic pediatric presentation of S-adenosylhomocysteine hydrolase deficiency. JIMD Rep 2024; 65:371-381. [PMID: 39512434 PMCID: PMC11540567 DOI: 10.1002/jmd2.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 11/15/2024] Open
Abstract
S-adenosylhomocysteine hydrolase deficiency is an autosomal recessive inborn error of metabolism affecting methylation by disrupting the methionine cycle. Its clinical spectrum spans from severe perinatal encephalomyopathy and liver failure to asymptomatic course in patients with isolated hypermethioninemia. We present two new cases of S-adenosylhomocysteine hydrolase deficiency from Pakistani origin clinically asymptomatic at presentation. Both siblings showed mild chronic liver failure and elevation of creatine kinase. The older patient presented at 6 years of age with isolated verbal processing difficulty and mild diffuse leukodystrophy, reversible 12 months after introduction of methionine dietary restriction. The patient showed subtle atrophy in the muscle MRI at the age of 7 years. S-adenosylhomocysteine hydrolase deficiency was confirmed with homozygous missense variant c.146G>A (p.Arg49His) in the AHCY gene, a genotype previously reported in Pakistani patients with mild presentation. Dietary methionine restriction decreased plasma methionine but not plasma S-adenosylhomocysteine and S-adenosylmethionine. This work expands the mild spectrum of S-adenosylhomocysteine hydrolase deficiency with no noticeable clinical symptoms in children, highlighting a specific hotspot variant from South Asia. This mild form of the disease is likely underdiagnosed and raises the question of therapeutic management to prevent long-term complications documented in the literature, such as hepatocellular carcinoma and myopathy in early adulthood.
Collapse
Affiliation(s)
- Patrícia Lipari Pinto
- Hereditary Metabolic Disease Reference Center, Metabolic Unit, Pediatric DepartmentSanta Maria's Hospital‐Lisbon North University Hospital Center, EPE, Pediatric University Clinic, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Sniya Sudhakar
- Department of RadiologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Ivo Baric
- Department of PediatricsUniversity Hospital Center Zagreb and University of Zagreb, School of Medicine ZagrebZagrebCroatia
| | - Julien Baruteau
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- National Institute of Health Research Great Ormond Street Biomedical Research CentreLondonUK
- Great Ormond Street Institute of Child Health, University college LondonLondonUK
| |
Collapse
|
4
|
Fogal V, Michopoulos F, Jarnuczak AF, Hamza GM, Harlfinger S, Davey P, Hulme H, Atkinson SJ, Gabrowski P, Cheung T, Grondine M, Hoover C, Rose J, Bray C, Foster AJ, Askin S, Majumder MM, Fitzpatrick P, Miele E, Macdonald R, Keun HC, Coen M. Mechanistic safety assessment via multi-omic characterisation of systemic pathway perturbations following in vivo MAT2A inhibition. Arch Toxicol 2024; 98:2589-2603. [PMID: 38755480 PMCID: PMC11272821 DOI: 10.1007/s00204-024-03771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis. MAT2A and its liver- and pancreas-specific isoform, MAT1A, generate the universal methyl donor S-adenosylmethionine (SAM) from ATP and methionine. Given the pleiotropic role SAM plays in methylation of diverse substrates, characterising the extent of SAM depletion and downstream perturbations following MAT2A/MAT1A inhibition (MATi) is critical for safety assessment. We have assessed in vivo target engagement and the resultant systemic phenotype using multi-omic tools to characterise response to a MAT2A inhibitor (AZ'9567). We observed significant SAM depletion and extensive methionine accumulation in the plasma, liver, brain and heart of treated rats, providing the first assessment of both global SAM depletion and evidence of hepatic MAT1A target engagement. An integrative analysis of multi-omic data from liver tissue identified broad perturbations in pathways covering one-carbon metabolism, trans-sulfuration and lipid metabolism. We infer that these pathway-wide perturbations represent adaptive responses to SAM depletion and confer a risk of oxidative stress, hepatic steatosis and an associated disturbance in plasma and cellular lipid homeostasis. The alterations also explain the dramatic increase in plasma and tissue methionine, which could be used as a safety and PD biomarker going forward to the clinic.
Collapse
Affiliation(s)
- Valentina Fogal
- Oncology Safety, Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Filippos Michopoulos
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Andrew F Jarnuczak
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ghaith M Hamza
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, R&D Boston, Waltham, USA
| | | | - Paul Davey
- Chemistry, Oncology R&D AstraZeneca, Cambridge, UK
| | - Heather Hulme
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Piotr Gabrowski
- Biological Insights Knowledge Graph, R&D IT, AstraZeneca, Barcelona, Spain
| | - Tony Cheung
- Oncology R&D, AstraZeneca, R&D Boston, Waltham, USA
| | | | - Clare Hoover
- Oncology Safety Pathology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, R&D Boston, Waltham, USA
| | - Jonathan Rose
- Animal Science & Technologies, R&D, AstraZeneca, Cambridge, UK
| | - Chandler Bray
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alison J Foster
- Regulatory Toxicology and Safety Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sean Askin
- Advanced Drug Delivery, Pharmaceutical Sci, R&D, AstraZeneca, Cambridge, UK
| | - Muntasir Mamun Majumder
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Paul Fitzpatrick
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Eric Miele
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, R&D Boston, Waltham, USA
| | - Ruth Macdonald
- Animal Science & Technologies, R&D, AstraZeneca, Cambridge, UK
| | - Hector C Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Muireann Coen
- Oncology Safety, Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
5
|
Ji M, Xu Q, Li X. Dietary methionine restriction in cancer development and antitumor immunity. Trends Endocrinol Metab 2024; 35:400-412. [PMID: 38383161 PMCID: PMC11096033 DOI: 10.1016/j.tem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Methionine restriction (MR) has been shown to suppress tumor growth and improve the responses to various anticancer therapies. However, methionine itself is required for the proliferation, activation, and differentiation of T cells that are crucial for antitumor immunity. The dual impact of methionine, that influences both tumor and immune cells, has generated concerns regarding the potential consequences of MR on T cell immunity and its possible role in promoting cancer. In this review we systemically examine current literature on the interactions between dietary methionine, cancer cells, and immune cells. Based on recent findings on MR in immunocompetent animals, we further discuss how tumor stage-specific methionine dependence of immune cells and cancer cells in the tumor microenvironment could ultimately dictate the response of tumors to MR.
Collapse
Affiliation(s)
- Ming Ji
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Qing Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
6
|
Fan W, Cao D, Yang B, Wang J, Li X, Kitka D, Li TWH, You S, Shiao S, Gangi A, Posadas E, Di Vizio D, Tomasi ML, Seki E, Mato JM, Yang H, Lu SC. Hepatic prohibitin 1 and methionine adenosyltransferase α1 defend against primary and secondary liver cancer metastasis. J Hepatol 2024; 80:443-453. [PMID: 38086446 PMCID: PMC10922446 DOI: 10.1016/j.jhep.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND & AIMS The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver. They positively regulate each other and their deletion results in primary liver cancer. Here we investigated their roles in primary and secondary liver cancer metastasis. METHODS We identified common target genes of PHB1 and MAT1A using a metastasis array, and measured promoter activity and transcription factor binding using luciferase reporter assays and chromatin immunoprecipitation, respectively. We examined how PHB1 or MAT1A loss promotes liver cancer metastasis and whether their loss sensitizes to colorectal liver metastasis (CRLM). RESULTS Matrix metalloproteinase-7 (MMP-7) is a common target of MAT1A and PHB1 and its induction is responsible for increased migration and invasion when MAT1A or PHB1 is silenced. Mechanistically, PHB1 and MAT1A negatively regulate MMP7 promoter activity via an AP-1 site by repressing the MAFG-FOSB complex. Loss of MAT1A or PHB1 also increased MMP-7 in extracellular vesicles, which were internalized by colon and pancreatic cancer cells to enhance their oncogenicity. Low hepatic MAT1A or PHB1 expression sensitized to CRLM, but not if endogenous hepatic MMP-7 was knocked down first, which lowered CD4+ T cells while increasing CD8+ T cells in the tumor microenvironment. Hepatocytes co-cultured with colorectal cancer cells express less MAT1A/PHB1 but more MMP-7. Consistently, CRLM raised distant hepatocytes' MMP-7 expression in mice and humans. CONCLUSION We have identified a PHB1/MAT1A-MAFG/FOSB-MMP-7 axis that controls primary liver cancer metastasis and sensitization to CRLM. IMPACT AND IMPLICATIONS Primary and secondary liver cancer metastasis is associated with poor outcomes but whether the liver has underlying defense mechanism(s) against metastasis is unknown. Here we examined the hypothesis that hepatic prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) cooperate to defend the liver against metastasis. Our studies found PHB1 and MAT1A form a complex that suppresses matrix metalloproteinase-7 (MMP-7) at the transcriptional level and loss of either PHB1 or MAT1A sensitizes the liver to metastasis via MMP-7 induction. Strategies that target the PHB1/MAT1A-MMP-7 axis may be a promising approach for the treatment of primary and secondary liver cancer metastasis.
Collapse
Affiliation(s)
- Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA
| | - Bing Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA; Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Xiaomo Li
- Department of Pathology, CSMC, Los Angeles CA 90048, USA
| | - Diana Kitka
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Cancer, CSMC, Los Angeles, CA, 90048, USA
| | - Tony W H Li
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Sungyong You
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Cancer, CSMC, Los Angeles, CA, 90048, USA
| | - Stephen Shiao
- Department of Radiation Oncology, CSMC, LA, CA 90048, USA
| | | | | | - Dolores Di Vizio
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Cancer, CSMC, Los Angeles, CA, 90048, USA
| | - Maria Lauda Tomasi
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticasy Digestivas (Ciberehd), Basque Research and Technology Alliance (BRTA), Technology, Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Heping Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA.
| |
Collapse
|
7
|
Jiachen Z, Paul Kwong Hang T, Kenneth Kak Yuen W, Vincent Chi Hang L. Pathological role of methionine in the initiation and progression of biliary atresia. Front Pediatr 2023; 11:1263836. [PMID: 37772039 PMCID: PMC10522914 DOI: 10.3389/fped.2023.1263836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Methionine (Met) is an essential amino acid, and its excessive dietary intake and/or its metabolism disturbance could lead to accumulation/depletion of hepatic Met and some of the key intermediates of these pathways, which would interfere normal liver function and would be associated with liver diseases. Biliary atresia (BA) is a life-threatening disease characterized by inflammatory fibrosclerosing changes of the intrahepatic and extrahepatic biliary systems and is the primary cause of obstructive neonatal cholestasis with a rapid course of liver failure. However, its pathogenesis remains unknown. Previous studies reported elevated Met level in patients with obstructive cholestasis, suggesting a potential link between Met and BA. This paper reviews the Met metabolism in normal conditions and its dysregulation under abnormal conditions, the possible causes of hypermethioninemia, and its connection to BA pathogenesis: Abnormal hepatic level of Met could lead to a perturbation of redox homeostasis and mitochondrial functions of hepatocytes, enhancement of viral infectivity, and dysregulation of innate and adaptative immune cells in response to infection/damage of the liver contributing to the initiation/progression of BA.
Collapse
Affiliation(s)
- Zheng Jiachen
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tam Paul Kwong Hang
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Wong Kenneth Kak Yuen
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lui Vincent Chi Hang
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Aboragah AA, Alharthi AS, Wichasit N, Loor JJ. Body condition prepartum and its association with term placentome nutrient transporters, one‑carbon metabolism pathway activity, and intermediate metabolites in Holstein cows. Res Vet Sci 2023; 162:104956. [PMID: 37516040 DOI: 10.1016/j.rvsc.2023.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
We investigated linkages among BCS prior to calving and placentome concentrations of metabolites, proteins in one‑carbon metabolism (OCM) and protein synthesis, and nutrient transport. Multiparous Holstein cows retrospectively divided by prepartal BCS at -4 weeks relative to parturition into high BCS (HBCS = 3.58 ± 0.23; n = 9) or normal BCS (NBCS = 3.02 ± 0.17; n = 13) were used. BCS was assessed using a 5-point scale (1 = thin, 5 = fat). Four placentomes per cow were collected at delivery and frozen in liquid N. Western blotting was used for protein abundance. Cystathionine-β-synthase (CBS) and betaine-homocysteine-S-methyltransferase (BHMT) activity were measured via 14C assays. Amino acids (AA) and metabolites in OCM were measured by liquid chromatography mass spectrometry (LC-MS). Compared with NBCS cows, the cellular stress sensor p-eIF2α was more than 2-fold greater (P = 0.04) in HBCS. Abundance of the AA-catabolism enzyme branched-chain α-ketoacid dehydrogenase complex was lower (P = 0.05) in HBCS cows. Although BHMT activity did not differ, greater concentration of betaine (P = 0.01) and lower (P = 0.05) concentration of dimethylglycine in HBCS cows suggested reduced flux through the methionine cycle. Despite a lack of difference in CBS activity, lower concentrations of cystathionine (P = 0.03) and hypotaurine (P = 0.04) along with lower cysteine and the tendency for lower total GSH (P = 0.10) in HBCS cows suggested a decrease in transsulfuration. Overall, associations between OCM in placentomes and BCS at calving exist. Identifying mechanisms responsible for these effects merits further research.
Collapse
Affiliation(s)
- Ahmad A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nithat Wichasit
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Agricultural Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA.
| |
Collapse
|
9
|
Carmona-Rodríguez L, Gajadhar AS, Blázquez-García I, Guerrero L, Fernández-Rojo MA, Uriarte I, Mamani-Huanca M, López-Gonzálvez Á, Ciordia S, Ramos A, Herrero JI, Fernández-Barrena MG, Arechederra M, Berasain C, Quiroga J, Sangro B, Argemi J, Pardo F, Rotellar F, López D, Barbas C, Ávila MA, Corrales FJ. Mapping early serum proteome signatures of liver regeneration in living donor liver transplant cases. Biofactors 2023; 49:912-927. [PMID: 37171157 DOI: 10.1002/biof.1954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 05/13/2023]
Abstract
The liver is the only solid organ capable of regenerating itself to regain 100% of its mass and function after liver injury and/or partial hepatectomy (PH). This exceptional property represents a therapeutic opportunity for severe liver disease patients. However, liver regeneration (LR) might fail due to poorly understood causes. Here, we have investigated the regulation of liver proteome and phosphoproteome at a short time after PH (9 h), to depict a detailed mechanistic background of the early LR phase. Furthermore, we analyzed the dynamic changes of the serum proteome and metabolome of healthy living donor liver transplant (LDLT) donors at different time points after surgery. The molecular profiles from both analyses were then correlated. Insulin and FXR-FGF15/19 signaling were stimulated in mouse liver after PH, leading to the activation of the main intermediary kinases (AKT and ERK). Besides, inhibition of the hippo pathway led to an increased expression of its target genes and of one of its intermediary proteins (14-3-3 protein), contributing to cell proliferation. In association with these processes, metabolic reprogramming coupled to enhanced mitochondrial activity cope for the energy and biosynthetic requirements of LR. In human serum of LDLT donors, we identified 56 proteins and 13 metabolites statistically differential which recapitulate some of the main cellular processes orchestrating LR in its early phase. These results provide mechanisms and protein mediators of LR that might prove useful for the follow-up of the regenerative process in the liver after PH as well as preventing the occurrence of complications associated with liver resection.
Collapse
Affiliation(s)
| | | | - Irene Blázquez-García
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Laura Guerrero
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Manuel A Fernández-Rojo
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies in Food, Madrid, Spain
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Iker Uriarte
- Proteobotics SL, Madrid, Spain
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Antonio Ramos
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - José Ignacio Herrero
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Maite G Fernández-Barrena
- Proteobotics SL, Madrid, Spain
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - María Arechederra
- Proteobotics SL, Madrid, Spain
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Carmen Berasain
- Proteobotics SL, Madrid, Spain
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Quiroga
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Bruno Sangro
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Josepmaría Argemi
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Fernando Pardo
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Fernando Rotellar
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Daniel López
- Thermo Fisher Scientific, San Jose, California, USA
| | - Coral Barbas
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Matías A Ávila
- Proteobotics SL, Madrid, Spain
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
10
|
Safi A, Saberiyan M, Sanaei MJ, Adelian S, Davarani Asl F, Zeinaly M, Shamsi M, Ahmadi R. The role of noncoding RNAs in metabolic reprogramming of cancer cells. Cell Mol Biol Lett 2023; 28:37. [PMID: 37161350 PMCID: PMC10169341 DOI: 10.1186/s11658-023-00447-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
Metabolic reprogramming is a well-known feature of cancer that allows malignant cells to alter metabolic reactions and nutrient uptake, thereby promoting tumor growth and spread. It has been discovered that noncoding RNAs (ncRNAs), including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), have a role in a variety of biological functions, control physiologic and developmental processes, and even influence disease. They have been recognized in numerous cancer types as tumor suppressors and oncogenic agents. The role of ncRNAs in the metabolic reprogramming of cancer cells has recently been noticed. We examine this subject, with an emphasis on the metabolism of glucose, lipids, and amino acids, and highlight the therapeutic use of targeting ncRNAs in cancer treatment.
Collapse
Affiliation(s)
- Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fateme Davarani Asl
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Mahdi Shamsi
- Department of Cell and Molecular Biology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Reza Ahmadi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh Region, Shahrekord, Iran.
| |
Collapse
|
11
|
Wang H, Hui P, Uemoto Y, Ding Y, Yin Z, Bao W. Metabolomic and Proteomic Profiling of Porcine Intestinal Epithelial Cells Infected with Porcine Epidemic Diarrhea Virus. Int J Mol Sci 2023; 24:ijms24065071. [PMID: 36982147 PMCID: PMC10049511 DOI: 10.3390/ijms24065071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection results in severe epidemic diarrhea and the death of suckling pigs. Although new knowledge about the pathogenesis of PEDV has been improved, alterations in metabolic processes and the functional regulators involved in PEDV infection with host cells remain largely unknow. To identify cellular metabolites and proteins related to PEDV pathogenesis, we synergistically investigated the metabolome and proteome profiles of PEDV-infected porcine intestinal epithelial cells by liquid chromatography tandem mass spectrometry and isobaric tags for relative and absolute quantification techniques. We identified 522 differential metabolites in positive and negative ion modes and 295 differentially expressed proteins after PEDV infection. Pathways of cysteine and methionine metabolism, glycine, serine and threonine metabolism, and mineral absorption were significantly enriched by differential metabolites and differentially expressed proteins. The betaine-homocysteine S-methyltransferase (BHMT) was indicated as a potential regulator involved in these metabolic processes. We then knocked down the BHMT gene and observed that down-expression of BHMT obviously decreased copy numbers of PEDV and virus titers (p < 0.01). Our findings provide new insights into the metabolic and proteomic profiles in PEDV-infected host cells and contribute to our further understanding of PEDV pathogenesis.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Peng Hui
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yoshinobu Uemoto
- Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Z.Y.); (W.B.)
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.Y.); (W.B.)
| |
Collapse
|
12
|
Berasain C, Arechederra M, Argemí J, Fernández-Barrena MG, Avila MA. Loss of liver function in chronic liver disease: An identity crisis. J Hepatol 2023; 78:401-414. [PMID: 36115636 DOI: 10.1016/j.jhep.2022.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Adult hepatocyte identity is constructed throughout embryonic development and fine-tuned after birth. A multinodular network of transcription factors, along with pre-mRNA splicing regulators, define the transcriptome, which encodes the proteins needed to perform the complex metabolic and secretory functions of the mature liver. Transient hepatocellular dedifferentiation can occur as part of the regenerative mechanisms triggered in response to acute liver injury. However, persistent downregulation of key identity genes is now accepted as a strong determinant of organ dysfunction in chronic liver disease, a major global health burden. Therefore, the identification of core transcription factors and splicing regulators that preserve hepatocellular phenotype, and a thorough understanding of how these networks become disrupted in diseased hepatocytes, is of high clinical relevance. In this context, we review the key players in liver differentiation and discuss in detail critical factors, such as HNF4α, whose impairment mediates the breakdown of liver function. Moreover, we present compelling experimental evidence demonstrating that restoration of core transcription factor expression in a chronically injured liver can reset hepatocellular identity, improve function and ameliorate structural abnormalities. The possibility of correcting the phenotype of severely damaged and malfunctional livers may reveal new therapeutic opportunities for individuals with cirrhosis and advanced liver disease.
Collapse
Affiliation(s)
- Carmen Berasain
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| | - Maria Arechederra
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Josepmaria Argemí
- Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain; Liver Unit, Clinica Universidad de Navarra, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Matías A Avila
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| |
Collapse
|
13
|
Oh S, Jo S, Kim HS, Mai VH, Endaya B, Neuzil J, Jung KH, Hong SS, Kim JM, Park S. Chemical Biopsy for GNMT as Noninvasive and Tumorigenesis-Relevant Diagnosis of Liver Cancer. Anal Chem 2023; 95:1184-1192. [PMID: 36602057 DOI: 10.1021/acs.analchem.2c03944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Early diagnosis of hepatocellular carcinoma (HCC) is difficult; the lack of convenient biomarker-based diagnostic modalities renders high-risk HCC patients burdened by life-long periodical examinations. Here, a new chemical biopsy approach was developed for noninvasive diagnosis of HCC using urine samples. Bioinformatic screening for tumor suppressors yielded glycine N-methyltransferase (GNMT) as a biomarker with clinical relevance to HCC tumorigenesis. A liquid chromatography-mass spectrometry (LC-MS)-based chemical biopsy detecting nonradioactive 13C-sarcosine from 13C-glycine was designed to noninvasively assess liver GNMT activity extrahepatically. 13C-Sarcosine showed a strong correlation with GNMT in normal and cancerous liver cells. In an autochthonous animal model developing visible cancer nodules at 17 weeks, the urinary 13C-sarcosine chemical biopsy exhibited notable changes as early as 8 weeks, showing significant correlations with liver GNMT and molecular pathological changes. Our chemical biopsy approach should facilitate early and noninvasive diagnosis of HCC, with direct relevance to tumorigenesis, which can be straightforwardly applied to other diseases.
Collapse
Affiliation(s)
- Sehyun Oh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Sihyang Jo
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Han Sun Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Van-Hieu Mai
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Berwini Endaya
- School of Pharmacy and Medical Science, Griffith University, Southport 4222, Qld, Australia
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport 4222, Qld, Australia.,Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic.,Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Jin-Mo Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Sunghyouk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
14
|
Adekunle AD, Adejumo A, Singal AK. Therapeutic targets in alcohol-associated liver disease: progress and challenges. Therap Adv Gastroenterol 2023; 16:17562848231170946. [PMID: 37187673 PMCID: PMC10176580 DOI: 10.1177/17562848231170946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is a complex disease with rapidly increasing prevalence. Although there are promising therapeutic targets on the horizon, none of the newer targets is currently close to an Food and Drug Administration approval. Strategies are needed to overcome challenges in study designs and conducting clinical trials and provide impetus to the field of drug development in the landscape of ALD and alcoholic hepatitis. Management of ALD is complex and should include therapies to achieve and maintain alcohol abstinence, preferably delivered by a multidisciplinary team. Although associated with clear mortality benefit in select patients, the use of early liver transplantation still requires refinement to create uniformity in selection protocols across transplant centers. There is also a need for reliable noninvasive biomarkers for prognostication. Last but not the least, strategies are urgently needed to implement integrated multidisciplinary care models for treating the dual pathology of alcohol use disorder and of liver disease for improving the long-term outcomes of patients with ALD.
Collapse
Affiliation(s)
- Ayooluwatomiwa Deborah Adekunle
- Department of Internal Medicine, St. Luke’s
Hospital, Chesterfield, Missouri, USA
- Division of Hepatology, University of
Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Transplant Hepatology, University
of South Dakota Sanford Medical School, Sioux Falls, SD
| | - Adeyinka Adejumo
- Department of Internal Medicine, St. Luke’s
Hospital, Chesterfield, Missouri, USA
- Division of Hepatology, University of
Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Transplant Hepatology, University
of South Dakota Sanford Medical School, Sioux Falls, SD
| | | |
Collapse
|
15
|
Guha S, Sesili S, Mir IH, Thirunavukkarasu C. Epigenetics and mitochondrial dysfunction insights into the impact of the progression of non-alcoholic fatty liver disease. Cell Biochem Funct 2023; 41:4-19. [PMID: 36330539 DOI: 10.1002/cbf.3763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
A metabolic problem occurs when regular functions of the body are disrupted due to an undesirable imbalance. Nonalcoholic fatty liver disease (NAFLD) is considered as one of the most common in this category. NAFLD is subclassified and progresses from lipid accumulation to cirrhosis before advancing to hepatocellular cancer. In spite of being a critical concern, the standard treatment is inadequate. Metformin, silymarin, and other nonspecific medications are used in the management of NAFLD. Aside from this available medicine, maintaining a healthy lifestyle has been emphasized as a means of combating this. Epigenetics, which has been attributed to NAFLD, is another essential feature of this disease that has emerged as a result of several sorts of research. The mechanisms by which DNA methylation, noncoding RNA, and histone modification promote NAFLD have been extensively researched. Another organelle, mitochondria, which play a pivotal role in biological processes, contributes to the global threat. Individuals with NAFLD have been documented to have a multitude of alterations and malfunctioning. Mitochondria are mainly concerned with the process of energy production and regulation of the signaling pathway on which the fate of a cell relies. Modulation of mitochondria leads to elevated lipid deposition in the liver. Further, changes in oxidation states result in an impaired balance between the antioxidant system and reactive oxygen species directly linked to mitochondria. Hence mitochondria have a definite role in potentiating NAFLD. In this regard, it is essential to consider the role of epigenetics as well as mitochondrial contribution while developing a medication or therapy with the desired accuracy.
Collapse
Affiliation(s)
- Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Selvam Sesili
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
16
|
Zhang X, Liu T, Hou X, Hu C, Zhang L, Wang S, Zhang Q, Shi K. Multi-Channel Metabolomics Analysis Identifies Novel Metabolite Biomarkers for the Early Detection of Fatty Liver Disease in Dairy Cows. Cells 2022; 11:cells11182883. [PMID: 36139459 PMCID: PMC9496829 DOI: 10.3390/cells11182883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Fatty liver disease, a type of metabolic disorder, frequently occurs in dairy cows during the parturition period, causing a high culling rate and, therefore, considerable economic losses in the dairy industry owing to the lack of effective diagnostic methods. Here, metabolite biomarkers were identified and validated for the diagnosis of metabolic disorders. A total of 58 participant cows, including severe fatty liver disease and normal control groups, in the discovery set (liver biopsy tested, n = 18), test set (suspected, n = 20) and verification set (liver biopsy tested, n = 20), were strictly recruited and a sample collected for their feces, urine, and serum. Non-targeted GC-MS-based metabolomics methods were used to characterize the metabolite profiles and to screen in the discovery set. Eventually, ten novel biomarkers involved in bile acid, amino acid, and fatty acid were identified and validated in the test set. Each of them had a higher diagnostic ability than the traditional serum biochemical indicators, with an average area under the receiver operating characteristic curve of 0.830 ± 0.0439 (n = 10) versus 0.377 ± 0.182 (n = 9). Especially, combined biomarker panels via different metabolic pipelines had much better diagnostic sensitivity and specificity than every single biomarker, suggesting their powerful utilization potentiality for the early detection of fatty liver disease. Intriguingly, the serum biomarkers were confirmed perfectly in the verification set. Moreover, common biological pathways were found to be underlying the pathogenesis of fatty liver syndrome in cattle via different metabolic pipelines. These newly-discovered and non-invasive metabolic biomarkers are meaningful in reducing the high culling rate of cows and, therefore, benefit the sustainable development of the dairy industry.
Collapse
|
17
|
Yang PW, Jiao JY, Chen Z, Zhu XY, Cheng CS. Keep a watchful eye on methionine adenosyltransferases, novel therapeutic opportunities for hepatobiliary and pancreatic tumours. Biochim Biophys Acta Rev Cancer 2022; 1877:188793. [PMID: 36089205 DOI: 10.1016/j.bbcan.2022.188793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Methionine adenosyltransferases (MATs) synthesize S-adenosylmethionine (SAM) from methionine, which provides methyl groups for DNA, RNA, protein, and lipid methylation. MATs play a critical role in cellular processes, including growth, proliferation, and differentiation, and have been implicated in tumour development and progression. The expression of MATs is altered in hepatobiliary and pancreatic (HBP) cancers, which serves as a rare biomarker for early diagnosis and prognosis prediction of HBP cancers. Independent of SAM depletion in cells, MATs are often dysregulated at the transcriptional, post-transcriptional, and post-translational levels. Dysregulation of MATs is involved in carcinogenesis, chemotherapy resistance, T cell exhaustion, activation of tumour-associated macrophages, cancer stemness, and activation of tumourigenic pathways. Targeting MATs both directly and indirectly is a potential therapeutic strategy. This review summarizes the dysregulations of MATs, their proposed mechanism, diagnostic and prognostic roles, and potential therapeutic effects in context of HBP cancers.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ju-Ying Jiao
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Zhu
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Raggi C, Taddei ML, Rae C, Braconi C, Marra F. Metabolic reprogramming in cholangiocarcinoma. J Hepatol 2022; 77:849-864. [PMID: 35594992 DOI: 10.1016/j.jhep.2022.04.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer and allows tumour cells to meet the increased energy demands required for rapid proliferation, invasion, and metastasis. Indeed, many tumour cells acquire distinctive metabolic and bioenergetic features that enable them to survive in resource-limited conditions, mainly by harnessing alternative nutrients. Several recent studies have explored the metabolic plasticity of cancer cells with the aim of identifying new druggable targets, while therapeutic strategies to limit the access to nutrients have been successfully applied to the treatment of some tumours. Cholangiocarcinoma (CCA), a highly heterogeneous tumour, is the second most common form of primary liver cancer. It is characterised by resistance to chemotherapy and poor prognosis, with 5-year survival rates of below 20%. Deregulation of metabolic pathways have been described during the onset and progression of CCA. Increased aerobic glycolysis and glutamine anaplerosis provide CCA cells with the ability to generate biosynthetic intermediates. Other metabolic alterations involving carbohydrates, amino acids and lipids have been shown to sustain cancer cell growth and dissemination. In this review, we discuss the complex metabolic rewiring that occurs during CCA development and leads to unique nutrient addiction. The possible role of therapeutic interventions based on metabolic changes is also thoroughly discussed.
Collapse
Affiliation(s)
- Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Colin Rae
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, United Kingdom
| | - Chiara Braconi
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, United Kingdom; Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
19
|
Guerrero L, Paradela A, Corrales FJ. Targeted Proteomics for Monitoring One-Carbon Metabolism in Liver Diseases. Metabolites 2022; 12:779. [PMID: 36144184 PMCID: PMC9501948 DOI: 10.3390/metabo12090779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Liver diseases cause approximately 2 million deaths per year worldwide and had an increasing incidence during the last decade. Risk factors for liver diseases include alcohol consumption, obesity, diabetes, the intake of hepatotoxic substances like aflatoxin, viral infection, and genetic determinants. Liver cancer is the sixth most prevalent cancer and the third in mortality (second in males). The low survival rate (less than 20% in 5 years) is partially explained by the late diagnosis, which remarks the need for new early molecular biomarkers. One-carbon metabolism integrates folate and methionine cycles and participates in essential cell processes such as redox homeostasis maintenance and the regulation of methylation reactions through the production of intermediate metabolites such as cysteine and S-Adenosylmethionine. One-carbon metabolism has a tissue specific configuration, and in the liver, the participating enzymes are abundantly expressed-a requirement to maintain hepatocyte differentiation. Targeted proteomics studies have revealed significant differences in hepatocellular carcinoma and cirrhosis, suggesting that monitoring one-carbon metabolism enzymes can be useful for stratification of liver disease patients and to develop precision medicine strategies for their clinical management. Here, reprogramming of one-carbon metabolism in liver diseases is described and the role of mass spectrometry to follow-up these alterations is discussed.
Collapse
Affiliation(s)
- Laura Guerrero
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Fernando J. Corrales
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| |
Collapse
|
20
|
Li M, Song X, Jin Q, Chen Y, Zhang J, Gao J, Cen L, Lin Y, Xu C, He X, Li Y, Yu C. 3-Mercaptopyruvate sulfurtransferase represses tumour progression and predicts prognosis in hepatocellular carcinoma. Liver Int 2022; 42:1173-1184. [PMID: 35243746 DOI: 10.1111/liv.15228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS: The prognosis of hepatocellular carcinoma (HCC) remains dismal, and its molecular pathogenesis has not been completely defined. The enzyme 3-mercaptopyruvate sulfurtransferase (MPST) regulates endogenous hydrogen sulfide (H2 S) biosynthesis. However, the role of MPST in HCC has never been intensively investigated. METHODS MPST protein expression was analysed in HCC tumour tissues and matched adjacent tissues. The effect of MPST on HCC progression was studied in vitro and in vivo. RESULTS The mRNA and protein expression of MPST was significantly downregulated in HCC samples compared with their paired nontumour counterparts. A low MPST expression was associated with larger tumour size and a worse overall survival. Overexpression of MPST in HCC cells inhibited cell proliferation and induced apoptosis. MPST overexpression also significantly suppressed the growth of tumour xenografts in nude mice, whereas silencing MPST by intratumour delivery of siRNA substantially promoted tumour growth. Moreover, diethylnitrosamine-induced mouse HCC was aggravated by MPST gene knockout. Mechanistically, MPST suppressed the cell cycle associated with H2 S production and inhibition of the AKT/FOXO3a/Rb signalling pathway in HCC development. In addition, MPST expression negatively correlated with that of pRb in HCC specimens and the combination of these two parameters is a more powerful predictor of poor prognosis. CONCLUSIONS MPST may function as a tumour suppressor gene that plays an essential role in HCC proliferation and liver tumorigenesis. It is a candidate predictor of clinical outcome in patients with HCC and may be used as a biomarker and intervention target for new therapeutic strategies.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xin Song
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Qi Jin
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yishu Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jianguo Gao
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Li Cen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yiming Lin
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xinjue He
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
21
|
Rodríguez-Agudo R, Goikoetxea-Usandizaga N, Serrano-Maciá M, Fernández-Tussy P, Fernández-Ramos D, Lachiondo-Ortega S, González-Recio I, Gil-Pitarch C, Mercado-Gómez M, Morán L, Bizkarguenaga M, Lopitz-Otsoa F, Petrov P, Bravo M, Van Liempd SM, Falcon-Perez JM, Zabala-Letona A, Carracedo A, Castell JV, Jover R, Martínez-Cruz LA, Delgado TC, Cubero FJ, Lucena MI, Andrade RJ, Mabe J, Simón J, Martínez-Chantar ML. Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen. Antioxidants (Basel) 2022; 11:897. [PMID: 35624761 PMCID: PMC9137496 DOI: 10.3390/antiox11050897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.
Collapse
Affiliation(s)
- Rubén Rodríguez-Agudo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Marina Serrano-Maciá
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Pablo Fernández-Tussy
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - David Fernández-Ramos
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Clàudia Gil-Pitarch
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - María Mercado-Gómez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - Maider Bizkarguenaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Petar Petrov
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Miren Bravo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Sebastiaan Martijn Van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
| | - Juan Manuel Falcon-Perez
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
| | - Amaia Zabala-Letona
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Arkaitz Carracedo
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
- Traslational prostate cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Research Health Institute, 48903 Barakaldo, Spain
| | - Jose Vicente Castell
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Teresa Cardoso Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - María Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga—IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
- UICEC IBIMA, Plataforma ISCiii de Investigación Clínica, 28020 Madrid, Spain
| | - Raúl Jesús Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
| | - Jon Mabe
- IK4-Tekniker, 20600 Eibar, Spain;
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| |
Collapse
|
22
|
Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications. Biochem Pharmacol 2022; 200:115033. [PMID: 35395242 DOI: 10.1016/j.bcp.2022.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
As a chronic metabolic disease affecting epidemic proportions worldwide, the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD) is not clear yet. There is also a lack of precise biomarkers and specific medicine for the diagnosis and treatment of NAFLD. Methionine metabolic cycle, which is critical for the maintaining of cellular methylation and redox state, is involved in the pathophysiology of NAFLD. However, the molecular basis and mechanism of methionine metabolism in NAFLD are not completely understood. Here, we mainly focus on specific enzymes that participates in methionine cycle, to reveal their interconnections with NAFLD, in order to recognize the pathogenesis of NAFLD from a new angle and at the same time, explore the clinical characteristics and therapeutic strategies.
Collapse
Affiliation(s)
- Haoyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| |
Collapse
|
23
|
Untargeted Metabolomics Showed Accumulation of One-Carbon Metabolites to Facilitate DNA Methylation during Extracellular Matrix Detachment of Cancer Cells. Metabolites 2022; 12:metabo12030267. [PMID: 35323710 PMCID: PMC8951017 DOI: 10.3390/metabo12030267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor cells detached from the extracellular matrix (ECM) undergo anoikis resistance and metabolic reprogramming to facilitate cancer cell survival and promote metastasis. During ECM detachment, cancer cells utilize genomic methylation to regulate transcriptional events. One-carbon (1C) metabolism is a well-known contributor of SAM, a global substrate for methylation reactions, especially DNA methylation. DNA methylation-mediated repression of NK cell ligands MICA and MICB during ECM detachment has been overlooked. In the current work, we quantitated the impact of ECM detachment on one-carbon metabolites, expression of 1C regulatory pathway genes, and total methylation levels. Our results showed that ECM detachment promotes the accumulation of one-carbon metabolites and induces regulatory pathway genes and total DNA methylation. Furthermore, we measured the expression of well-known targets of DNA methylation in NK cell ligands in cancer cells, namely, MICA/B, during ECM detachment and observed low expression compared to ECM-attached cancer cells. Finally, we treated the ECM-detached cancer cells with vitamin C (a global methylation inhibitor) and observed a reduction in the promoter methylation of NK cell ligands, resulting in MICA/B re-expression. Treatment with vitamin C was also found to reduce global DNA methylation levels in ECM-detached cancer cells.
Collapse
|
24
|
Balakrishnan R, Mohammed V, Veerabathiran R. The role of genetic mutation in alcoholic liver disease. EGYPTIAN LIVER JOURNAL 2022; 12:14. [DOI: 10.1186/s43066-022-00175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alcoholic liver disease (ALD) is the world’s most common type of liver disease caused due to overconsumption of alcohol. The liver supports the best level of tissue damage by hefty drinking since it is the binding site of ethanol digestion. This disease can progress to alcoholic steatohepatitis from alcoholic fatty liver, which implies steatosis has become the most punctual reaction to hefty drinking and is portrayed by the deposition of fat hepatocytes. In addition, steatosis can advance to steatohepatitis, a more extreme, provocative sort of liver damage described by hepatic inflammation. Constant and unnecessary liquor utilization delivers a wide range of hepatic sores, fibrosis and cirrhosis, and sometimes hepatocellular carcinoma. Most people consuming > 40 g of liquor each day create alcoholic fatty liver (AFL); notwithstanding, just a subset of people will grow further developed infection. Hereditary, epigenetic, and non-hereditary components may clarify the impressive interindividual variety in the ALD phenotype.
Main body
This systematic review is to classify new candidate genes associated with alcoholic liver disorders, such as RASGRF2, ALDH2, NFE2L2, ADH1B, PNPLA3, DRD2, MTHFR, TM6SF2, IL1B, and CYP2E1, MBOAT7 as well as to revise the functions of each gene in its polymorphic sequence. The information obtained from the previously published articles revealed the crucial relationship between the genes and ALD and discussed each selected gene’s mechanism.
Conclusion
The aim of this review is to highlight the candidate genes associated with the ALD, and the evidence of this study is to deliberate the part of genetic alterations and modifications that can serve as an excellent biological maker, risk predictors, and therapeutic targets for this disease.
Collapse
|
25
|
Rome FI, Hughey CC. Disrupted Liver Oxidative Metabolism in Glycine N-Methyltransferase-Deficient Mice is Mitigated by Dietary Methionine Restriction. Mol Metab 2022; 58:101452. [PMID: 35121169 PMCID: PMC8866067 DOI: 10.1016/j.molmet.2022.101452] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
|
26
|
Pascale RM, Simile MM, Calvisi DF, Feo CF, Feo F. S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent. Cells 2022; 11:409. [PMID: 35159219 PMCID: PMC8834208 DOI: 10.3390/cells11030409] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFNα/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Maria M. Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Diego F. Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Claudio F. Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| |
Collapse
|
27
|
Budelmann D, Laue H, Weiss N, Dahmen U, D’Alessandro LA, Biermayer I, Klingmüller U, Ghallab A, Hassan R, Begher-Tibbe B, Hengstler JG, Schwen LO. Automated Detection of Portal Fields and Central Veins in Whole-Slide Images of Liver Tissue. J Pathol Inform 2022; 13:100001. [PMID: 35242441 PMCID: PMC8860737 DOI: 10.1016/j.jpi.2022.100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Many physiological processes and pathological phenomena in the liver tissue are spatially heterogeneous. At a local scale, biomarkers can be quantified along the axis of the blood flow, from portal fields (PFs) to central veins (CVs), i.e., in zonated form. This requires detecting PFs and CVs. However, manually annotating these structures in multiple whole-slide images is a tedious task. We describe and evaluate a fully automated method, based on a convolutional neural network, for simultaneously detecting PFs and CVs in a single stained section. Trained on scans of hematoxylin and eosin-stained liver tissue, the detector performed well with an F1 score of 0.81 compared to annotation by a human expert. It does, however, not generalize well to previously unseen scans of steatotic liver tissue with an F1 score of 0.59. Automated PF and CV detection eliminates the bottleneck of manual annotation for subsequent automated analyses, as illustrated by two proof-of-concept applications: We computed lobulus sizes based on the detected PF and CV positions, where results agreed with published lobulus sizes. Moreover, we demonstrate the feasibility of zonated quantification of biomarkers detected in different stainings based on lobuli and zones obtained from the detected PF and CV positions. A negative control (hematoxylin and eosin) showed the expected homogeneity, a positive control (glutamine synthetase) was quantified to be strictly pericentral, and a plausible zonation for a heterogeneous F4/80 staining was obtained. Automated detection of PFs and CVs is one building block for automatically quantifying physiologically relevant heterogeneity of liver tissue biomarkers. Perspectively, a more robust and automated assessment of zonation from whole-slide images will be valuable for parameterizing spatially resolved models of liver metabolism and to provide diagnostic information.
Collapse
Affiliation(s)
| | | | | | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Lorenza A. D’Alessandro
- Deutsches Krebsforschungszentrum, Systems Biology of Signal Transduction, Heidelberg, Germany
| | - Ina Biermayer
- Deutsches Krebsforschungszentrum, Systems Biology of Signal Transduction, Heidelberg, Germany
| | - Ursula Klingmüller
- Deutsches Krebsforschungszentrum, Systems Biology of Signal Transduction, Heidelberg, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | | |
Collapse
|
28
|
Mansour SM, Ibrahim RYM. Zofenopril antitumor activity in mice bearing Ehrlich solid carcinoma: Modulation of PI3K/AKT signaling pathway. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Loftus JP, Miller AJ, Center SA, Peters‐Kennedy J, Astor M. Treatment and outcomes of dogs with hepatocutaneous syndrome or hepatocutaneous-associated hepatopathy. J Vet Intern Med 2022; 36:106-115. [PMID: 34820906 PMCID: PMC8783367 DOI: 10.1111/jvim.16323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Superficial necrolytic dermatitis (SND) in dogs is a rare disorder most commonly associated with hepatocutaneous syndrome. Although often reported as fatal, sporadically reported long-term remissions might be more common than previously believed and linked to treatment regimens. HYPOTHESIS/OBJECTIVES Evaluate treatments and associated outcomes in dogs with hepatocutaneous-associated hepatopathy (HCH) with or without SND, designated collectively aminoaciduric canine hypoaminoacidemic hepatopathy syndrome (ACHES). ANIMALS Forty-one dogs of various breeds and ages diagnosed with ACHES. METHODS Retrospective study. Electronic surveys, medical records (2014-2019), and communication with veterinarians provided data. Three treatment categories were each dichotomized: IV amino acid (IV-AA) infusions (≥2 vs <2), supplements including S-adenosylmethionine (SAMe), arginine with ornithine, glutathione, lysine, proline, omega-3 fatty acids, or zinc (≥3 vs <3), and diet type (home-cooked vs commercial). Optimal treatment was defined as receiving ≥2 IV-AA treatments, ≥3 nutritional supplements, and a home-cooked diet. RESULTS Most dogs (29/41, 71%) received IV-AA infusions (23/29, ≥2 infusions). Twenty-one dogs (51%) were fed commercial diets; 17/41 (41%) were fed home-cooked diets. Most dogs received SAMe (32/41, 78%) and a median of 3 supplements. In 4 dogs, HCH remission occurred. Overall all-cause median survival time (MST) was 359 days, and disease-specific MST was 557 days (range, 1-1783 days). Optimally treated dogs (n = 9) lived significantly longer (MST, >1783 days, P = .02) than variably treated dogs (MST, 214 days). CONCLUSIONS AND CLINICAL IMPORTANCE Optimized ACHES management can resolve SND and HCH and confer long-term survival.
Collapse
Affiliation(s)
- John P. Loftus
- Department of Clinical SciencesCornell University, College of Veterinary MedicineIthacaNew YorkUSA
| | - Adam J. Miller
- Department of Clinical SciencesCornell University, College of Veterinary MedicineIthacaNew YorkUSA
- Present address:
Northstar Vets315 Robbinsville‐Allentown Road, RobbinsvilleNew JerseyUSA
| | - Sharon A. Center
- Department of Clinical SciencesCornell University, College of Veterinary MedicineIthacaNew YorkUSA
| | - Jeanine Peters‐Kennedy
- Department of Clinical SciencesCornell University, College of Veterinary MedicineIthacaNew YorkUSA
- Department of Biomedical SciencesCornell University, College of Veterinary MedicineIthacaNew YorkUSA
| | - Michael Astor
- Department of Clinical SciencesCornell University, College of Veterinary MedicineIthacaNew YorkUSA
| |
Collapse
|
30
|
Simile MM, Cigliano A, Paliogiannis P, Daino L, Manetti R, Feo CF, Calvisi DF, Feo F, Pascale RM. Nuclear localization dictates hepatocarcinogenesis suppression by glycine N-methyltransferase. Transl Oncol 2022; 15:101239. [PMID: 34649149 PMCID: PMC8517931 DOI: 10.1016/j.tranon.2021.101239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND GNMT (glycine N-methyltransferase) is a tumor suppressor gene, but the mechanisms mediating its suppressive activity are not entirely known. METHODS We investigated the oncosuppressive mechanisms of GNMT in human hepatocellular carcinoma (HCC). GNMT mRNA and protein levels were evaluated by quantitative RT-PCR and immunoblotting. GNMT effect in HCC cell lines was modulated through GNMT cDNA induced overexpression or anti-GNMT siRNA transfection. RESULTS GNMT was expressed at low level in human HCCs with a better prognosis (HCCB) while it was almost absent in fast-growing tumors (HCCP). In HCCB, the nuclear localization of the GNMT protein was much more pronounced than in HCCP. In Huh7 and HepG2 cell lines, GNMT forced expression inhibited the proliferation and promoted apoptosis. At the molecular level, GNMT overexpression inhibited the expression of CYP1A (Cytochrome p450, aromatic compound-inducible), PREX2 (Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2), PARP1 [Poly (ADP-ribose) polymerase 1], and NFKB (nuclear factor-kB) genes. By chromatin immunoprecipitation, we found GNMT binding to the promoters of CYP1A1, PREX2, PARP1, and NFKB genes resulting in their strong inhibition. These genes are implicated in hepatocarcinogenesis, and are involved in the GNMT oncosuppressive action. CONCLUSION Overall, the present data indicate that GNMT exerts a multifaceted suppressive action by interacting with various cancer-related genes and inhibiting their expression.
Collapse
Affiliation(s)
- Maria M Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, Italy.
| | - Antonio Cigliano
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, Italy
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, Italy
| | - Lucia Daino
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, Italy.
| | - Roberto Manetti
- Department of Medical, Surgical and Experimental Medicine, Medical Division, Italy
| | - Claudio F Feo
- Department of Medical, Surgical and Experimental Medicine, Division of Surgery, Italy.
| | - Diego F Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, Italy.
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, Italy.
| | - Rosa M Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, Italy.
| |
Collapse
|
31
|
Gade M, Tan LL, Damry AM, Sandhu M, Brock JS, Delaney A, Villar-Briones A, Jackson CJ, Laurino P. Substrate Dynamics Contribute to Enzymatic Specificity in Human and Bacterial Methionine Adenosyltransferases. JACS AU 2021; 1:2349-2360. [PMID: 34977903 PMCID: PMC8715544 DOI: 10.1021/jacsau.1c00464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 05/14/2023]
Abstract
Protein conformational changes can facilitate the binding of noncognate substrates and underlying promiscuous activities. However, the contribution of substrate conformational dynamics to this process is comparatively poorly understood. Here, we analyze human (hMAT2A) and Escherichia coli (eMAT) methionine adenosyltransferases that have identical active sites but different substrate specificity. In the promiscuous hMAT2A, noncognate substrates bind in a stable conformation to allow catalysis. In contrast, noncognate substrates sample stable productive binding modes less frequently in eMAT owing to altered mobility in the enzyme active site. Different cellular concentrations of substrates likely drove the evolutionary divergence of substrate specificity in these orthologues. The observation of catalytic promiscuity in hMAT2A led to the detection of a new human metabolite, methyl thioguanosine, that is produced at elevated levels in a cancer cell line. This work establishes that identical active sites can result in different substrate specificity owing to the effects of substrate and enzyme dynamics.
Collapse
Affiliation(s)
- Madhuri Gade
- Protein
Engineering and Evolution Unit, Okinawa
Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna 904-0495, Okinawa, Japan
| | - Li Lynn Tan
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Adam M. Damry
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Mahakaran Sandhu
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Joseph S. Brock
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | - Andie Delaney
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Alejandro Villar-Briones
- Protein
Engineering and Evolution Unit, Okinawa
Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna 904-0495, Okinawa, Japan
| | - Colin J. Jackson
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Research School of Chemistry, Australian National University, Canberra 2601, ACT, Australia
- Australian
Research Council Centre of Excellence in Synthetic Biology, Research
School of Chemistry, Australian National
University, Canberra 2601, ACT, Australia
| | - Paola Laurino
- Protein
Engineering and Evolution Unit, Okinawa
Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna 904-0495, Okinawa, Japan
| |
Collapse
|
32
|
Gallon J, Coto-Llerena M, Ercan C, Bianco G, Paradiso V, Nuciforo S, Taha-Melitz S, Meier MA, Boldanova T, Pérez-Del-Pulgar S, Rodríguez-Tajes S, von Flüe M, Soysal SD, Kollmar O, Llovet JM, Villanueva A, Terracciano LM, Heim MH, Ng CKY, Piscuoglio S. Epigenetic priming in chronic liver disease impacts the transcriptional and genetic landscapes of hepatocellular carcinoma. Mol Oncol 2021; 16:665-682. [PMID: 34863035 PMCID: PMC8807355 DOI: 10.1002/1878-0261.13154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/18/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinomas (HCCs) usually arise from chronic liver disease (CLD). Precancerous cells in chronically inflamed environments may be 'epigenetically primed', sensitising them to oncogenic transformation. We investigated whether epigenetic priming in CLD may affect HCC outcomes by influencing the genomic and transcriptomic landscapes of HCC. Analysis of DNA methylation arrays from 10 paired CLD-HCC identified 339 shared dysregulated CpG sites and 18 shared differentially methylated regions compared with healthy livers. These regions were associated with dysregulated expression of genes with relevance in HCC, including ubiquitin D (UBD), cytochrome P450 family 2 subfamily C member 19 (CYP2C19) and O-6-methylguanine-DNA methyltransferase (MGMT). Methylation changes were recapitulated in an independent cohort of nine paired CLD-HCC. High CLD methylation score, defined using the 124 dysregulated CpGs in CLD and HCC in both cohorts, was associated with poor survival, increased somatic genetic alterations and TP53 mutations in two independent HCC cohorts. Oncogenic transcriptional and methylation dysregulation is evident in CLD and compounded in HCC. Epigenetic priming in CLD sculpts the transcriptional landscape of HCC and creates an environment favouring the acquisition of genetic alterations, suggesting that the extent of epigenetic priming in CLD could influence disease outcome.
Collapse
Affiliation(s)
- John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, Switzerland
| | - Gaia Bianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Switzerland
| | - Viola Paradiso
- Institute of Medical Genetics and Pathology, University Hospital Basel, Switzerland
| | - Sandro Nuciforo
- Hepatology Laboratory, Department of Biomedicine, University of Basel, Switzerland
| | - Stephanie Taha-Melitz
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Marie-Anne Meier
- Hepatology Laboratory, Department of Biomedicine, University of Basel, Switzerland
| | - Tujana Boldanova
- Hepatology Laboratory, Department of Biomedicine, University of Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | | | | | - Markus von Flüe
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Savas D Soysal
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Otto Kollmar
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Josep M Llovet
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Spain.,Liver Cancer Program, Divisions of Liver Diseases and Hematology/Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Augusto Villanueva
- Liver Cancer Program, Divisions of Liver Diseases and Hematology/Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luigi M Terracciano
- Department of Pathology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Markus H Heim
- Hepatology Laboratory, Department of Biomedicine, University of Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Charlotte K Y Ng
- Department for BioMedical Research, University of Bern, Switzerland.,SIB, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Switzerland
| |
Collapse
|
33
|
Gárate-Rascón M, Recalde M, Jimenez M, Elizalde M, Azkona M, Uriarte I, Latasa MU, Urtasun R, Bilbao I, Sangro B, Garcia-Ruiz C, Fernandez-Checa JC, Corrales FJ, Esquivel A, Pineda-Lucena A, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. Splicing Factor SLU7 Prevents Oxidative Stress-Mediated Hepatocyte Nuclear Factor 4α Degradation, Preserving Hepatic Differentiation and Protecting From Liver Damage. Hepatology 2021; 74:2791-2807. [PMID: 34170569 DOI: 10.1002/hep.32029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular dedifferentiation is emerging as an important determinant in liver disease progression. Preservation of mature hepatocyte identity relies on a set of key genes, predominantly the transcription factor hepatocyte nuclear factor 4α (HNF4α) but also splicing factors like SLU7. How these factors interact and become dysregulated and the impact of their impairment in driving liver disease are not fully understood. APPROACH AND RESULTS Expression of SLU7 and that of the adult and oncofetal isoforms of HNF4α, driven by its promoter 1 (P1) and P2, respectively, was studied in diseased human and mouse livers. Hepatic function and damage response were analyzed in wild-type and Slu7-haploinsufficient/heterozygous (Slu7+/- ) mice undergoing chronic (CCl4 ) and acute (acetaminophen) injury. SLU7 expression was restored in CCl4 -injured mice using SLU7-expressing adeno-associated viruses (AAV-SLU7). The hepatocellular SLU7 interactome was characterized by mass spectrometry. Reduced SLU7 expression in human and mouse diseased livers correlated with a switch in HNF4α P1 to P2 usage. This response was reproduced in Slu7+/- mice, which displayed increased sensitivity to chronic and acute liver injury, enhanced oxidative stress, and marked impairment of hepatic functions. AAV-SLU7 infection prevented liver injury and hepatocellular dedifferentiation. Mechanistically we demonstrate a unique role for SLU7 in the preservation of HNF4α1 protein stability through its capacity to protect the liver against oxidative stress. SLU7 is herein identified as a key component of the stress granule proteome, an essential part of the cell's antioxidant machinery. CONCLUSIONS Our results place SLU7 at the highest level of hepatocellular identity control, identifying SLU7 as a link between stress-protective mechanisms and liver differentiation. These findings emphasize the importance of the preservation of hepatic functions in the protection from liver injury.
Collapse
Affiliation(s)
| | - Miriam Recalde
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Maddalen Jimenez
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - María Elizalde
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - María Azkona
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Uxue Latasa
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Raquel Urtasun
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Idoia Bilbao
- Hepatology Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Unit, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Carmen Garcia-Ruiz
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - José C Fernandez-Checa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Fernando J Corrales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Functional Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Argitxu Esquivel
- Molecular Therapeutics Program, CIMA, University of Navarra, Pamplona, Spain
| | | | - Maite G Fernández-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - María Arechederra
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| |
Collapse
|
34
|
Espina S, Gonzalez-Irazabal Y, Sanz-Paris A, Lopez-Yus M, Garcia-Sobreviela MP, del Moral-Bergos R, Garcia-Rodriguez B, Fuentes-Olmo J, Bernal-Monterde V, Arbones-Mainar JM. Amino Acid Profile in Malnourished Patients with Liver Cirrhosis and Its Modification with Oral Nutritional Supplements: Implications on Minimal Hepatic Encephalopathy. Nutrients 2021; 13:nu13113764. [PMID: 34836020 PMCID: PMC8617874 DOI: 10.3390/nu13113764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Low plasma levels of branched chain amino acids (BCAA) in liver cirrhosis are associated with hepatic encephalopathy (HE). We aimed to identify a metabolic signature of minimal hepatic encephalopathy (MHE) in malnourished cirrhotic patients and evaluate its modification with oral nutritional supplements (ONS) enriched with ß-Hydroxy-ß-methylbutyrate (HMB), a derivative of the BCAA leucine. Post hoc analysis was conducted on a double-blind placebo-controlled trial of 43 individuals with cirrhosis and malnutrition, who were randomized to receive, for 12 weeks, oral supplementation twice a day with either 220 mL of Ensure® Plus Advance (HMB group, n = 22) or with 220 mL of Ensure® Plus High Protein (HP group, n = 21). MHE evaluation was by psychometric hepatic encephalopathy score (PHES). Compared to the HP group, an HMB-specific treatment effect led to a larger increase in Val, Leu, Phe, Trp and BCAA fasting plasma levels. Both treatments increased Fischer’s ratio and urea without an increase in Gln or ammonia fasting plasma levels. MHE was associated with a reduced total plasma amino acid concentration, a reduced BCAA and Fischer´s ratio, and an increased Gln/Glu ratio. HMB-enriched ONS increased Fischer´s ratio without varying Gln or ammonia plasma levels in liver cirrhosis and malnutrition, a protective amino acid profile that can help prevent MHE.
Collapse
Affiliation(s)
- Silvia Espina
- Gastroenterology Department, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (S.E.); (J.F.-O.); (V.B.-M.)
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (Y.G.-I.); (A.S.-P.); (M.L.-Y.); (M.P.G.-S.); (R.d.M.-B.); (B.G.-R.)
| | - Yolanda Gonzalez-Irazabal
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (Y.G.-I.); (A.S.-P.); (M.L.-Y.); (M.P.G.-S.); (R.d.M.-B.); (B.G.-R.)
- Clinical Biochemistry Department, University Hospital Miguel Servet, 50009 Zaragoza, Spain
| | - Alejandro Sanz-Paris
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (Y.G.-I.); (A.S.-P.); (M.L.-Y.); (M.P.G.-S.); (R.d.M.-B.); (B.G.-R.)
- Nutrition Department, University Hospital Miguel Servet, 50009 Zaragoza, Spain
| | - Marta Lopez-Yus
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (Y.G.-I.); (A.S.-P.); (M.L.-Y.); (M.P.G.-S.); (R.d.M.-B.); (B.G.-R.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Instituto Aragones de Ciencias de la Salud (IACS), University Hospital Miguel Servet, 50009 Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (Y.G.-I.); (A.S.-P.); (M.L.-Y.); (M.P.G.-S.); (R.d.M.-B.); (B.G.-R.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Instituto Aragones de Ciencias de la Salud (IACS), University Hospital Miguel Servet, 50009 Zaragoza, Spain
| | - Raquel del Moral-Bergos
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (Y.G.-I.); (A.S.-P.); (M.L.-Y.); (M.P.G.-S.); (R.d.M.-B.); (B.G.-R.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Instituto Aragones de Ciencias de la Salud (IACS), University Hospital Miguel Servet, 50009 Zaragoza, Spain
| | - Beatriz Garcia-Rodriguez
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (Y.G.-I.); (A.S.-P.); (M.L.-Y.); (M.P.G.-S.); (R.d.M.-B.); (B.G.-R.)
- Clinical Biochemistry Department, University Hospital Miguel Servet, 50009 Zaragoza, Spain
| | - Javier Fuentes-Olmo
- Gastroenterology Department, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (S.E.); (J.F.-O.); (V.B.-M.)
| | - Vanesa Bernal-Monterde
- Gastroenterology Department, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (S.E.); (J.F.-O.); (V.B.-M.)
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (Y.G.-I.); (A.S.-P.); (M.L.-Y.); (M.P.G.-S.); (R.d.M.-B.); (B.G.-R.)
| | - Jose M. Arbones-Mainar
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain; (Y.G.-I.); (A.S.-P.); (M.L.-Y.); (M.P.G.-S.); (R.d.M.-B.); (B.G.-R.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Instituto Aragones de Ciencias de la Salud (IACS), University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutrición (CIBERObn), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
35
|
Yang H, Mayneris-Perxachs J, Boqué N, del Bas JM, Arola L, Yuan M, Türkez H, Uhlén M, Borén J, Zhang C, Mardinoglu A, Caimari A. Combined Metabolic Activators Decrease Liver Steatosis by Activating Mitochondrial Metabolism in Hamsters Fed with a High-Fat Diet. Biomedicines 2021; 9:1440. [PMID: 34680557 PMCID: PMC8533474 DOI: 10.3390/biomedicines9101440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023] Open
Abstract
Although the prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase, there is no effective treatment approved for this condition. We previously showed, in high-fat diet (HFD)-fed mice, that the supplementation of combined metabolic activators (CMA), including nicotinamide riboside (NAD+ precursor) and the potent glutathione precursors serine and N-acetyl-l-cysteine (NAC), significantly decreased fatty liver by promoting fat oxidation in mitochondria. Afterwards, in a one-day proof-of-concept human supplementation study, we observed that this CMA, including also L-carnitine tartrate (LCT), resulted in increased fatty acid oxidation and de novo glutathione synthesis. However, the underlying molecular mechanisms associated with supplementation of CMA have not been fully elucidated. Here, we demonstrated in hamsters that the chronic supplementation of this CMA (changing serine for betaine) at two doses significantly decreased hepatic steatosis. We further generated liver transcriptomics data and integrated these data using a liver-specific genome-scale metabolic model of liver tissue. We systemically determined the molecular changes after the supplementation of CMA and found that it activates mitochondria in the liver tissue by modulating global lipid, amino acid, antioxidant and folate metabolism. Our findings provide extra evidence about the beneficial effects of a treatment based on this CMA against NAFLD.
Collapse
Affiliation(s)
- Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Doctor Josep Trueta, 17190 Girona, Spain;
- Center for Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| | - Josep M. del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| | - Lluís Arola
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Meng Yuan
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25030, Turkey;
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, SE-40233 Gothenburg, Sweden;
| | - Cheng Zhang
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| |
Collapse
|
36
|
Zhang D, Guo S, Schrodi SJ. Mechanisms of DNA Methylation in Virus-Host Interaction in Hepatitis B Infection: Pathogenesis and Oncogenetic Properties. Int J Mol Sci 2021; 22:9858. [PMID: 34576022 PMCID: PMC8466338 DOI: 10.3390/ijms22189858] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV), the well-studied oncovirus that contributes to the majority of hepatocellular carcinomas (HCC) worldwide, can cause a severe inflammatory microenvironment leading to genetic and epigenetic changes in hepatocyte clones. HBV replication contributes to the regulation of DNA methyltransferase gene expression, particularly by X protein (HBx), and subsequent methylation changes may lead to abnormal transcription activation of adjacent genes and genomic instability. Undoubtedly, the altered expression of these genes has been known to cause diverse aspects of infected hepatocytes, including apoptosis, proliferation, reactive oxygen species (ROS) accumulation, and immune responses. Additionally, pollutant-induced DNA methylation changes and aberrant methylation of imprinted genes in hepatocytes also complicate the process of tumorigenesis. Meanwhile, hepatocytes also contribute to epigenetic modification of the viral genome to affect HBV replication or viral protein production. Meanwhile, methylation levels of HBV integrants and surrounding host regions also play crucial roles in their ability to produce viral proteins in affected hepatocytes. Both host and viral changes can provide novel insights into tumorigenesis, individualized responses to therapeutic intervention, disease progress, and early diagnosis. As such, DNA methylation-mediated epigenetic silencing of cancer-related genes and viral replication is a compelling therapeutic goal to reduce morbidity and mortality from liver cancer caused by chronic HBV infection. In this review, we summarize the most recent research on aberrant DNA methylation associated with HBV infection, which is involved in HCC development, and provide an outlook on the future direction of the research.
Collapse
Affiliation(s)
- Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
37
|
Guadagnin AR, Velasco-Acosta DA, Stella SL, Luchini D, Cardoso FC. Methionine supply during the peripartum period and early lactation alter immunometabolic gene expression in cytological smear and endometrial tissue of holstein cows. Theriogenology 2021; 173:102-111. [PMID: 34365138 DOI: 10.1016/j.theriogenology.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
The objective of the present study was to evaluate the effect of feeding rumen-protected methionine (RPM) during the peripartal period and early lactation on mRNA gene expression profiles of uterine cytological smear and endometrial samples of Holstein cows (n = 20). Treatments consisted of a supplementation with RPM [MET; n = 11; RPM at a rate of 0.08 % of DM: Lys:Met = 2.8:1, (Smartamine® M Adisseo, Alpharetta, GA, USA)] and no supplementation (CON; n = 9; Lys:Met = 3.5:1). Uterine cytology smears and endometrial samples were collected at 15, 30, and 73 days in milk (DIM) and analyzed for expression of genes related with metabolism, inflammation, and methionine metabolism. Regarding the cytological smear samples, RPM supplementation tended to increase mRNA expression of methionine adenosyltransferase 1 alpha (MAT1A) and increased the mRNA expression of fibroblast growth factor 7 (FGF7), with an effect of time for the latter. On the other hand, RPM decreased mRNA expression for glucose transporter 4 (GLUT4), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), interleukin 8 (IL-8), prostaglandin E synthase 3 (PTGES3), translocator protein 18 kDa (TSPO), mucin 1 (MUC1) and superoxide dismutase (SOD1) in cytological smear samples. There was an effect of time for all variables except MAT1A, with decreasing expression over time. There was a TRT × TIME interaction for GLUT4 mRNA expression, with higher GLUT4 mRNA expression for cows fed CON than for cows fed RPM at time 15 and a tendency to higher expression for cows fed CON on time 30 when compared with cows fed RPM. For uterine tissue samples, feeding RPM increased the mRNA expression of lecithin-cholesterol acyltransferase (LCAT), S-adenosyl-l-homocysteine hydrolase (SAAH), FGF7, GLUT4, and apolipoproteins 3 (APOL3), with an effect of time for APOL3 where its expression increased over time. There was a tendency for cows fed RPM to have decreased IL1β mRNA expression. In conclusion, feeding RPM during transition period and early lactation is beneficial for uterine immune response and metabolism in early lactation as indicated by the favorable expressions of genes affecting the uterine immunometabolism during such a challenging period.
Collapse
Affiliation(s)
- A R Guadagnin
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - D A Velasco-Acosta
- The Colombian Corporation for Agricultural Research (AGROSAVIA), Mosquera, Colombia
| | - S L Stella
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | - F C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
38
|
Kant R, Yang MH, Tseng CH, Yen CH, Li WY, Tyan YC, Chen M, Tzeng CC, Chen WC, You K, Wang WC, Chen YL, Chen YMA. Discovery of an Orally Efficacious MYC Inhibitor for Liver Cancer Using a GNMT-Based High-Throughput Screening System and Structure-Activity Relationship Analysis. J Med Chem 2021; 64:8992-9009. [PMID: 34132534 DOI: 10.1021/acs.jmedchem.1c00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycine-N-methyl transferase (GNMT) downregulation results in spontaneous hepatocellular carcinoma (HCC). Overexpression of GNMT inhibits the proliferation of liver cancer cell lines and prevents carcinogen-induced HCC, suggesting that GNMT induction is a potential approach for anti-HCC therapy. Herein, we used Huh7 GNMT promoter-driven screening to identify a GNMT inducer. Compound K78 was identified and validated for its induction of GNMT and inhibition of Huh7 cell growth. Subsequently, we employed structure-activity relationship analysis and found a potent GNMT inducer, K117. K117 inhibited Huh7 cell growth in vitro and xenograft in vivo. Oral administration of a dosage of K117 at 10 mpk (milligrams per kilogram) can inhibit Huh7 xenograft in a manner equivalent to the effect of sorafenib at a dosage of 25 mpk. A mechanistic study revealed that K117 is an MYC inhibitor. Ectopic expression of MYC using CMV promoter blocked K117-mediated MYC inhibition and GNMT induction. Overall, K117 is a potential lead compound for HCC- and MYC-dependent cancers.
Collapse
Affiliation(s)
- Rajni Kant
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ming-Hui Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-You Li
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Marcelo Chen
- Department of Urology, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Cherng-Chyi Tzeng
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Cheng Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Kaiting You
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Wen-Chieh Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Yeh-Long Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ming Arthur Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
39
|
Guo Y, Lv B, Liu R, Dai Z, Zhang F, Liang Y, Yu B, Zeng D, Lv XB, Zhang Z. Role of LncRNAs in regulating cancer amino acid metabolism. Cancer Cell Int 2021; 21:209. [PMID: 33849550 PMCID: PMC8045299 DOI: 10.1186/s12935-021-01926-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
The metabolic change of tumor cells is an extremely complicated process that involves the intersection and integration of various signal pathways. Compared with normal tissues, cancer cells show distinguished metabolic characteristics called metabolic reprogramming, which has been considered as a sign of cancer occurrence. With the deepening of tumor research in recent years, people gradually found that amino acid metabolism played crucial roles in cancer progression. Long non-coding RNAs (lncRNAs), which are implicated in many important biological processes, were firstly discovered dysregulating in cancer tissues and participating in extensive regulation of tumorigenesis. This review focuses on the reprogramming of amino acid metabolism in cancers and how lncRNAs participate in the regulatory network by interacting with other macromolecular substances. Understanding the functions of lncRNA in amino acid reprogramming in tumors might provide a new vision on the mechanisms of tumorigenesis and the development of new approaches for cancer therapy.
Collapse
Affiliation(s)
- Yuhong Guo
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Renfeng Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhengzai Dai
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Feifei Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Yiping Liang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Bo Yu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Duo Zeng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China. .,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China. .,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
40
|
The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease. J Clin Med 2021; 10:jcm10051081. [PMID: 33807699 PMCID: PMC7961611 DOI: 10.3390/jcm10051081] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and approximately 25% of the global population may have NAFLD. NAFLD is associated with obesity and metabolic syndrome, but its pathophysiology is complex and only partly understood. The transsulfuration pathway (TSP) is a metabolic pathway regulating homocysteine and cysteine metabolism and is vital in controlling sulfur balance in the organism. Precise control of this pathway is critical for maintenance of optimal cellular function. The TSP is closely linked to other pathways such as the folate and methionine cycles, hydrogen sulfide (H2S) and glutathione (GSH) production. Impaired activity of the TSP will cause an increase in homocysteine and a decrease in cysteine levels. Homocysteine will also be increased due to impairment of the folate and methionine cycles. The key enzymes of the TSP, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are highly expressed in the liver and deficient CBS and CSE expression causes hepatic steatosis, inflammation, and fibrosis in animal models. A causative link between the TSP and NAFLD has not been established. However, dysfunctions in the TSP and related pathways, in terms of enzyme expression and the plasma levels of the metabolites (e.g., homocysteine, cystathionine, and cysteine), have been reported in NAFLD and liver cirrhosis in both animal models and humans. Further investigation of the TSP in relation to NAFLD may reveal mechanisms involved in the development and progression of NAFLD.
Collapse
|
41
|
Rosenberger FA, Moore D, Atanassov I, Moedas MF, Clemente P, Végvári Á, Fissi NE, Filograna R, Bucher AL, Hinze Y, The M, Hedman E, Chernogubova E, Begzati A, Wibom R, Jain M, Nilsson R, Käll L, Wedell A, Freyer C, Wredenberg A. The one-carbon pool controls mitochondrial energy metabolism via complex I and iron-sulfur clusters. SCIENCE ADVANCES 2021; 7:eabf0717. [PMID: 33608280 PMCID: PMC7895438 DOI: 10.1126/sciadv.abf0717] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 05/15/2023]
Abstract
Induction of the one-carbon cycle is an early hallmark of mitochondrial dysfunction and cancer metabolism. Vital intermediary steps are localized to mitochondria, but it remains unclear how one-carbon availability connects to mitochondrial function. Here, we show that the one-carbon metabolite and methyl group donor S-adenosylmethionine (SAM) is pivotal for energy metabolism. A gradual decline in mitochondrial SAM (mitoSAM) causes hierarchical defects in fly and mouse, comprising loss of mitoSAM-dependent metabolites and impaired assembly of the oxidative phosphorylation system. Complex I stability and iron-sulfur cluster biosynthesis are directly controlled by mitoSAM levels, while other protein targets are predominantly methylated outside of the organelle before import. The mitoSAM pool follows its cytosolic production, establishing mitochondria as responsive receivers of one-carbon units. Thus, we demonstrate that cellular methylation potential is required for energy metabolism, with direct relevance for pathophysiology, aging, and cancer.
Collapse
Affiliation(s)
- Florian A Rosenberger
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - David Moore
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Marco F Moedas
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Paula Clemente
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Najla El Fissi
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Roberta Filograna
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Anna-Lena Bucher
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Yvonne Hinze
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Matthew The
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Erik Hedman
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ekaterina Chernogubova
- Cardiovascular Medicine Unit, Department of Medicine (Solna), Karolinska Institutet, 171 65 Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arjana Begzati
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Mohit Jain
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine (Solna), Karolinska Institutet, 171 65 Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Käll
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Anna Wedell
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
42
|
Wang L, Guo X, Xu X, Xu S, Han J, Wang R, Guo Z, Yi F, Qi X. No Association of Homocysteine, Anticardiolipin Antibody, and Anti-β2 Glycoprotein I Antibody With Portal Venous System Thrombosis in Liver Cirrhosis. Clin Appl Thromb Hemost 2021; 27:10760296211010969. [PMID: 33882699 PMCID: PMC8072837 DOI: 10.1177/10760296211010969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Portal venous system thrombosis (PVST), a common complication of liver cirrhosis, is closely associated with thrombophilia. To explore the association of homocysteine (Hcy), anticardiolipin antibody (aCL), and anti-β2 glycoprotein I antibody (aβ2GPI), which are possible thrombophilic factors, with PVST in liver cirrhosis. Overall, 654 non-malignant patients (219 with and 435 without liver cirrhosis) admitted between January 2016 and June 2020 were retrospectively evaluated. Presence of PVST, degree of main portal vein (MPV) thrombosis, and clinically significant PVST were identified. Hcy level, hyperhomocysteinemia (HHcy), aCL positivity, and aβ2GPI positivity were compared according to the presence of liver cirrhosis and PVST. Positive aβ2GPI was significantly more frequent in patients with liver cirrhosis than those without, but Hcy level and proportions of HHcy and positive aCL were not significantly different between them. PVST could be evaluated in 136 cirrhotic patients. Hcy level [10.57 μmol/L (2.71-56.82) versus 9.97 μmol/L (2.05-53.44); P = 0.796] and proportions of HHcy [4/44 (9.1%) versus 13/81 (16.0%); P = 0.413] and positive aCL [1/23 (4.3%) versus 10/52 (19.2%); P = 0.185] and aβ2GPI [9/23 (39.1%) versus 21/52 (40.4%); P = 0.919] were not significantly different between cirrhotic patients with and without PVST. There was still no significant association of Hcy level, HHcy, aCL, or aβ2GPI with PVST based on Child-Pugh classification, MPV thrombosis >50%, and clinically significant PVST. Hcy, aCL, and aβ2GPI may not be associated with PVST in liver cirrhosis, suggesting that routine screening for Hcy, aCL, and aβ2GPI should be unnecessary in such patients.
Collapse
Affiliation(s)
- Le Wang
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly called General Hospital of Shenyang Military Area), Shenyang, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaozhong Guo
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly called General Hospital of Shenyang Military Area), Shenyang, China
| | - Xiangbo Xu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly called General Hospital of Shenyang Military Area), Shenyang, China
| | - Shixue Xu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly called General Hospital of Shenyang Military Area), Shenyang, China
| | - Juqiang Han
- Institute of Hepatology, PLA Army General Hospital, Beijing, China
| | - Ran Wang
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly called General Hospital of Shenyang Military Area), Shenyang, China
| | - Zeqi Guo
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly called General Hospital of Shenyang Military Area), Shenyang, China
| | - Fangfang Yi
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly called General Hospital of Shenyang Military Area), Shenyang, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xingshun Qi
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly called General Hospital of Shenyang Military Area), Shenyang, China
- Xingshun Qi, Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly called General Hospital of Shenyang Military Area), No. 83 Wenhua Road, Shenyang 110840, Liaoning Province, China.
| |
Collapse
|
43
|
Fernández-Barrena MG, Arechederra M, Colyn L, Berasain C, Avila MA. Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg. JHEP Rep 2020; 2:100167. [PMID: 33134907 PMCID: PMC7585149 DOI: 10.1016/j.jhepr.2020.100167] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly tumour whose causative agents are generally well known, but whose pathogenesis remains poorly understood. Nevertheless, key genetic alterations are emerging from a heterogeneous molecular landscape, providing information on the tumorigenic process from initiation to progression. Among these molecular alterations, those that affect epigenetic processes are increasingly recognised as contributing to carcinogenesis from preneoplastic stages. The epigenetic machinery regulates gene expression through intertwined and partially characterised circuits involving chromatin remodelers, covalent DNA and histone modifications, and dedicated proteins reading these modifications. In this review, we summarise recent findings on HCC epigenetics, focusing mainly on changes in DNA and histone modifications and their carcinogenic implications. We also discuss the potential drugs that target epigenetic mechanisms for HCC treatment, either alone or in combination with current therapies, including immunotherapies.
Collapse
Key Words
- 5acC, 5-acetylcytosine
- 5fC, 5-formylcytosine
- 5hmC, 5-hydoxymethyl cytosine
- 5mC, 5-methylcytosine
- Acetyl-CoA, acetyl coenzyme A
- BER, base excision repair
- BRD, bromodomain
- CDA, cytidine deaminase
- CGI, CpG island
- CIMP, CGI methylator phenotype
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- DNMT, DNA methyltransferase
- DNMTi, DNMT inhibitor
- Epigenetics
- FAD, flavin adenine dinucleotide
- HAT, histone acetyltransferases
- HCC, hepatocellular carcinoma
- HDAC, histone deacetylase
- HDACi, HDAC inhibitor
- HDM, histone demethylase
- HMT, histone methyltransferase
- Hepatocellular carcinoma
- KMT, lysine methyltransferase
- LSD/KDM, lysine specific demethylases
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NPC, nasopharyngeal carcinoma
- PD-L1, programmed cell death ligand-1
- PD1, programmed cell death protein 1
- PHD, plant homeodomain
- PTM, post-translational modification
- SAM, S-adenosyl-L-methionine
- TDG, thymidine-DNA-glycosylase
- TERT, telomerase reverse transcriptase
- TET, ten-eleven translocation
- TME, tumour microenvironment
- TSG, tumour suppressor gene
- Therapy
- UHRF1, ubiquitin like with PHD and ring finger domains 1
- VEGF, vascular endothelial growth factor
- ncRNAs, non-coding RNAs
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Maite G. Fernández-Barrena
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María Arechederra
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Leticia Colyn
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Matias A. Avila
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
44
|
Pineda-Tenor D, Gómez-Moreno AZ, Sánchez-Ruano JJ, Artaza-Varasa T, Virseda-Berdices A, Fernández-Rodríguez A, Mendoza PM, Jiménez-Sousa MÁ, Resino S. MTHFR rs1801133 Polymorphism Is Associated With Liver Fibrosis Progression in Chronic Hepatitis C: A Retrospective Study. Front Med (Lausanne) 2020; 7:582666. [PMID: 33304912 PMCID: PMC7691664 DOI: 10.3389/fmed.2020.582666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
Background: The MTHFR (methylenetetrahydrofolate reductase) rs1801133 polymorphism leads to higher circulating levels of homocysteine, which is related to several liver diseases. We aimed to evaluate the relationship between MTHFR rs1801133 polymorphism and liver fibrosis progression in HCV-infected patients. Methods: We conducted a preliminary retrospective cohort study in 208 non-cirrhotic HCV-infected patients. These subjects had at least two liver stiffness measurements (LSM), which were assessed using transient elastography, and no patient had cirrhosis at baseline. We analyzed the association between MTHFR rs1801133 and outcome variables using Generalized Linear Models. Results: HCV-infected patients were 47 years old, around 54% were males, a low frequency of high alcohol intake (13.5%) or prior use of intravenous drugs (10.1%). A total of 26 patients developed cirrhosis (LSM1 ≥ 12.5) during a median follow-up of 46.6 months. The presence of the rs1801133 C allele showed an inverse association with the LSM2/LSM1 ratio (adjusted AMR = 0.90; 95%CI = 0.83-0.98; p = 0.020) and the cirrhosis progression (adjusted OR = 0.43; 95%CI = 0.19-0.95; p = 0.038). Besides, rs1801133 CT/CC genotype had an inverse association with the LSM2/LSM1 ratio (adjusted AMR = 0.80; 95%CI = 0.68-0.95; p = 0.009) and the cirrhosis progression (adjusted OR= 0.21; 95%CI = 0.06-0.74; p = 0.015). Conclusions: MTHFR rs1801133 C allele carriers presented a diminished risk of liver fibrosis progression and development of cirrhosis than rs1801133 T allele carriers. This statement supports the hypothesis that MTHFR rs1801133 polymorphism appears to play a crucial role in chronic hepatitis C immunopathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ana Virseda-Berdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | | | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
45
|
Zhang H, Léveillé M, Courty E, Gunes A, N Nguyen B, Estall JL. Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 2020; 319:E863-E876. [PMID: 32924526 DOI: 10.1152/ajpendo.00321.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing epidemic linked to metabolic disease. The first stage of NAFLD is characterized by lipid accumulation in hepatocytes, but this can progress into nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). Western diets, high in fats, sugars, and cholesterol, are linked to NAFLD development. Murine models are often used to study NAFLD; however, there remains debate on which diet-induced model best mimics both human disease progression and pathogenesis. In this study, we performed a side-by-side comparison of two popular diet models of murine NAFLD/NASH and associated HCC, a high-fat diet supplemented with 30% fructose water (HFHF) and a Western diet high in cholesterol (WDHC), and these were compared with a common grain-based chow diet (GBD). Mice on both experimental diets developed liver steatosis, and WDHC-fed mice had greater levels of hepatic inflammation and fibrosis than HFHF-fed mice. In contrast, HFHF-fed mice were more obese and developed more severe metabolic syndrome, with less pronounced liver disease. Despite these differences, WDHC-fed and HFHF-fed mice had similar tumor burdens in a model of diet-potentiated liver cancer. Response to diet and resulting phenotypes were generally similar between sexes, albeit delayed in females. This study shows that modest differences in diet can significantly uncouple glucose homeostasis and liver damage. In conclusion, long-term feeding of either HFHF or WDHC is a reliable method to induce NASH and diet-potentiated liver cancer in mice of both sexes; however, the choice of diet involves a trade-off between severity of metabolic syndrome and liver damage.
Collapse
Affiliation(s)
- Hannah Zhang
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Mélissa Léveillé
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Emilie Courty
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Aysim Gunes
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Bich N Nguyen
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
- University of Montreal Health Network (CHUM), Montreal, Quebec Canada
| | - Jennifer L Estall
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
HP1s modulate the S-Adenosyl Methionine synthesis pathway in liver cancer cells. Biochem J 2020; 477:1033-1047. [PMID: 32091571 DOI: 10.1042/bcj20190621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer in adults. Among the altered pathways leading to HCC, an increasing role is attributed to abnormal epigenetic regulation. Members of the Heterochromatin Protein (HP1) 1 family are key players in chromatin organisation, acting as docking sites for chromatin modifiers. Here, we inactivated HP1α in HepG2 human liver carcinoma cells and showed that HP1α participated in cell proliferation. HP1α-depleted cells have a global decrease in DNA methylation and consequently a perturbed chromatin organisation, as exemplified by the reactivation of transcription at centromeric and pericentromeric regions, eventhough the protein levels of chromatin writers depositing methylation marks, such as EZH2, SETDB1, SUV39H1, G9A and DNMT3A remained unaltered. This decrease was attributed mainly to a low S-Adenosyl Methionine (SAM) level, a cofactor involved in methylation processes. Furthermore, we showed that this decrease was due to a modification in the Methionine adenosyl transferase 2A RNA (MAT2A) level, which modifies the ratio of MAT1A/MAT2A, two enzymes that generate SAM. Importantly, HP1α reintroduction into HP1α-depleted cells restored the MAT2A protein to its initial level. Finally, we demonstrated that this transcriptional deregulation of MAT2A in HP1α-depleted cells relied on a lack of recruitment of HP1β and HP1γ to MAT2A promoter where an improper non-CpG methylation site was promoted in the vicinity of the transcription start site where HP1β and HP1γ bound. Altogether, these results highlight an unanticipated link between HP1 and the SAM synthesis pathway, and emphasise emerging functions of HP1s as sensors of some aspects of liver cell metabolism.
Collapse
|
47
|
Claveria-Cabello A, Colyn L, Arechederra M, Urman JM, Berasain C, Avila MA, Fernandez-Barrena MG. Epigenetics in Liver Fibrosis: Could HDACs be a Therapeutic Target? Cells 2020; 9:cells9102321. [PMID: 33086678 PMCID: PMC7589994 DOI: 10.3390/cells9102321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic liver diseases (CLD) represent a worldwide health problem. While CLDs may have diverse etiologies, a common pathogenic denominator is the presence of liver fibrosis. Cirrhosis, the end-stage of CLD, is characterized by extensive fibrosis and is markedly associated with the development of hepatocellular carcinoma. The most important event in hepatic fibrogenesis is the activation of hepatic stellate cells (HSC) following liver injury. Activated HSCs acquire a myofibroblast-like phenotype becoming proliferative, fibrogenic, and contractile cells. While transient activation of HSCs is part of the physiological mechanisms of tissue repair, protracted activation of a wound healing reaction leads to organ fibrosis. The phenotypic changes of activated HSCs involve epigenetic mechanisms mediated by non-coding RNAs (ncRNA) as well as by changes in DNA methylation and histone modifications. During CLD these epigenetic mechanisms become deregulated, with alterations in the expression and activity of epigenetic modulators. Here we provide an overview of the epigenetic alterations involved in fibrogenic HSCs transdifferentiation with particular focus on histones acetylation changes. We also discuss recent studies supporting the promising therapeutic potential of histone deacetylase inhibitors in liver fibrosis.
Collapse
Affiliation(s)
- Alex Claveria-Cabello
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
| | - Leticia Colyn
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
| | - Maria Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Jesus M. Urman
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Matias A. Avila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Correspondence: (M.A.A.); (M.G.F.-B.); Tel.: +34-94-819-4700 (M.A.A.); +34-94-819-4700 (M.G.F.-B.)
| | - Maite G. Fernandez-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Correspondence: (M.A.A.); (M.G.F.-B.); Tel.: +34-94-819-4700 (M.A.A.); +34-94-819-4700 (M.G.F.-B.)
| |
Collapse
|
48
|
Stabler SP. Alterations in Sulfur Amino Acids as Biomarkers of Disease. J Nutr 2020; 150:2532S-2537S. [PMID: 33000156 DOI: 10.1093/jn/nxaa118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 01/30/2023] Open
Abstract
Homocysteine (Hcy) is methylated by methionine synthase to form methionine with methyl-cobalamin as a cofactor. The reaction demethylates 5-methyltetrahydrofolate to tetrahydrofolate, which is required for DNA and RNA synthesis. Deficiency of either of the cobalamin (Cbl) and/or folate cofactors results in elevated Hcy and megaloblastic anemia. Elevated Hcy is a sensitive biomarker of Cbl and/or folate status and more specific than serum vitamin assays. Elevated Hcy normalizes when the correct vitamin is given. Elevated Hcy is associated with alcohol use disorder and drugs that target folate or Cbl metabolism, and is a risk factor for thrombotic vascular disease. Elevated methionine and cystathionine are associated with liver disease. Elevated Hcy, cystathionine, and cysteine, but not methionine, are common in patients with chronic renal failure. Higher cysteine predicts obesity and future weight gain. Serum S-adenosylhomocysteine (AdoHcy) is elevated in Cbl deficiency and chronic renal failure. Drugs that require methylation for catabolism may deplete liver S-adenosylmethionine and raise AdoHcy and Hcy. Deficiency of Cbl or folate or perturbations of their metabolism cause major changes in sulfur amino acids.
Collapse
Affiliation(s)
- Sally P Stabler
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| |
Collapse
|
49
|
Xu Q, Li Y, Gao X, Kang K, Williams JG, Tong L, Liu J, Ji M, Deterding LJ, Tong X, Locasale JW, Li L, Shats I, Li X. HNF4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nat Commun 2020; 11:3978. [PMID: 32770044 PMCID: PMC7414133 DOI: 10.1038/s41467-020-17818-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/22/2020] [Indexed: 01/11/2023] Open
Abstract
Methionine restriction, a dietary regimen that protects against metabolic diseases and aging, represses cancer growth and improves cancer therapy. However, the response of different cancer cells to this nutritional manipulation is highly variable, and the molecular determinants of this heterogeneity remain poorly understood. Here we report that hepatocyte nuclear factor 4α (HNF4α) dictates the sensitivity of liver cancer to methionine restriction. We show that hepatic sulfur amino acid (SAA) metabolism is under transcriptional control of HNF4α. Knocking down HNF4α or SAA enzymes in HNF4α-positive epithelial liver cancer lines impairs SAA metabolism, increases resistance to methionine restriction or sorafenib, promotes epithelial-mesenchymal transition, and induces cell migration. Conversely, genetic or metabolic restoration of the transsulfuration pathway in SAA metabolism significantly alleviates the outcomes induced by HNF4α deficiency in liver cancer cells. Our study identifies HNF4α as a regulator of hepatic SAA metabolism that regulates the sensitivity of liver cancer to methionine restriction. The molecular determinants of differential responses of different cancer cells to methionine restriction are poorly understood. Here the authors show that hepatocyte nuclear factor 4α regulates sulfur amino acid metabolism and dictates the sensitivity of liver cancer to this dietary manipulation.
Collapse
Affiliation(s)
- Qing Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kai Kang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Jason G Williams
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Lingfeng Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200001, Shanghai, China
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ming Ji
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Leesa J Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200001, Shanghai, China
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Igor Shats
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
50
|
Portillo F, Vázquez J, Pajares MA. Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie 2020; 173:33-47. [DOI: 10.1016/j.biochi.2020.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
|